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Abstract In this paper, meshfree simulations of large de-
formation of thin shell structures is presented. It has been
shown that the window function based meshfree inter-
polants can be used to construct highly smoothed (high
order ``manifold'') shape functions for three-dimensional
(3-D) meshfree discretization/interpolation, which can be
used to simulate large deformation of thin shell structures
while avoiding ill-conditioning as well as stiffening in
numerical computations.

The main advantage of such 3-D meshfree continuum
approach is its simplicity in both formulation and imple-
mentation as compared to shell theory approach, or de-
generated continuum approach. Moreover, it is believed
that the accuracy of the computation may increase because
of using 3-D exact formulation. Possible mechanism to
relieve shear/volumetric locking due to the meshfree in-
terpolation is discussed. Several examples have been
computed by using a meshfree, explicit, total Lagrangian
formulation. Towards to developing a self-contact algo-
rithm, a novel meshfree contact algorithm is proposed in
the end.

1
Introduction
The numerical simulation of linear/non-linear thin shell
structures has been a challenge in applied mechanics and
in many engineering branches. Its engineering signi®cance
as well as technical dif®culties can be best measured by
the seemingly ever-lasting ``new formulations'' or ``new
contributions'' in the literature throughout the century,
not mentioning the early contributions. Its applications
cover from almost every aspects of engineering, for in-
stance, sheet metal forming, crash-worthiness test, civil
structure design, pressure vessel liability, shipbuilding,
just to name a few.

Regarding the strategy of numerical simulations of thin
shell structures, there are three major approaches: (a)
numerical simulation based on linear/nonlinear shell the-
ories; (b) so-called degenerated continuum, or continuum
based approach; (c) direct three-dimensional (3-D) con-
tinuum approach.

Among these three approaches, 3-D continuum direct
approach is the simplest, and most accurate one in prin-
ciple; nonetheless it is the least popular one in practice,
though it has not been completely abandoned; the multi-
ple-quadrature hexahedral element proposed by Liu et al.
[22] and Liu et al. [21] is a representative of it. However,
such ad-hoc 3-D continuum element is usually very
complicated in design in order to avoid all possible
pathological scenarios. The major setback, or dilemma
that prevents using lower order ®nite element in 3-D direct
simulation is that it is often required to deploy multiple
elements in the thickness direction of the thin shell to
acquire reasonable gradient ®eld, which, on the other
hand, leads to degrading the conditioning of the discrete
system and then the accuracy of the numerical solution;
moreover, the direct continuum approach is very expen-
sive, which usually requires more elements (3 to 5 times)
in the same simulation than shell theory approach, or
degenerated approach does.

It seems to us that the most commonly used numerical
algorithms belong to the so-called degenerated continuum
approach (e.g. Hughes and Liu [12, 13], Stanley [31]).
Compared to shell theory approach, the degenerated ap-
proach is much simpler; however, for nonlinear large de-
formation of inelastic shells, its formulations are still very
much involved. The main reason for this is because some
degenerated continuum elements suffer from shear locking
as well as membrane locking (Stolarski and Belytschko
[32]). To avoid such numerical pathologies, using so-
phisticated mixed formulations, such as ``enhanced strain''
formulation, or other incompatible element approaches, is
inevitable. Moreover, it is troublesome, if it is not im-
possible, to embed complicated constitutive laws into the
degenerated continuum formulation, such as the thermo-
elasto-viscoplasticity with damage at ®nite strain.

There have been some works on using meshfree meth-
ods to simulate large deformation of solids, e.g. Chen et al.
[6, 5]; nonetheless, to the authors' knowledge, there has
not been any successful attempts reported in literature
dealing with nonlinear large deformation of thin shell
structures via meshfree methods. In this study, we attempt
to use window function based meshfree interpolants to
directly simulate large deformation of thin shell/sheet
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structures as what they really are ± three dimensional
solid. By doing so, we can enjoy both the simplicity in
formulation as well as the improvement in accuracy. The
novelty, more precisely, the advantage of such meshfree
approach are: (a) the ability to alleviate both volumetric
locking as well as shear locking; (b) the ability to alleviate
ill conditioning due to small thickness and large aspect
ratio; (c) the ability to capture gradient ®eld in thickness
direction with relative small number of particles in
thickness direction (2 or at most 3). Lacking these abilities
might be the reason why 3-D direct simulation have been
inhibitive for ®nite element methods.

So far, we have not been able to understand com-
pletely why window based meshfree interpolants have
such amiable properties. The justi®cation and rational
for it are: ®rst the window function based meshfree
methods are a class of ``high order manifold'' discreti-
zations, meaning that the discretization ®eld is highly
smooth, more than C3�X� in general; This highly smooth
discretization may do some good in computations, be-
cause of its obvious tendency to alleviate ill condition
number caused by the length scale of the smallest di-
mension. Furthermore, the ``high order manifold''
meshfree methods used here is a discretization that one
can increase the smoothness of the discretization with-
out increasing the degrees of freedoms, or total number
of particles of the whole system, which is almost im-
possible to do using ®nite element type interpolation.
This unique property may be why, at least we suspect
so, certain higher order reduced integration strategies
are available, which could reduce ``locking'' while avoid
rank de®ciencies at the same time. Second, the relative
large support size of the meshfree shape function will
delay the ``mesh'' distortion signi®cantly in large de-
formation computation, thus such meshfree computa-
tions can sustain ``extremely'' large deformation without
recourse to any ``remesh'' or particle relocation, com-
pared to ®nite element approaches.

It may be true that part of these special traits may be
also shared by higher order ®nite element too; however,
for ®nite element method to construct higher order ele-
ment in a 3-D thin shell structure may require more nodal
points distributed along thickness direction, which will
lead to bad conditioning of the algebraic system; this
might be the reason that such computational practice has
rarely been performed and reported in the literature.

The paper is organized in following order: in Sect. 2
some of the basic technique ingredients of meshfree
methods are outlined, and the emphasis is placed on 3-D
formulation; then the proposed meshfree discretization/
formulation is tested for three different materials: (1)
elasto-viscoplastic material (Sect. 3), (2) hyperelastic ma-
terial (Sect. 4), and (3) a J2 elasto-plastic material (Sect. 5).
A brief discussion of a new meshfree contact algorithm is
carried out in Sect. 6.

2
Basic ingredients of the technique
First, a brief review of reproducing kernel particle method
and the corresponding Galerkin formulation in the context
of 3-D large deformation is outlined.

2.1
3-D reproducing kernel particle shape function
For general formulation of meshfree methods, readers are
referred to the comprehensive review by Belytschko et al.
[4], or Liu et al. [19]. For the latest development in
meshfree method, we mention the work of Atluri and Zhu
[1, 2, 34].

As one of meshfree methods, the reproducing kernel
particle method (RKPM) is systematically formulated in
Liu et al. [23, 20, 24], Li and Liu [16, 17]. The 3-D tri-linear
RKPM meshfree shape function used in computations is
constructed by using following polynomial basis,

P�X� � f1;X1;X2;X3;X1X2;X2X3;X3X1;X1X2X3g; �1�
where X :� �X1;X2;X3�. Embedding either a cubic spline
box function, or a ®fth order spline box function as win-
dow function, the kernel function can be explicitly written
as,

K`�X� :� P
X` ÿ X

.

� �
b�X�/.�X` ÿ X�DV` �2�

where P�X� is the polynomial basis, /.�X� is the normal-
ized window function, DV` is the integration weight, and
the vector b�X� is determined by solving the following
algebraic equation,

M�X�b�X� �P�0�;
and P�0� � f1; 0; . . . ; . . . ; 0; 0; 0gT �3�

where both moment matrix, M, and b vector are functions
of X; thus Eq. (3) has to be solved at each Gauss quadra-
ture point. In detail, one can write Eq. (3) as
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Note that fKI�X�g is a partition of unity:X
I2K

KI�X� � 1 �5�

where K is the particle index set. It can reproduce the
following polynomials exactly, i.e.
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X
I2K

KI�X�X1I � X1 �6�X
I2K

KI�X�X2I � X2 �7�X
I2K

KI�X�X3I � X3 �8�X
I2K

KI�X�X1IX2I � X1X2 �9�X
I2K

KI�X�X2IX3I � X2X3 �10�X
I2K

KI�X�X3IX1I � X3X1 �11�X
I2K

KI�X�X1IX2IX3I � X1X2X3 �12�
A detailed proof of the above properties can be found in
Liu et al. [24]. To this end, the reproducing kernel particle
interpolation can be put into a simple form

uq
i �X� �

X
I2K

KI�X�uiI ; i � 1; 2; 3 �13�

To visualize the spatial pro®le of such shape function,
we plot a single shape function and its three ®rst order
derivatives in Fig. 1. Even though the support size of
the shape function is a rectangular box, one may ob-
serve from Fig. 1 that the domain of non-zero value of
the shape function tends to be a sphere, and the do-
main of non-zero value of the derivatives of the shape
function are two connected spherical regions; this im-
plies that the spatial distribution of RKPM shape
function is almost ``isotropic'', which is a desired
property in some situations, such as shear band simu-
lation. In Fig. 1a, we take the ®rst octant out from the
quasi-sphere region, and one can see that the shape
function reaches its maximum at the corresponding
particle, i.e. the center. In each of Fig. 1b±d, we take
one quadrant out to see the orientation and the distri-
bution of the derivatives.

Fig. 1a±d. 3-D RKPM/meshfree shape function and its ®rst derivatives generated by the tri-linear polynomial basis,
P�X� � �1;X1;X2;X3;X1X2;X2X3;X3X1;X1X2X3�. a The shape function, KI�X�, b The derivative, KI;X1�X�, c The derivative,
KI;X2�X�; d The derivative KI;X3�X�
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2.2
An explicit meshfree Galerkin formulation
Because of its simplicity, explicit computation is very at-
tractive in practice, especially for large scale computations
of large deformation problems. However, most inelastic
materials are nearly incompressible, which poses some
technical dif®culties in displacement based linear ®nite
element formulation. For instance, the displacement based
Galerkin formulation may induce volumetric locking,
which leads to failure in computations. In practice, such
dif®culty is usually handled by either mixed formulation,
or a reduced integration scheme, e.g. the enhanced strain
methods (Simo and Rifai [30]). In doing so, one may have
to develop special incompatible elements, which, to certain
extent, complicates numerical implementation since they
are usually not suitable for explicit computations. For ex-
ample, an immediate dif®culty is how to adapt the mixed
formulations for quadrilateral (or hexahedral) grids. In this
paper, we propose a meshfree, explicit, total Lagrangian
formulation, which is believed to have certain capacity to
remedy some algorithmic de®ciencies mentioned above.

The equation of motion is

rji;j � bi � q _vi �14�
where r is Cauchy stress, b is the body force per unit vol-
ume, q is the density of the material, and v is the velocity of
the continuum. For simplicity, the boundary conditions are
speci®ed with respect to the original con®guration,

P � n0 � T0; 8X 2 CT
X �15�

u � u0; 8X 2 Cu
X �16�

where P is the ®rst Piola-Kirchhoff stress tensor, and
CT

X [ Cu
X � oXX .

We start with a weighted residual form in the sense of
Petrov-Galerkin,Z

Xx

q�ui ÿ rji;j ÿ bi

� 	
dui dXx � 0 ; �17�

then the following weak form can be derived,Z
XX

q0 �uidui dXX �
Z

XX

PJidFT
Ji dXX ÿ

Z
XX

Bidui dXX

ÿ
Z

CT
X

T0
i dui dCÿ

Z
Cu

X

Tidui dC � 0 : �18�

Assume the discrete trial, and weighting functions have the
form

uh
i �X; t� �

XNP

I�1

NI�X�~uiI�t� : �19�

duh
i �X; t� �

XNP

I�1

NI�X�d~uiI�t� : �20�

Unlike FE approximation, the RKPM interpolant has a
shortcoming: that is its inability to represent essential
boundary condition via boundary value interpolation, i.e.

~uiI�t� 6� u0
i �XI; t� ; 8XI 2 Cu �21�

d~uiI�t� 6� 0 ; 8XI 2 Cu �22�

and hence duh�X� 6� 0, 8X 2 Cu. This is re¯ected in the
weak form (18) as the extra term,

R
Cu

X
Tidui dC, which is

a nuisance because the traction force, Ti, is unknown on
the essential boundary. Before proceeding further, we have
to modify the meshfree interpolant such that the essential
boundary conditions are taken into account in the inter-
polation scheme. To do so, we distribute Nb number of
particles on the boundary Cu, and enforce the meshfree
interpolant, uh�X; t� 2 spanfNI�X� j I � 1; . . . ;NPg, such
that

uh
i �XI ; t� � u0

i �XI ; t� �: gi�XI ; t�; I � 1; . . . ;Nb �23�
For simplicity, we denote giI�t� :� gi�XI ; t�, I � 1; . . . ;Nb.
Let Nnb :� NPÿ Nb. The particles and the associated dis-
crete ®eld variables can be separated into two parts, each
of them are marked with superscript b and nb,

uh
i �X; t� �

XNP

I�1

NI�X�~uiI�t�

�
XNb

I�1

Nb
I �X�~ub

iI�t� �
XNnb

I�1

Nnb
I �X�~unb

iI �t�

�Nb�X�~ub
i �t� � Nnb�X�~unb

i �t� �24�
where

Nb�X� :� fNb
1 �X�; . . . ;Nb

Nb
�X�g;

~ub
i �t� :� f~ub

i1�t�; . . . ; ~ub
iNb
�t�g ;

�25�

Nnb�X� :� fNnb
1 �X�; . . . ;Nnb

Nnb
�X�g;

~unb
i �t� :� f~unb

i1 �t�; . . . ; ~unb
iNnb
�t�g : �26�

Let

Db :�
..
.

� � � Nb
I �XJ� � � �

..

.

0BBB@
1CCCA

Nb�Nb

�27�

Dnb :�
..
.

� � � Nnb
I �XJ� � � �

..

.

0BBB@
1CCCA

Nb�Nnb

�28�

Thus the enforced discrete essential conditions, (23), may
read as follows

Db~ub
i �t� � gi�t� ÿ Dnb~unb

i �t� �29�
Dbd~ub

i �t� � ÿDnbd~unb
i �t� �30�

after inverting matrix Db,

~ub
i �t� � �Db�ÿ1gi�t� ÿ �Db�ÿ1Dnb~unb

i �t� �31�
d~ub

i �t� � ÿ�Db�ÿ1Dnbd~unb
i �t� �32�

Substitution (31) back into (24) yields

uh
i �X; t� �

XNP

I�1

NI�X�~uiI�t�

� Nb�X��Db�ÿ1gi�t�
� Nnb�X� ÿ Nb�X��Db�ÿ1Dnb
ÿ �

~unb
i �t� �33�
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duh
i �X; t� � Nnb�X� ÿ Nb�X��Db�ÿ1Dnb

ÿ �
d~unb

i �t� �34�
Obviously, for XI 2 Cu, I � 1; . . . ;Nb,

uh
i �XI ; t� � giI�t� ; �35�

duh
i �XI ; t� � 0; I � 1; 2; . . . ;Nb �36�

Equation (33) can be also interpreted as the transforma-
tion of shape functions, i.e.

uh
i �X; t� �

XNb

I�1

Wb
I �X�ub

iI�t� �
XNnb

I�1

Wnb
I ~uiI�t�

�Wb�X�ub
i �Wnb�X�~unb

i �37�
where Wb�X� :� Nb�X��Db�ÿ1, and Wnb�X� :�
�Nnb�X� ÿ Nb�X��Db�ÿ1Dnb�. One may notice that the
new shape functions in (37) at essential boundary
possess the Kronecker-delta, or interpolation property.
The justi®cation of such enforcement of essential
boundary is discussed in detail in Li and Liu [15]. The
modi®ed reproducing kernel interpolant,

uh
i �X; t� �

XNP

I�1

NI�X�~uiI�t� ; �38�

is used as both trial and weighting functions in a quasi
Bubnov-Galerkin formulation. Note that here
f~uiI�t�g � f~ub

iI�t�g [ f~unb
iI �t�g, and f~ub

iI�t�g and f~unb
iI �t�g

are related through Eq. (31). Then the discrete equations
of motion can be put into the standard form,

M�~u� f int � fext �39�
where M is the mass matrix, and

fext
I �

Z
CT

X

T0
i �X; t�NI�X�ei dC�

Z
XX

Bi�X; t�NI�X�ei dX

�40�
f int

I �
Z

XX

PJi
oNI

oXJ
ei dX �41�

The only place that the meshfree explicit scheme differs
from FEM explicit scheme is that in each time iteration
one has to enforce, or update the essential boundary
conditions in the following manner,

~ub
i �t� � �Db�ÿ1 gi�t� ÿ Dnb~unb

i �t�
ÿ � �42�

_~ub
i �t� � �Db�ÿ1 _gi�t� ÿ Dnb _~unb

i �t�
ÿ � �43�

As shown by Li and Liu [15], the essential boundary
condition enforcement is accurate, if there are enough
particles distributed along the essential boundary. Readers
can also ®nd some discussions on enforcing the essential
boundary conditions for meshfree methods in GuÈther and
Liu [9].

3
Tension of a thin viscoplastic sheet
The ®rst problem computed is a tension test of thin sheet
specimen which is made of elasto-viscoplastic material. The
prescribed displacement/velocity boundary condition is
imposed at both ends of the specimens as shown in Fig. 2.

Our computations is motivated by ®nding the shear
band evolution in thin metal sheet stretching. For this
purpose, an elasto-viscoplastic solid is chosen in compu-
tational simulations since this material model is well reg-
ularized, and hence the mathematical problem is well-
posed. For the original homogeneous specimen, the shear
band formation can be triggered by embedding imper-
fections, or inhomogeneities into the virgin specimen (See
Pan [27], Shawki and Clifton [29], and Needleman [26]).

The rate form constitutive equation reads as follows

s
r

:� C : dÿ dvp� � ; �44�
where C is the spatial elastic constant, and the Jaumann

rate of Kirchhoff stress, s
r

, is de®ned as

s
r � _sÿ ws� sw �45�
and

d :� dijei 
 ej; dij :� 1

2

ovi

oxj
� ovj

oxi

� �
�46�

w :� wijei 
 ej; wij :� 1

2

ovi

oxj
ÿ ovj

oxi

� �
�47�

A von Mises type viscoplastic solid is considered

s � sÿ 1
3 tr�s� �48�

s0 � sÿ a �49�
f �s0; j� � �rÿ j � 0 �50�
�r2 � 3

2 s0 : s0 ; �51�

p � 3

2

s0

�r
�52�

d
vp
ij :� _����r;��� of

osij
; or dvp � _����r;���p �53�

_�� :�
Z t

0

dvp : dvp

p : p

� �1=2

dt �54�

The power law that governs the viscoplastic ¯ow is
described as

_�� :� _�0
�r

g����
� �1=m

; g���� � r0
1� ��=�0� �N

1� ��=�1� �2 : �55�

Fig. 2. Problem statement: a thin sheet under tension
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where m is the power index. The back stress evolution law
is taken as a ®nite strain form of the Prager-Ziegler rela-
tion,

a
r � bdvp �56�
In computations, an explicit predict-correct time integra-
tion scheme is adopted; and the constitutive update fol-
lows largely from tangent modulus method by Peirce et al.
[28]; nonetheless, small modi®cation has been made,
which is summarized in Box 1. A detailed discussion to
extend the tangent modulus method to the case of adia-
batic, thermo-viscoplastic material has been carried out in
[14]. Choosing tn�h 2 �tn; tn�1�, h 2 �0; 1�,

Based on the updated Kirchhoff stress, one can easily ca-
lulate the ®rst Piola-Kirchhoff stress, PIj�X; tn�1�EI 
 ej, at
t � tn�1. Then one may calculate internal force, f int

n�1 based
on Eq. (41), and ®nally proceed to the kinematic correc-
tion,

The numerical results obtained from tension test are
displayed in Fig. 3a±d. The specimen used in the com-
putation is 2 mm in width; 4 mm in length; and 0:2 mm in
thickness. The maximum spatial aspect ratio of the
specimen is 20. There are ®ve layers of particles dis-
tributed along the thickness direction. A total 16; 165
particles are used in computations. A unusual phenom-
enon is observed in our computations: one may observe
that in Fig. 3c and d there are apparently a second strain
``concentration region'' inside the original shear band.
It seems to us that its appearance is due to the fact that
the specimen is very thin, and unlike the plane strain
problem there is no additional material available in the
thickness direction to compensate the axial tensile
stretch. Thus, the original shear band grow wider and
wider. On the other hand, within the original shear band
there is homogeneous uniform high strain gradient pla-
teau thus the imperfection in the center may initiate a
second shear localization. A further investigation may be
needed before an positive statement can be made for
existence such ``secondary shear band, or shear local-
ization''. For detailed computation procedures on 3-D
shear-band simulation, readers are referred to a recent
paper by Li and Liu [15].

4
Large deformation of hyperelastic thin shells
For hyperelastic materials, we consider the modi®ed Mo-
oney-Rivlin material (Fried and Johnson [8]), whose
constitutive relations are outlined at below.

4.1
Hyperelastic constitutive equation
For hyperelastic materials, it is assumed that there exists a
strain energy density potential function. For isotropic
homogeneous nonlinear elastic materials, the energy
density function can be represented by the invariants of
the strain measure, for instance,

W � W�F� � W�C� � W�I1; I2; I3� �58�
where F is the deformation gradient; and C � FT � F is the
right Cauchy-Green deformation tensor; and the three
invariants of the right Cauchy-Green tensor are de®ned
as

Box 1�a� Kinematic prediction

vtrial
n�1 � vn � Dtan

vh � �1ÿ h�vn � hvtrial
n�1 � vn � hDtan

uh � �1ÿ h�vn � hun�1 � un � Dthvn � h2Dt2an

Lh � vhr
(

x � vhr
(

X

� �
� Fÿ1

n�1

dh � 1
2 Lh � LT

h

ÿ �
wh � 1

2 Lh ÿ LT
h

ÿ �
Box 1�b� State variable update

Ph � C : pn

Qh �
o_��

o�r

����
n

Pn

�Hh � ÿ o_��

o��

����
n

�o_��

o�r

����
n

bp : p� p : L : p� �n
hh � �Hh= o_��=o�r

ÿ �
n

nh � hDt
o_��

o�r

� �
n

hh

Ctan
h � Cÿ n

1� n
1

h

� �
h
Ph 
 Ph

_��h �
_��n

1� nn
� 1

�Hh

nh

1� nh
Qh : dh

s
r

h � Ctan
h : dh ÿ

_��h
1� nh

Ph

_sh � s
r

h � wh � sn � sn � wT
h

��n�1 � ��n � _��hDt

sn�1 � sn � _shDt

d
vp
h � _��hpn

a
r

h � bd
vp
h

_ah � a
r

h � wh � an � an � wT
h

an�1 � an � _ahDt

Box 1�c� Kinematic correction

an�1 � Mÿ1 fext
n�1 ÿ f int

n�1

ÿ �
vn�1 � vn � Dt �1ÿ h�an � han�1� � �57�
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I1 � tr�C� �59�
I2 � 1

2 (tr�C��2 ÿ tr�C2�� � �60�
I3 � det�C� �61�

For the modi®ed Mooney-Rivlin material, the strain en-
ergy density function, W , is explicitly given by

W � C1�I1 ÿ 3I
1=3
3 � � C2�I2 ÿ 3I

2=3
3 � � 1

2 k�ln I3�2 �62�

where the constants, C1;C2 and k are material con-
stants. The corresponding constitutive relations can be
expressed in terms of the second Piola-Kirchhoff stress
tensor, S, and the invariants of right Cauchy-Green
tensor,

S � 2��C1 � C2I1�Iÿ C2C

ÿ �C1I
1=3
3 � 2C2I

2=3
3 ÿ k ln I3�Cÿ1� �63�

In actual computation, after the second Piola-Kirchhoff
stress tensor is obtained, the ®rst Piola-Kirchhoff tensor
can be immediately computed as P � S � FT , which can
then be substituted into the weak form (18) to calculate the
internal nodal force. Since the hyperelastic constitutive law
is described by a path-independent, total formulation, the
constitutive update is very simple, which is summarized in
Box 2.

where Pn�1 is the ®rst Piola-Kirchhoff stress tensor. In all
the numerical examples presented in this paper, we choose
b � 0 and c � 1=2.

4.2
The snap-through of a conic shell
In the ®rst numerical example, the large deformation of a
conic shell is examined in numerical experiment. The

Fig. 3a±d. Contours of viscoplastic strain in a thin sheet under tension. a t � 1:0� 10ÿ5 s, b t � 2:0� 10ÿ5 s, c t � 4:0� 10ÿ5 s,
d t � 5:0� 10ÿ5 s

Box 2 Time integration for the hyperelastic material

~un�1 � un � Dtvn � �1=2ÿ b�Dtan

~vn�1 � vn � �1ÿ c�Dtan

~Fn�1 � 1� o~un�1

oX
~Cn�1 � ~FT

n�1
~Fn�1

Sn�1 � 2 �C1 � C2In�1
1 �Iÿ C2

~Cn�1 ÿ �C1�In�1
3 �1=3

h
�2C2�In�1

3 �2=3 ÿ k ln In�1
3 �~Cÿ1

n�1

i
Pn�1 � Sn�1 � ~FT

n�1

an�1 � Mÿ1 � fext
n�1 ÿ f int

n�1

ÿ �
vn�1 � ~vn�1 � cDan�1

un�1 � ~un�1 � bD2an�1
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radius of ring circle at the top of conic shell is 100, and the
radius of the ring circle at the bottom of the conic shell is
200. The height of the conic shell is 100, and the thickness
of the conic shell is 0:0500. A total of 12; 300 particles are
used in meshfree discretization. Three equally-spaced
layers of particles are used in the thickness direction, one
on the inner surface, one on the middle surface, and the
last one on the out surface. The initial density of the
rubber shell is, q0 � 1:4089� 10ÿ4�slug� and the material
constants are C1 � 18:35 �psi�, C2 � 1:468 �psi� and
k � 1:468� 103 �psi�. In computations, the time incre-
ment is chosen as Dt � 2:0� 10ÿ6 s, and 5; 200 steps are
used for the results shown in Fig. 4.

In the computation, we ®xed the bottom edge of the
conic shell, i.e. the built-in condition is imposed for the
bottom edge; and we control the vertical movement of
upper edge such that it drags the whole shell structure
down and inward. At the end of the computation, the conic
shell turns inside out completely. In Fig. 4, several snap-
shots are taken to form a deformation sequence. The de-
formation process is a truly large deformation event,
which involves with both physical nonlinearity as well as
geometry nonlinearity. Such deformation process belongs
to a so-called ``snap-through'' instability problem
because the reaction force/resultant at top edge is alter-
nating with the increasing (or decreasing) of vertical
displacement of the top edge.

Compared to the published results of ®nite element si-
mulations in using degenerated continuum approach, be-
side the radial buckling mode, one may ®nd additional
circumferential buckling mode in our direct 3-D meshfree
simulation, which is an indirect evidence of improved
accuracy, because circumferential buckling modes may
not be observed in ®nite element simulations based on the
degenerated continuum approach (e.g. Basar and Itskov
[3]).

4.3
The pinched cylindrical shell
This problem resembles one of bench mark problems in
the so-called standard problem set testing ®nite element
accuracy proposed by MacNeal and Harder [25]. In the
original bench mark problem, two concentrated point
forces are applied to the cylindrical shell at opposite di-
rection, whereas in our case, we prescribe and control the
radial displacement of two opposite particles on the out-
surface at the middle section of the shell.

The cylindrical shell has the radius of 100, height 200 and
thickness 0:0200. Again three layer of particles distributed
along the thickness direction. A total of 30; 300 particles
are used in discretization. The central difference algorithm
is chosen in temporal integration. The time increment is
Dt � 0:5� 10ÿ6 s, and the total 21; 000 time step has been
taken to ®nish the run that is shown in Fig. 6.

From the deformation sequence shown in Fig. 6, one
may ®nd that the deformation of the cylindrical shell under
pinched loadings is drastic, and apparently, one can

Fig. 4a±f. The snap-through of a conic shell. a t � 2:5� 10ÿ3 s, b t � 5:0� 10ÿ3 s, c t � 9:0� 10ÿ3 s, d t � 10:4� 10ÿ3 s,
e t � 8:8� 10ÿ3 s, f t � 10:4� 10ÿ3 s

Fig. 5. Model problem: Pinched cylinder
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observe the interaction among different buckling modes.
At the end of our computation, the two opposite points of
inner surface of the cylindrical shell actually come together.

5
Large deformation problems of elasto-plasticity thin
shell structures
Another complex issue for nonlinear shell formulation is
how to embed inelastic constitutive relation onto manifold.
It is usually a nontrivial task to develop an elasto-plastic
nonlinear shell theory even for the degenerated approach.
Nevertheless, this will not be a problem at all for 3-D direct
approach. In this section, the meshfree approach is em-
ployed to calculate the thin shell structures that are gov-
erned by elasto-plastic constitutive relations. The
computational formulas of our computation largely follow
from that of Hughes [11], and Simo and Hughes [10].

5.1
J2 hypoelastic-plastic material at finite strain
A rate form hypoelastic J2 constitutive relation in ®nite
deformation is considered. The J2 yield criterion is de-
scribed as

f �n; a; �p� � knk ÿ
��
2
3

q
j��p� � 0 �64�

s :� sÿ 1
3 tr�s�I �65�

n :� sÿ a �66�

�p �
Z t

0

��
2
3

q
kdp�s�k ds �67�

where the Kirchhoff stress s :� Jr and J � det F.
In this paper, Lie derivative is chosen as the objective

rate of stress tensor

Lvs � celas : �dÿ dp� �68�
where celas is the spatial elasticity tensor; and the Lie de-
rivative is de®ned as

Lvs :� _sÿ �rv�sÿ s�rv�t � F _SFt �69�
and for isotropic material, the spatial elastic constants
remain isotropic under rigid rotations,
celas � k1
 1� 2lI. The plastic ¯ow is described by the
classic J2 associated ¯ow rule,

dp � cn̂ �70�
where

n̂ � n

knk �
of =os

kof =osk �71�

The plastic loading and unloading condition can be ex-
pressed in terms of the Kuhn-Tucker condition

c � 0; f �s; a; �p� � 0; cf �s; a; �p� � 0 �72�
The hardening laws are

Kinematic hardening: Lva � 2
3 cn �73�

Isotropic hardening: j��p� � rY � K�p �74�
and

_�p � c
��
2
3

q
�75�

Fig. 6a±d. The deformation sequence of
a pinched cylinder. a t � 2:0� 10ÿ3 s,
b t � 4:0� 10ÿ3 s, c t � 8:0� 10ÿ3 s
d t � 10:5� 10ÿ3 s
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A standard constitutive update for a rate form hypoelastic
J2 theory at ®nite strain is adopted (See: Simo and Hughes
[10] Chapter 8). For the sake of documentation, a brief
description of stress update is outlined at following. De®ne
intermediate con®guration between time steps, n and n� 1

xn�h :� �1ÿ h�xn � hxn�1 : �76�
where h 2 �0; 1�. Consequently,

Fn�h � �1ÿ h�Fn � hFn�1 ; �77�
and the relative deformation gradients, relative incre-
mental displacement gradient, and the relative Eulerian
strain tensor are (h 2 �0; 1�)
fn�h :� Fn�hFÿ1

n ; �78�

hn�h :� ou�xn�h�
oxn�h

; �79�

en�h :� 1
2 1ÿ �fn�hfT

n�h�ÿ1� � �80�
and the deformation gradient can be expressed as

dn�h � 1

2Dt
hn�h � hT

n�h � �1ÿ 2h�hT
n�hhn�h

� � �81�
The corresponding return mapping algorithm is summa-
rized as:

and

In all the computations presented in this paper, only
isotropic hardening is considered.

5.2
Hemispheric shell under concentrated loads
Again this is a problem that belongs to the well-known
``standard set of problem'' testing ®nite element accuracy
(MacNeal and Harder [25]). The dimensions of the
hemispherical shell are listed as follows: its radius is 1.0 m,
and its thickness is 0.04 m. At the bottom part of the
spherical shell, there is a hole, which forms a 18� angle
from the center of the spheric shell.

Instead of prescribing concentrated forces on the edge
of the spherical shell, we prescribe the displacement at
four different locations around the open edge of the
hemispherical shell as shown in Fig. 7. The prescribed
velocity is 100 m/s. A total of 12; 300 particles are used in
computation.

In Fig. 8 the plastic strain is plotted on the deformed
con®guration of the hemispheric shell.

5.3
Crash test of a boxbeam
In this numerical example, we simulate a boxbeam being
impacted at one end while the other end being ®xed. The
rigid impactor is assumed having an in®nite mass with a
®xed velocity of 20.0 m/s. The Young's modulus of box-
beam is, E � 2:1� 1010 Pa; Poisson's ratio l � 0:3, the
initial yield stress, r0 � 1:06� 109 Pa. A linear isotropic
hardening law is considered in the numerical simulation,
Et � 4:09� 107.

Neglecting contact and frictions between the impactor
and the boxbeam, it is assumed that once the impact oc-
curs, the rigid impactor stay with the boxbeam, i.e. the
displacements for both x-direction, and y-direction are
constrained at the collision surface.

A total of 7; 952 particles are used in meshfree discret-
ization. A sequence of intermediate results are displayed in
Fig. 10. Only half of the structure is displayed for a better
visulization of the buckling mode at interior region. The
accuracy of this particular numerical simulation is typi-
cally measured by the locations where the buckling mode
appears (e.g. Zeng and Combescure [33]). The experiment
results show that the ®rst few buckling modes should
appear immediately at the impact location. Our numerical

Fig. 7. Hemispherical shell under prescribed displacement,
control

Box 3�a� Elastic predictor:
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Dc � 0;

Endif �82�

111



results give the same prediction. It is noted that only 2
layers of particles are used in the thickness direction,
which corresponds to one element in ®nite element sim-
ulation.

Another simulation with both ends being impacted
symmetrically, and simultaneously is conducted and the
effective plastic strain is plotted on the deformed con®g-
uration, which is shown in Fig. 11. One may observe that
the maximum plastic deformation occurs at the 90� edge
location of the boxbeam, which makes sense because dis-
continuous curvature of the thin-wall structure could in-
troduce both stress and strain concentrations.

6
A meshfree contact algorithm
In some situations, large deformation of thin shell struc-
tures leads to self-contact, at which point, the numerical
solution is no longer valid if the self-contact is not under
consideration.

In Fig. 12, a deformed shape of a cylindrical shell that
is under axial compression is displayed, which is com-

0.293551
0.230304
0.180685
0.141756
0.111214
0.0872527
0.0684539
0.0537053
0.0421344
0.0330564
0.0259343
0.0203467
0.015963
0.0125237
0.00982544
0.00770852
0.0060477
0.00474471
0.03372245
0.00292044

a b c

d e f

Fig. 8a±f. The plastic strain distribution and deformation sequence of the hemispherical shell. a t � 0:5� 10ÿ3 s, b t � 1:5� 10ÿ3 s,
c t � 3:0� 10ÿ3 s, d t � 4:5� 10ÿ3 s, e t � 6:0� 10ÿ3 s, f t � 7:0� 10ÿ3 s

Fig. 9. Crash test of a boxbeam
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puted without considering self-contact. Clearly, one can
observe, the deformed con®guration computed is not re-
alistic, because of inter-penetration of different parts of the
cylindrical shell. To correctly simulate large deformation
of thin shell structures, it is necessary to develop a
meshfree self-contact algorithm. To focus on the main
theme of this paper, the newly developed meshfree contact
algorithm is brie¯y introduced here; a detailed exposition
of this new meshfree contact algorithm will be reported in
a separate paper [18].

The meshfree contact algorithm relies on an intrinsic
property of moving least square interpolant; i.e. at any
spatial point within the domain of an admissible meshfree
discretization the determinant of the moment matrix at
that point will have a positive, ®nite value, because the
moment matrix is positive de®nite in the domain that
yields an admissible meshfree discretization. We may call
the set of all such spatial point as the effective domain
of the admissible particle distribution. While a point is
away from the effective domain, the determinant of the
moment matrix ceases to be a ®nite positive number. To
quantify this notion, we start with reviewing the de®nition
of admissible meshfree discretization.

De®nition 6.1 (Admissible meshfree discretization) (Liu
et al. [1997])
Given a positive window function, /�x�, and a set of in-
dependent functions, P � f1; P2; P3; . . . ; Pmg. An admissi-
ble meshfree discretization satis®es the following
conditions:

a b c d e f

Fig. 10a±h. The deformed con®guration of a boxbeam under impact. a t � 0:0 s, b t � 4:0� 10ÿ4 s, c t � 7:0� 10ÿ4 s,
d t � 10:0� 10ÿ4 s, e t � 13:0� 10ÿ4 s, f t � 16:0� 10ÿ4 s

Fig. 11. Effective plastic strain

Fig. 12. Computation failure due to self-contact: a cylindrical
shell subjected axially compression

113



(1) Every particle of the distribution associates with a
compact support

SI :� fjX ÿ XIj � Rg �83�
and the union of all the compact support, SI , generates a
covering for the domain �X

�X � S :� [NP
I�1SI �84�

�2� 8X 2 �X; 9k > 0; x 2 \k
J�1suppf/�X ÿ XJ�g ;

�85�
where Nmin � k � Nmax and Nmin;Nmax are given;

(3) The particle distribution should be non-degenerated.

Note: A necessary condition for a non-degenerated particle
distribution is: maxfm; n� 1g � k, where m is the order of
the polynomial basis, and n is the spatial dimension of
domain X.

Usually if a spatial point is away from the effective do-
main of an admissible meshfree discretization, the above
necessary condition will soon fail, such that the determinant
of the moment matrix will approach to zero, or even become
negative, which then provide a natural criterion to differ-
entiate the interior point and the exterior point of any do-
main under an admissible meshfree discretization. This fact
is re¯ected in the following proposition.

Proposition 6.1 For a given admissible meshfree discreti-
zation in the effective domain X 2 Rn, if a spatial point, X
( X 62 X�, is suf®ciently away from the effective domain X,
the determinant of the moment matrix at point,
X : �X1;X2;X3�, will approach to zero; i.e. for given d > 0
9� � 0, such that if distf�X;Xg > d

detfM�X�g < �; X � �X1;X2;X3� �86�
The proof of the proposition will appear in [18]. This in-
trinsic property of moving least square based meshfree
interpolant is illustrated in Fig 13(a) for one dimensional
case and Fig. 13b for two dimensional case.

Based on this property, one can easily check inter-
penetration of two different effective domains, as well as
two distinct parts of one effective domain, which have
admissible particle distribution, or discretization.

To illustrate the point, consider a simple Taylor bar
impact problem, i.e. a deformable solid bar collides with
rigid target as shown in Fig. 14a. Figure 14b shows two
admissible particle distributions in rigid target (master
body) and in deformable Taylor bar (slave body) respec-
tively. By computing the determinant of the moment
matrix in master domain for both master body and slave
body (slave body is moving in the case), inter-penetration
of the two bodies can be easily detected. Figure 14(c)
shows that before the Taylor bar collides with the rigid
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Fig. 14a±d. The collision and contact of deformable solid bar
with rigid target: a problem statement; b admissible particle
discretizations in different domain; c determinant of the moment
matrix in master domain before penetration; d determinant of the
moment matrix in master domain after penetration
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target, the determinant of the slave body in master domain
is either negative, or close to zero, whereas the master
body itself has a almost constant value of determinant of
moment matrix with respect to master domain particle
distribution. After the penetration occurs, one can see
from Fig. 14(d) that at the contact region the determinant
of the moment matrix in slave body with respect to master
domain particle distribution is on longer zero, and it has a
®nite, positive value. In computation, one can set a proper
tolerance to signal the occurrence of the penetration.
Again for a complete exposition, proofs and numerical
examples, readers are referred to the incoming paper [18].

7
Concluding remarks
Previously, there have been a few studies using meshfree
interpolants to solve thin plate, and Mindlin-Reissner plate
problem (e.g. Donning and Liu [7]). The difference that
distinguishes this study from the previous studies is that
we use window based higher order meshfree interpolants
to directly simulate large deformation of thin shell struc-
tures as a 3-D continuum. The numerical results shown
here for three different constitutive models have demon-
strated that the meshfree approach is viable in 3-D direct
simulation of thin shell structures that are undergoing
extremely large deformation.

The main advantage of using meshless methods in
simulating thin shell structure is its remarkable simplicity.
The best part of this approach is its capacity to compute
extremely large deformation without any complication in
both mechanics theory as well as ®nite element formula-
tions, of course, further comparison studies should be
conducted to quantitatively evaluate its numerical accu-
racy.

For all the computations done in this paper, a 2� 2� 2
integration algorithm is adopted in each integration cell.
Since the cubic spline window-based tri-linear shape
function is at least C4 in any speci®c direction, the inte-
gration scheme used here under-integrates the weak form,
and hence it shall be regarded as a ``reduced integration''.
However, the good part of this scheme is one may not
experienced any spurious modes due to such mild ``re-
duced integration'', i.e. one may not observe rank de®-
ciency caused by such under integration scheme in certain
parameter range, which suggests that this scheme enable
us to get rid of locking without even doing any hour-glass
control at all. As one explanation offered at the beginning,
we argued that since window based meshfree methods is a
special ``higher order manifold'' discretization, the in-
crease the smoothness of the meshfree shape function does
not necessarily correspond to the increase of the total
numbers of particles in discretization. Thus some ``mild''
reduced integration won't cause rank de®ciency. We
would like also to point out that if 1-point integration is
used, it will still cause spurious modes, but remarkably
different from the ®nite element methods, as one keep
increase the dilation parameter of the window function, or
equivalently the support size of the shape function, such
spurious modes may be suppressed automatically in
meshfree computations without special hour-glass control.
We would like to remark, in particular, that there is a

speculation that window function based meshfree inter-
polants may bypass some of the dif®culties that lower
order ®nite element methods are suffering, such as volu-
metric and shear locking, and hence bypass some special
treatments or technologies designed for lower order ®nite
elements.

At present moment, it appears to us that the major
shortcoming of using 3-D meshfree formulation to com-
pute thin shell structures is the restricted time step size
used in the explicit computation. Nevertheless, we have
successfully used only two layers of particles in thickness
direction in computations, which are only deployed on the
upper surface and the lower surface of the shell, the small
time step problem is thus minimized to certain extent.
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