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Abstract

Mesh-free approximation is used in numerical simulations of strain localization under large deformation. An explicit

displacement based mesh-free formulation is used in both two-dimensional and three-dimensional computations.

The spatial isotropy of mesh-free interpolant is demonstrated through the numerical example to show that mesh-free

methods possess certain ``mesh objectivity'' that alleviates the notorious mesh-alignment sensitivity associated with

numerical simulation of strain localization. It is also demonstrated in the paper that mesh-free interpolants can ac-

curately capture ®nite shear deformation under large mesh distortion without recourse to special mesh design and

remeshing. Moreover, curved shear band surface and multiple shear band interactions are captured in numerical

simulations. Ó 2000 Published by Elsevier Science Ltd.
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1. Introduction

Strain localization problems have been extensively studied in last three decades. Nonetheless, some
technical issues remain open, especially in the ®eld of numerical simulations. The classical (local) rate-
independent plasticity theory lacks intrinsic length scale, which leads to the well-known mesh dependent
pathology in numerical simulations. Currently, several regularization mechanisms have been introduced
to bring a length scale into the constitutive model, such as adopting rate-dependent plasticity model
(Needleman, 1988; Loret and Prevost, 1990; Prevost and Loret, 1990), non-local model (Bazant et al., 1984;
Bazant and Pijaudier-Cabot, 1988; Aifantis, 1984), strain gradient models (Aifantis, 1992; Zbib and
Aifantis, 1992; de Borst and Pamin, 1996; de Borst and Sluys, 1991; Fleck and Hutchinson, 1993; Gao et al.,
1999), and micromechanics motivated multiple scale model (e.g. Garikipati and Hughes, 1998). However,
strong mesh-alignment sensitivity may still be observed in numerical simulations, when the ®nite element
mesh size is in the same order of the length scale of the constitutive model, or larger, and usually such
characteristic length is very small.
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From computational standpoint, starting from Ortiz et al. (1987), there is a school of thought that
advocate embedding discontinuous (``jump'') element, or regularized singular element, into ®nite element
solutions to emulate the discontinuous strain/displacement ®eld (e.g. Dvorkin, 1990; Steinmann and
William, 1991; Simo et al., 1993; Oliver, 1995; Armero and Garikipati, 1996 and among others). The
method has gained quite popularity in recent years. However, it would be a formidable task to apply such
discontinuous element technique to complicated shear band patterns, such as the interaction between
micro-shear band and macro-shear band in crystal plasticity.

Recently, mesh-free methods have been applied to numerical simulation of strain localization phe-
nomenon. Earlier results have been reported in Li and Liu (1999a); it has been found that there are several
advantages in using mesh-free methods in shear band simulations, such as the feasibility to use simple
displacement-based explicit formulation while avoiding volumetric locking; ``non-local interpolation'' to
smear discontinuous ®eld; relief of mesh-alignment sensitivity, straightforward h-adaptivity procedure, just
to name a few. The emphasis of this paper is placed on the following aspects: (1) relieving mesh-alignment
sensitivity; (2) simulating shear band evolution in a large deformation process that is well into the post-
bifurcation regime; (3) capturing curve shear band and shear band interactions in three-dimensional (3-D)
with quasi-uniform particle distribution. Note that all of the above is achieved by using a simple explicit
displacement-based computation.

The arrangement of the paper is as follows: mesh-free methods, in particular, the reproducing kernel
particle method (RKPM) is reviewed in Section 2, and the constitutive model and the explicit total La-
grangian formulation in ®nite strain are also outlined. Section 3 discusses the relief of mesh-alignment
sensitivity. The ``mesh-objectivity'' of the mesh-free methods is demonstrated through a model problem ±
the 31-hole problem. Section 4 is presenting numerical examples to show the ability of mesh-free methods
to simulate large deformation process without remeshing. In Section 5, the numerical simulations of curves
shear band formation and shear band interactions due to multiple cracks are discussed.

2. Formulations

2.1. Mesh-free approximation

Currently, there are several mesh-free methods used in computational mechanics, such as smoothed
particle hydrodynamics (SPH) (Monaghan, 1988), element-free Galerkin (EFG) (Belytschko et al., 1996),
RKPM (Jun et al., 1998; Liu et al., 1995, 1996, 1997a,b) h-p Clouds (Duarte and Oden, 1996), and mesh-
free local Petrov±Galerkin (MLPG) (Atluri and Zhu, 1998), etc. The particular mesh-free method used in
this paper is the RKPM. A detailed account of the method can be found in Liu et al. (1997a) and Li and Liu
(1999b). The basic technical ingredients of the method are outlined below.

The basic idea of RKPM is to construct a proper kernel function such that one can approximate the
function of interest through a discrete ``reproducing'' or ``®ltering'' representation

uh�X � � �K. �0 u��X � :�
X
I�K

K.�XI ÿ X �DVI uI ; �1�

where K.�X � :� 1=.nK�X=.�, q is the dilation parameter which is the measure of the support size of the
kernel function, and n is spatial dimension. The RKPM kernel function is compact supported, and usually
very smooth, K�X � 2 CN�X� and N � 1. Note that the symbol �0 is the discrete spatial convolution in strict
sense, whereas the ®nite element interpolation can be viewed as a spatial convolution only in the sense that
the kernel function is a generalized function. Assume that in the domain X there is a valid particle dis-
tribution, K :� f1; 2; . . . ; . . . ;NPg. For simplicity, in the rest of the paper, we shall simply denote
K.�XI ÿ X �DVI as KI�X �. Eq. (1) can be viewed as a nonlocal interpolation (or not a ``interpolation'' based
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on conventional de®nition). In such ``nonlocal interpolation'' scheme, any point in the domain, including
particle point, is usually covered by multiple shape functions.

The RKPM shape function is constructed as follows: each particle, I 2 K, K :� f1; 2; . . . ; . . . ;NPg in the
domain is associated with a shape function

KI�X � �K�XI ÿ X � :� P
XI ÿ X

q

� �
b�X �/q�XI ÿ X �DVI ; �2�

where /�X � is a given window function, X � �X1;X2;X3�, P�X � is the given polynomial basis, and b�X � is an
unknown function that is determined by the following moment equations:

M�X �b�X � � 1; 1 � f1; 0; . . . ; 0gT
; �3�

where both the moment and the b-vector are parametric functions of X.
A two-dimensional (2-D) bilinear RKPM shape function, and its two ®rst order derivatives are shown in

Fig. 1. It may be noted that the ®rst order derivatives of RKPM kernel function resembles to the so-called
mesh-free wavelet (but not the same) constructed by Li and Liu (1999b,c). There is a subtle implication in
the term, smoothness, used in this paper. For instance, in the above example, RKPM interpolant can only
reproduce the polynomials, 1, X1, X2, and X1X2, exactly, but it is no longer piecewise linear in shape as the
bilinear FEM shape function. As shown in Fig. 2, KI�X � is very smooth in shape, and, as a matter of fact,
KI�X � 2 C2�X�. A tri-linear RKPM shape function in 3-D and its three ®rst order derivatives at a selected
particle are plotted in Fig. 2. Note that even though the support size of the shape function is a rectangular
box, one may ®nd that the e�ective domain of the shape function is a sphere, and the e�ective domain of its
®rst derivatives is two connected spherical regions. This leads to the observation that the distribution of
RKPM shape function is ``spatial isotropic'', which is a desirable property for certain kinds of problems
such as shear band simulations. For better visualization, the ®rst octant is taken out from the sphere region
in Fig. 2(a) to show that the shape function reaches its maximum value at the position of corresponding
particle, i.e. the center. In Fig. 2(b)±(d), one quadrant is taken out to see the orientation and the distri-
bution of the three derivatives.

2.2. An explicit mesh-free Galerkin formulation

We begin with de®ning and describing the kinematic quantities at ®nite strains. Followed by the stan-
dard convention that x denotes the spatial coordinate of a material point and X denotes the referential
coordinate of that material point, the displacement of the material point is de®ned as

u :� xÿ X �4�
so are the deformation gradient, and velocity ®eld

F :� ox

oX
; �5�

v :� ou

ot
: �6�

In inelastic large deformation, the deformation gradient, F, can be decomposed as

F � Fe � Fp; �7�
where Fe describes elastic deformation and rigid body rotation and Fp represents inelastic deformation, in
this case, viscoplastic deformation. The rate of deformation tensor, D, and the spin tensor, W, are the
symmetry part and anti-symmetry part of spatial velocity gradient L � _F � Fÿ1, i.e.
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D�W � _F � Fÿ1 � _Fe � Feÿ1 � Fe � _Fp � Fpÿ1 � Feÿ1 �8�
with

D :� Dijei 
 ej; Dij :� 1

2

ovi

oxj

�
� ovj

oxi

�
; �9�

W :� Wijei 
 ej; Wij :� 1

2

@vi

@xj

�
ÿ @vj

@xi

�
�10�

and the following decomposition holds:

Fig. 1. 2-D RKPM shape function and its ®rst order derivatives generated by the bilinear polynomial basis: (a) KI �X �, (b) KI ;x1
�X �

and (c) KI ;x2
�X �.
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De �We � _Fe � Feÿ1; �11�
Dp �Wp � Fe � _Fp � Fpÿ1 � Feÿ1: �12�

The weak form of the balance of linear momentum can be written asZ
X0

P : dFT dX �
Z

X0

q0B � dudX�
Z

Ctrac

T � dudS ÿ
Z

X0

q0

o2u

ot2
dudX; �13�

where T is the prescribed traction on the traction boundary, Ctrac, and P denotes the ®rst Piola±Kirchho�
stress tensor, which can be related to the Kirchho� stress tensor as s � F � P. For simplicity, the boundary
conditions are speci®ed with respect to the referential con®guration

Pn0 � T0; 8X 2 CT
X ; �14�

u � u0; 8X 2 Cu
X ; �15�

Fig. 2. 3-D RKPM shape function and its ®rst order derivatives generated by the tri-linear polynomial basis.
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where CT
X [ Cu

X � oXX . On how to enforce the essential conditions in mesh-free implementation, readers
may refer to Li and Liu (1999a).

An elasto-viscoplastic material model is adopted in computation, since the model itself is well regu-
larized, at least in dynamic case, and the associated mathematical problem is well-posed as well (see Shawki
and Clifton, 1989; (Needleman, 1988). A rate form constitutive equation is used

s
O

:� Celas D� ÿDvp�; �16�
where the Jaumann rate of Kirchho� stress, s

O
, is de®ned as

s
O � _sÿWs� sW: �17�

The yield surface of viscoplastic solid is of von Mises type, which might be changing with time

Dp
ij :� �g��r; ��� of

os0ij
; �18�

f �s0; j� � �rÿ j � 0; �19�
�r2 � 3

2
s0 : s0; �20�

s0ij � sij ÿ 1
3
tr�s�dij; �21�

�� :�
Z t

0

�������������������
2

3
Dp : Dp

r
dt: �22�

The power law that governs the viscoplastic ¯ow is described as

�g � _�0

�r
g����

" #m

; g���� � r0

�1� ��=�0�N
1� ���=�1�2

: �23�

where m is the power index.
Assume that the trial, and weight functions have the forms

uh�X ; t� �
X
I2K

NI�X �dI�t�; �24�

duh�X ; t� �
X
I2K

NI�X �ddI�t�: �25�

The weak form (13) will lead to the following discrete equations:

M
o2uh

ot2
� fext ÿ f int: �26�

The conventional row-sum lumped mass is adopted in computation, and the external and internal forces
can be calculated from the following expressions:

fext
I �

Z
Ctrac

Ti�X ; t�NI ei dS �
Z

X0

q0Bi�X ; t�NI�X �ei dX; �27�

f int
I �

Z
X0

P h
Ji

oNI

oXJ
ei dX: �28�

where ei, i � 1; 2; 3 are the unit vector of referential coordinate.
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3. Mesh-alignment sensitivity

3.1. Opening discussion

Mesh-alignment sensitivity is a type of numerical pathology that is de®ned as the dependency of the
®nite element solution on its mesh structure, and orientation. It implies that for a same physical problem,
one may get di�erent answers, when di�erent meshes are used. In principle, one may consider that the mesh
structure is an arti®cial constraint, or a topological defect that is coerced subjectively onto the continuum of
interests, as an additional compatibility condition. This additional mesh constraint is more than necessary
as the physically required compatibility condition of the solid. In general, the usual numerical simulations
of a continuous deformation process may not be susceptible to the in¯uence of such additional constraint;
however, in simulations of strain localization, mesh-alignment sensitivity becomes a major setback of ®nite
element computation, because shear band formations always tend to form, or grow along ®nite element
boundaries where are the places allowing possible discontinuities.

In the early studies, Tvergaard (1988) used the classic quadrilateral element (CST4) (Nagtegaal et al.,
1974) in 2-D, BST24 element in 3-D to simulate strain localization, and they made an optimal arrangement
of the aspect ratio of the elements, such that the real shear band formations are always aligned with the
boundaries of the elements, and sharp shear bands are accurately captured in the computations. The dif-
®culty of such matching technique is that one has to know the shear band orientation a priori. In general,
both CST4 and BST24 elements show strong mesh alignment sensitivity, if the real shear band orientation
is oblique to the diagonal line or plane of the quadrilateral/hexahedral element. To overcome the limitations
of CST4/BST24 element, special elements have been designed to o�set the undesirable mesh-alignment
sensitivity. One class of such special elements are the QR4 element in 2-D and BR8 element with 1-pt.
integration in 3-D. They have a relatively less dependency on spatial orientation of mesh construction, if the
quadrilateral is a square, or the brick element is a square box, because they have relatively high isotropy in
space. These elements are very simple and useful elements in practice, which are responsible for many
successful computations in both 2-D and 3-D simulations (e.g. Watanabe et al., 1998; Zbib and Jubran,
1992), and their ability to capture the curved shear band has been reported in Batra and Stevens (1998). On
the other hand, as pointed out in Li and Liu (1999a), they su�er setbacks in h-adaptivity, and lack of
accuracy in post-bifurcation regime.

Another class of elements are the discontinuous (singular) elements, which can eliminate mesh alignment
sensitivity for arbitrary mesh arrangement, and they usually come as incompatible modes with corre-
sponding mixed formulations. In practice it may be di�cult to implement them in complicated situations,
such as large deformation process that is well into the post-bifurcation regime. From this perspective,
available remedies for mesh-alignment sensitivity are either too complex, or too ad hoc and limited in
general purposes.

3.2. The 31-hole problem

The purpose of this example is to demonstrate or to compare mesh-alignment sensitivity in simulations
of strain localization via ®nite element methods and via mesh-free methods. The original 31-hole problem is
proposed by Al-Ostaz and Jasiuk (1997), who studied the crack initiation and propagation in elastic-brittle
and ductile thin sheets. The so-called 31-hole problem is: a square plate with 31 randomly distributed holes
under tension in vertical direction. Obviously, this proposal has its micromechanics implication. The 31-
hole plate used in our simulation is a 3:3 mm� 3:3 mm square slab (plane strain), and all 31 holes have the
same size, i.e., 0:25 mm in diameter. On the top and the bottom surfaces of the slab, a velocity boundary
condition is prescribed by a magnitude of 10 msÿ1 as shown in Fig. 3 (a prescribed traction condition is
used in Al-Ostaz and Jasiuk (1997)).
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The material model of the plate is the power law governed elasto-viscoplastic material described in
Section 2, with hardening parameters, m � 100, n � 0:1, and material constants: E � 2:11 GPa, m � 0:3,
r0 � 460:0 MPa, _�0 � 2:0� 10ÿ3 sÿ1, �0 � 2:18� 10ÿ3; �1 � 100�0.

The ®rst set of computations are carried out using uniform (in an average sense) mesh/particle distri-
butions. The plate is discretized into three di�erent meshes/particle distributions: 40� 40, 60� 60, and
80� 80, element/cell. In FEM calculations, CST4 element is used; an additional nodal point is inserted at
the center of the quadrilateral element to form the four triangular elements. With the `averagely' uniform
mesh/particle-distribution, the ®nite element method (CST4) and the mesh-free method (RKPM) give al-
most identical results on shear band formation; at least, the main features of the shear band formation are
the same. As the mesh/particle distribution is re®ned from 40� 40 to 80� 80 element/cell, the numerical
solutions seem to converge as shown in Fig. 4. From Fig. 4, one may ®nd that the main shear band paths in
both FEM calculation and RKPM calculation are very similar, or almost exactly the same in the lower
part. They are also very similar to the crack propagation pattern in a FEM calculation carried out by
Al-Ostaz and Jasiuk (1997) using the maximum in-plane normal principal stress criterion for an elastic-
brittle material. And it is one of the possible crack paths suggested by experiments, though the exact
geometry, and material conditions are not exactly the same between this simulation and that of Al-Ostaz
and Jasiuk (1997).

In the second set of tests, instead of using uniform discretization, non-uniform re®nements are used in
computations to compare FEM and RKPM performance. Three meshes/particle distributions are chosen:
60� 60, 60� 90 and 90� 60 element/cell. In the 60� 60 element/cell discretization, the numerical results
from both FEM and RKPM are virtually just discussed. Now we examine the e�ect of non-uniform dis-
cretization. We re®ne the mesh in the vertical direction, and use a 60� 90 element/cell mesh. In this case,
the spatial aspect ratio of the quadrilateral element changes from 1:1 to 1.5:1.0, which means for FEM mesh
the shape of quadrilateral element change from a square to a rectangle. Comparing the numerical results
between FEM and RKPM, one may ®nd that the shear band formation changes its path in FEM com-
putation, whereas the main features of the numerical solution obtained in RKPM computation remain

Fig. 3. The plate with 31 holes under uniaxial tension.
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almost the same as before. Next, we alternate the re®nement direction from the y direction to the x di-
rection such that a 90� 60 element/cell mesh is used. As expected, the shear band formation changes its
course again in this case, and it has a di�erent pattern from the previous two patterns, whereas the main
shear band pattern in RKPM computation remain unchanged, though a secondary branch become visible.

A quantitative comparison in the load±de¯ection paths is made between the ®nite element computation
and the mesh-free computation. The comparison results are depicted in Fig. 5, from which, one may ®nd

Fig. 4. Numerical results obtained via FEM and RKPM with quasi-uniform spatial aspect ratios in mesh/particle distribution.

Fig. 5. The load±de¯ection path: (a) FEM, (b) RKPM; (solid line: 60� 60, dash-dotted line: 60� 90, dashed line: 90� 60).
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that the load±de¯ection curves in the case of mesh-free method (RKPM) are much closer in all three
di�erent particle distributions than their counterparts of ®nite element (FEM) calculation. It is a clear
demonstration of the mesh-free method's ability to alleviate the mesh alignment sensitivity, though, as
shown in Fig. 5, the mesh alignment sensitivity is not completely eliminated in mesh-free (RKPM) com-
putation, needless to say in FEM computation.

It should be noted, however, the shear band path in 90� 60 FEM mesh is very similar to the one of
plastic deformation pattern in experiments (Al-Ostaz and Jasiuk, 1997; Fig. 20) (in experiments both paths
have appeared with di�erent specimens), which might be a valid physical solution, nonetheless, RKPM
solution captured the same feature as well without losing the main path of the shear band formation.

From the nodal particle distribution point of view, after all, the ®nite element calculation and mesh-free
calculation share almost the same particle distribution, except for ®nite element calculation, there is an
additional nodal point inside each quadrilateral element. The key technical element here is the so-called
``mesh objectivity''. We de®ne ``the mesh objectivity'', or ``particle distribution objectivity'' as: the shape of
the compact support for mesh-free interpolants is independent from the density of particle distribution.

More speci®cally, the compact support of mesh-free interpolant is free of any constraint set by the
``spatial aspect ratio'' of the particle distribution, the user has extra freedom to adjust the shape as well as
the size of the compact support at ones own disposal; whereas for mesh-based ®nite element discretization,
once the nodes are distributed, the shape and the size of each element is set. To make a direct comparison,
one may look closely at the region marked in Fig. 6(a). We plot the ®nite element meshes and mesh-free
particle distributions in Fig. 7. As mentioned before, in the case of non-uniform meshes, the spatial aspect
ratio of each element changes as we either re®ne along the vertical direction or the horizontal direction,
which can be seen clearly in the upper part of Fig. 7. In the lower part of Fig. 7, the three corresponding

Fig. 6. Numerical results obtained via FEM and RKPM with di�erent spatial aspect ratios in mesh/particle distribution.
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mesh-free particle distributions are plotted. Note that in the mesh-free computations, we ®xed the shape as
well as the support size of each mesh-free shape function. Therefore, even though the particle density has
changed and become non-uniform in di�erent spatial directions, the shape and the size of compact support
of RKPM shape function remain the same. As a matter of fact, the shape of the compact support is the
most important factor to maintain ``mesh objectivity''. As long as one uses circular compact support, or
square compact support, one may achieve certain compensation over the non-uniform particle distribution,
because circular or square support attains the maximum or relatively maximum spatial isotropy in two
dimensional space.

4. Finite shearing in large deformation

4.1. Opening discussion

Another claimed virtue of mesh-free interpolant is its ability to endure large ``mesh'' distortion, and
sustain computation without remeshing. Since most strain localization events are accompanied with large
shear deformation, it is computationally advantageous to be able to simulate ®nite shearing caused by
strain localization without remeshing.

The reasons that mesh-free methods can deal with extremely large deformation are twofold: variable
connectivity and large support size. In practice, variable, or adjustable connectivity could be computa-
tionally expensive, because it requires new search to update the connectivity array frequently. In this paper,
we restrict our attention to mesh-free discretization with ®xed connectivity.

In real continua, the deformation gradient at any spatial point depends on in®nite points surrounding it,
thus, it is physically impossible that the deformation gradient become singular unless the material fails. In
FEM approximation, the discrete deformation ®eld within an element is determined only by a few nodal
points (less than 10 in most lower order ®nite elements), which may lead to the degeneration of the

Fig. 7. Zoom-in region for di�erent ®nite element meshes and mesh-free particle distributions.
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deformation ®eld, i.e. singular value occurs in the deformation gradient, during computations of large de-
formation. Whereas in mesh-free approximation, the support size of mesh-free interpolants is much larger
than the support size of ®nite element shape function. In 2-D, there may be 25±50 particles in a support of
RKPM shape function, and in 3-D, this number increases to 100±200 particles. Because the discrete de-
formation ®eld of mesh-free approximation at any spatial point is dependent on far more particles than that
of the ®nite element approximation, the determinant of the Jacobian, i.e. the deformation gradient can
maintain positive under a large mesh distortion, and consequently, the computation sustains in mesh-free
approximation. Whereas in ®nite element approximation, the same amount mesh distortion, or less, may
lead to a singular value in the Jacobian determinant, and hence terminates the computation. A schematic
illustration of the support distortion of mesh-free interpolants is shown in Fig. 8.

4.2. Tension of a rectangular bar with a hole

The model example is a rectangular bar with a hole under tension (Fig. 9). Two kinematically admissible
solutions (lower bound solutions) for the perfectly plastic material are shown in Fig. 10 (see: Chen and Han,
1988). One is the symmetric mode of the slip line solution, the bar splits into four rigid parts around the
hole during ``strong'' discontinuous deformation. The other is the unsymmetric mode of the slip line so-
lution, the bar splits into two rigid parts that drift apart from each other. Since localization of the strong

Fig. 8. The compact support of mesh-free interpolant under large distortion.

Fig. 9. The problem statement for a bar with a hole in tension.
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discontinuity may be viewed as a limit case of strain localization (weak discontinuity), one may expect some
resemblance between the slip line solution and the strain localization solution, which may serve as a reality
check for mesh-free simulation.

The bar is simulated as a 3-D elasto-viscoplastic solid with 4 mm in height, 2 mm in width, and 0.1 m in
thickness ± virtually a plane strain problem. The circular hole is penetrating through the thickness of the
bar, with 0.72 mm in diameter. The prescribed velocity in upper and bottom surface of the bar is 30 msÿ1.
In the computation, a total of 12,816 particles are used in mesh-free discretization. Three layers of particles
are deployed in the thickness direction. A 2� 2� 2 integration scheme is used to integrate the weak form.
In order to trigger the unsymmetric shearing mode, a small velocity perturbation of 0.1 msÿ1 is added on
both the top and the bottom loading surface in the horizontal direction. Both symmetric solution and
unsymmetric solution are displayed in Fig. 11, in which equivalent plastic strain can be visualized on top of
the deformed con®gurations. Comparing the 3-D numerical solution of the elasto-viscoplastic solid (Fig.
11) with the 2-D slip line solution of the perfectly plastic solid (Fig. 10), one may ®nd striking resemblance
of the two, except that the shear band of the strain localization has ®nite width as shown in Fig. 11. Note
that in Fig. 11 the coordinate aspect ratio in thickness direction has been scaled to better demonstrate the
results. The deformation sequences are displayed in Fig. 13(a) for symmetric mode and in Fig. 13(b) for
unsymmetric mode.

To further examine the movement of particles within the shear band, we zoom in the deformed con-
®gurations of the shear band for both shearing modes (see Fig. 12). For the sake of comparison, we ®rst
plot the deformed particle distribution within the shear band, and then we connect those particles with
``mesh line'' according to the background integration cell, as if it is a ®nite element discretization. One can
see immediately that if the discretization were mesh based, the element within the shear band would have
degenerated into a very thin slice, or even the opposite boundaries lay top onto each other ± an indication
of occurrence of singularity in deformation gradient, which would have led to early failure of the com-
putation. Nonetheless, mesh-free methods is free of such restraint because of its relatively larger support
size.

The ability of mesh-free interpolant to deal with large deformation computations is certainly not limited
to the ®nite shearing. Fig. 14 shows a deformation of rectangular bar under uniaxial tension. The bar is 4
mm long, 2 mm in width, and 2 mm in thickness. A prescribed velocity boundary is applied on the top and
bottom surface at the magnitude of 10 msÿ1. A total of 18,081 particles are used in the computation.

Fig. 10. Kinematically admissible deformation ®eld for perfectly plastic material.
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5. Shear band interactions due to multiple cracks

It is often considered as a challenge to capture a curved shear band formation with a uniform mesh/
particle-distribution, since it does not have any special background alignment with the orientation of the in-
coming curved shear band. The interaction between shear bands is another severe testing problem to ex-
amine the numerical method's ability to capture shear band formation in an evolution process.

In this section, we study the shear band formations induced by cracks in 3-D case. In mesh-free dis-
cretization, when a crack is embedded into the continuum, the shape and size of the compact support of the
shape functions have to be rede®ned. The rule for such rede®nition of domain of in¯uence for a particle, or

Fig. 12. The ®nite stretching and distortion of particle distribution within the shear band.

Fig. 11. Finite shearing of a 3-D elasto-viscoplastic bar.
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for any point in the domain, is the so-called ``visibility condition'' proposed by Belytschko et al. (1994). An
equivalent version of the visibility condition is stated at the following. When the moment matrix in a spatial
point X, X 2 X, is constructed, all the contributing particles forms a subset of particles from the particles in
the original domain of in¯uence of the point X; such that one can connect any particle in this subset with
the point X in a straight line without intercepting the boundary of the domain, for instance, the crack
surfaces. In other words, we reshape the domain of in¯uence of any point X, such that any straight line

Fig. 13. Deformation sequence for a bar with a hole: (a) symmetric mode and (b) unsymmetric mode.
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connecting the point X with a particle in its domain of in¯uence does not penetrate crack surfaces. Fig. 15
illustrates how such modi®ed domain of in¯uence is being constructed. In Fig. 15, all the particles par-
ticipating the construction of moment matrix at the point, X, are marked as black circle, and all the
particles that are cut from the original domain of in¯uence of the point, X, are marked with the hollow
circle.

Fig. 14. Large deformation of a rectangular bar under tension.

Fig. 15. The visibility criterion in determining the domain of in¯uence of a spatial point X.
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The ®rst example is a rectangular plate prescribed with velocity boundary conditions in the vertical
direction such that the plate is in the tension state as shown in Fig. 16. The plate is 4 mm high, 2 mm in
width, and 2 mm in thickness. Two edge cracks are placed in the middle of the plate with a length of 0.45
mm. Four layers of particles are deployed in the thickness direction, and a total of 13,364 particles are used
in mesh-free discretization. In the explicit integration algorithm used, the time step Dt is chosen to be
1:0� 10ÿ9 s. The prescribed loading velocity is 25.0 msÿ1. A deformed shape of double-notched plate is
shown in Fig. 16(b). The color contour demonstrates the intensity of the e�ective plastic strain. One may
®nd that after the two shear bands pass cross each other, the outer part of the shear band becomes a
cylindrical surface, or a ®nite cylindrical layer with none-zero curvature. The numerical result suggests that
the mesh-free interpolant is insensitive to the alignment of the particle distribution, or the mesh-free in-
terpolant may capture the natural evolution process of the shear band by avoiding the unphysical in¯uence
from the arti®cial structure of the mesh, or particle distribution. It should be noted that the shear band
pattern obtained here is similar to the slip line solution obtained by Ewing and Hill (1967) under the plane
strain condition, though in Ewing±Hill solution (Fig. 17), the inner part of the shear band is curved,
whereas the outer part of the shear band is straight. The discrepancy between mesh-free solution and
Ewing±Hill slip line solution may be due to the di�erence in material modeling, as well as the di�erence
between strong discontinuous solution and strain localization solution.

The second example is a plate with four penetrating cracks: two edge cracks and two interior cracks
as shown in Fig. 18. In this case, there are six pre-notched crack fronts; each crack front will generate a
pair of shear bands. Thus the global failure mode could be an outcome of the interactions of these
twelve distinct shear bands. In the interaction process, some shear bands will outlast the others, and others
may disappear, depending on many di�erent factors, such as the size, and spatial aspect ratio of the plate,
the size and location of the cracks, and external loading conditions, etc. In general, it is di�cult to make
an accurate prediction of the global failure mode and the precise discontinuous ®eld in the evolution
process because the interactions among shear bands could be complicated for real materials, such as the

Fig. 16. The problem statement (a) and a deformed shape (b) of a double-notched block under tension.
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elasto-viscoplastic model used in this computation. A sequence of shear band evolution process is shown
Fig. 20(a).

In the numerical simulation, the computation specimen used in computation is 4 mm in length, 4.2 mm
in width, 40 mm in thickness. The full length of a crack is 2a, a � 0:25 mm; and two edge cracks are only at
half length. Four layers of particles are distributed along thickness direction, and a total 27,676 particles are
uniformly distributed within the four layers. The prescribed velocity at both top and bottom surfaces are 25
msÿ1.

In Fig. 19, the shear band interaction patterns are shown at two di�erent time instance in plane view.
One may ®nd that in this particular case that in early stage the twelve shear bands are all initiated at the

Fig. 17. The slip line solution for perfectly plasticity material by Ewing and Hill.

Fig. 18. The problem statement for a block with four crack under uniaxial tension.
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beginning, and have same intensity Fig. 19(a). As the deformation goes on, the shear bands generated by
the interior cracks have more thrust than the shear bands generated by the edge cracks, and those shear
bands are suppressed for further progress. A complete sequence of the shear band interaction in this case is
shown in Fig. 20(b).

From Fig. 20(b), one may observe that the two center cracks ®rst grow vertically, and then expand
becoming two holes, or voids in the middle of the plate, and eventually the two voids coalesce and the two
separated shear band emerge into an intense shear deformation zone in the middle of the two voids. This is
a typical case that the approach that is embedding discontinuous element into ®nite element solution will
have troubles to deal with, because of the changing pattern of shear band formations.

6. Concluding remarks

In this paper, mesh-free discretization/approximation is used with a simple explicit displacement based
formulation to simulate both 2-D and 3-D shear formations under large deformation. The main technique
merits of such mesh-free explicit formulation are: (1) its non-local character in approximation might have
helped the strain localization computation as being a ``numeric agent'' to smear possible discontinuous
®elds, or to ``regularize'' the discrete algebraic system; (2) the large support size of mesh-free interpolants
allows mesh-free computation sustain under large mesh/particle distribution distortion; (3) the window
based mesh-free interpolant is a very smooth interpolation, and in principle, one may increase the
smoothness of the interpolation without increasing the total degrees of freedom. Such smoothness may help
the displacement based formulation to avoid volumetric locking without using mixed formulation, or one
may adopt ``reduced'' quadrature integration without incurring rank de®ciency, while relieve volumetric
locking. In addition, it has shown in the paper that the numerical results based on mesh-free interpolation is
insensitive to particle distribution, because of the spatial isotropy that mesh-free interpolant enjoys, which
provide a much needed particle distribution objectivity for the computation, and e�ectively relieve the
mesh-alignment sensitivity that conventional ®nite element methods su�ered in numerical simulations of
strain localization.

In summary, the mesh-free approach is simple, viable, and robust, and it shows much potential in
capturing curved shear band formations, as well as accurately predict complicated shear band interaction

Fig. 19. Global shear band formations of a plate with four cracks at di�erent time steps (plane view).
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patterns. The actual computations presented in this paper are computed by using a 2-D, and a 3-D explicit,
dynamic, mesh-free codes, dyme2d and dyme3d, which are developed by the ®rst author.
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