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Abstract 

We present the dynamic formulations for sliding beams that are deployed or retrieved through prismatic joints. The beams can 
undergo large deformation, large overall motion, with shear deformation accounted for. Until recently, the sliding beam problem 
has been tackled mostly under small deformation assumptions, or under quasi-static motion. Here we employ geometrically-exact 
beam theory. Two theoretically-equivalent formulations are proposed: A full Lagrangian version, and an Eulerian-Lagrangian 
version. A salient feature of the problem is that the equations of motion in both formulations are defined on time-varying spatial 
domain. This feature raises some complications in the computational formulation and computer implementation. We discuss in 
detail the transformation of the equations in the full Lagrangian formulation from a time-varying spatial domain to a constant 
spatial domain via the introduction of a stretched coordinate. A Galerkin projection is then applied to discretize the resulting 
governing partial differential equations. Even though the system does not have any rotating motion as in gyroscopic systems, the 
inertia operator has a weak form that can be decomposed exactly into a symmetric part and an anti-symmetric part. The 
distinction between the full Lagrangian formulation and the Eulerian-Lagrangian formulation from the computer implementation 
viewpoint is indicated. Several numerical examples - ‘spaghetti/reverse spaghetti problem,’ beam under combined sliding motion 
and large angle maneuver, parametric resonance - are given to illustrate the versatility of the proposed approach. The results 
reveal a rich dynamical behavior to be explored further in the future. 

Dedicated to the memory of Professor Juan Carlos Simo’ 

1. Introduction 

Flexible moving structures are present in several important applications, encompassing diverse 
engineering areas such as hot rolling process, copy machines, film and tape transporters, cloth handling 
equipment, traversing yarn system in the textile industry, and even fluid jets [l]. Another class of 
important engineering system having flexible moving structures consists of robot manipulator arms, or 
deployable space structures, with prismatic joints. In these (primal) problems, the structures are 
moving relative to the supports (which themselves may undergo rigid body motion). A class of problems 
dual to the above is found in moving loads over flexible beams, where the moving loads can be thought 
of as moving supports. These dual problems also, have important engineering applications such as 
high-speed trains moving on flexible guideways [2-71. 

A first formulation for the primal problem is presented by Carrier [8] who studied the ‘spaghetti 
problem’, which consists of describing the motion of a cord of finite length, being retrieved vertically 

*The present work was presented at an invited seminar at the MacNeal-Schwendler Corp., Pasadena, CA, and at the 
Symposium on Mechanics of Flexible Media, ASME Winter Annual Meeting, Anaheim, CA, in November 1992 (Vu-Quoc and Li 

[531). 
* Corresponding author. 
‘Whose early demise is a great loss for the applied and computational community. 
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into an orifice. The cord was modeled using string theory. The ‘spaghetti problem’ owes its name to an 
amusing observation that compares the mechanical process of retrieving the cord to the sucking of 
spaghetti by a person at lunch.’ Also investigated in the same paper was a dual problem consisting of an 
oscillating elastic guitar string having a rigid support being slided along the string. For these two 
problems to be tractable analytically, linear (small deformation) string theory was used. 

Demanded by industrial applications, there has since been a plethora of publications focusing on the 
study of ‘axially moving continua’, Zaiser [9] appears to be the first who derived successfully the 
non-linear equations for a moving string.’ Mote [lo] and Thurman and Mote [ll] gave accounts on the 
non-linear oscillation of axially moving strings. A more recent follow-up work on moving strings was 
given in [12], with a thorough review of the literature on the subject in [13]. Simply-supported boundary 
conditions at both ends of the string were assumed, since research on moving strings was motivated by 
applications such as high-speed magnetic and paper tapes, power transmission chains and belts, etc.” 

The advent of space exploration and robotic technology requires a consideration of the flexural 
stiffness of axially moving ‘strings’, thus making the latter into sliding beams, with cantilever boundary 
conditions. Early works on the sliding beam problem often relied on the small deformation assumption 
imposed a priori to obtain the linearized equations. Cherchas [14], Lips and Modi [15], Tsuchiya [16]p 
Ibrahim and Modi [17], Kalaycioglu and Misra [18] and Creamer [19] are some examples of research 
works on sliding beams for applications in aerospace engineering. Most of these works are concerned 
with the deployment of flexible beams (reverse spaghetti problem), and not so much on their retrieval 
(spaghetti problem), for a simple reason, that in general once deployed, the appendages of a spacecraft 
are expected to remain in place throughout the lifetime of the spacecraft. When a study of non-linear 
deformation is needed, the sliding beam was modeled, not by using beam theory, but by using a chain 
of links connected by elastic hinges as in, e.g. [20,21]. 

In robotic applications, sliding beams are designed to function under both deployment and retrieval. 
Rapid periodic sliding motion of beams can be found in machine tools. In this area too, sliding beams 
(manipulator arms with prismatic joints) were often modeled using the small deformation assumption at 
the outset. With the limited power supply in space environment, manipulator arms with prismatic joints 
have an advantage over those with revolute joints since the former consume less energy. Most past 
studies on flexible manipulators concentrated on the dynamics and control of manipulators with 
revolute joints. To date, however, only a small number of studies have been conducted on flexible 
manipulators with prismatic joints. Perhaps the reason is due to the complexity of the model having its 
vibrating length changing with time. Such problem does not arise in the case of manipulators with 
revolute joints, where the links have fixed lengths. 

Elmaraghy and Tabarrok [22], and Zajaczkowski et al. [23,24] presented a stability analysis for 
Euler-Bernoulli beams subjected to periodic sliding motions. Their analysis, even though restricted to 
linear beams, revealed the complex nature of the instability of sliding beams. It is then reasonable to 
expect that the stability behavior of fully non-linear sliding beams would be even richer, and may 
contain surprising results. A model for robot arm with two revolute joints, one prismatic joint and a 
flexible link, together with numerical results, were given in [25]. Clamped-free mode shapes were used 
to model the vibration in the flexible link. In their model, the mode shapes were assumed to be time 
independent, and thus the sliding motion was not completely accounted for, perhaps for the purpose of 
simplifying for the controller design and due to the relatively slow sliding motion considered. In a 
different study, by considering the time rate of change of the total vibrational energy, Wang and Wei 
[26] presented a formulation for the sliding Euler-Bernoulli beam. They used the spectral Galerkin 
method to discretize the spatial coordinate by assuming time-dependent mode shapes. Similar to this 
approach is the work of Krishnamurthy [27] who considered a dynamic model for flexible cylindrical 

I Professor Carrier’s interest in the spaghetti problem at that time was primarily as an exercise in applied mathematics, without 

being motivated by any other particular applications [54]. 

‘Tabarrok et al. [32]. See also Ames et al. [55]. 

’ More recently, Hwang and Perkins [56] give a stability analysis of axially moving beams, using non-linear rod model, that 
admit initial curvatures due to sagging. 

‘See also Jankovic [57). 
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manipulators.’ More recently, Pan et al. [28,29] used the Lagrangian formulation to derive the 
equations of motion for a chain of flexible links connected to each other either by revolute joints or by 
prismatic joints. Results from numerical simulations were compared with experimental measurements. 
The importance of accounting for the sliding motion in the vibrational/positional control of sliding 
beams is considered by Buffinton [30] and Tadikonda and Baruh [31]. 

The first to formulate the equations for fully non-linear sliding beams appear to be Tabarrok et al. 
[32] for applications to spacecraft antennae. Unlike previous works in which the equations were derived 
with simplifying assumptions imposed a priori, these authors first obtained the equations for a 
non-linear Euler-Bernoulli beam having time-varying length. But due to the difficulty of obtaining 
analytical solutions to non-linear problems, linearized equations had to be considered. These authors 
then linearized the resulting non-linear equations of motion in a consistent manner, however, with the 
introduction of small deformation and inextensibility assumptions. Such linearization process is 
necessary for obtaining analytical solutions due to the difficulty of performing non-linear analyses. The 
linearized equations possess extra convective terms as compared to the equation for beams with fixed 
length. 

More recently, Mansfield and Simmonds [33] studied the fully non-linear reverse spaghetti problem. 
They formulated the equations for the elastica, sliding out of a horizontal guide, and under the effects 
of gravitation. Similar to Tabarrok et al. [32], the elastica is inextensible. Their work was motivated by 
the motion of a sheet of paper coming out of a copy machine. Also motivated by high-speed copy 
machines with paper speed approaching 2 m/s, Stolte and Benson [34] extended the work of Mansfield 
and Simmonds [33] to account for arbitrary paper exit angle (i.e. not horizontal) and with accelerating 
paper feed rate. A distinct feature of these more recent formulations is the use of non-linear models 
and their solutions, which provide better tools to gain insight into the dynamic behavior of this 
non-linear problem. These studies, however, have left more to be desired as far as non-linear dynamics 
and stability are concerned. 

Within a prismatic joint, the mechanical interaction between the joint wall and the beam may be 
more complex in many ways. There are indeed some concerns about the modeling of what actually 
happens mechanically inside the joint. Future works should address these concerns in more details. 
Since for most industrial applications. the motion of the beam inside the joint channel can be 
complicated, but also of less interest than what happens outside the channel, most works on this topic 
do not model the beam part inside the joint in detail. 

1.1. The proposed formulations 

Our approach is based on the geometrically-exact theory presented in [35], which addressed the case 
of beams with fixed undeformed length. The computational formulation for beams with fixed 
undeformed length, together with several complex numerical examples, are given in [36]. Geomet- 
rically-exact structural theories are shown to be versatile in a wide range of applications. A 
geometrically-exact formulation for the dynamics of multibody flexible spacecrafts is introduced in [37]. 
For an extensive historical review of past contributions to this subject, we refer to Simo and Vu-Quoc 

[381. 
Two formulations for sliding geometrically-exact beams are proposed herein: A full Lagrangian 

version and an Eulerian-Lagrangian version. In the full Lagrangian formulation, the resulting 
equations of motion resemble closely those for beams with fixed undeformed length; the inertia 
operator does not carry any convective terms. The difference is, however, the time-dependent material 
domain, which can cause certain inconvenience in the computer implementation, requiring alterations 
of the existing data structure in conventional finite element codes. An approach adopted to circumvent 
such inconvenience is to transform the time-varying material domain to a fixed domain via the 
introduction of a stretched coordinate. Such transformation leads to equivalent equations of motion 
having, however, convective terms in the inertia operator. A comparison of the equations of motion for 
a geometrically-exact beam with fixed undeformed length to those with varying undeformed length 
underscores the additional physics encountered in sliding beams. Finally, with the domain being fixed, a 

5 See also Weeks [%I 
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conventional Galerkin projection can be employed to discretize the governing equations, without 
requiring extensive modifications to the basic data structure and data how in conventional finite element 
codes. With this formulation, a sliding beam problem is first solved on a fixed domain; the results are 
then transformed back to the actual space by a post-processing. An important feature of the proposed 
full Lagrangian formulation using stretched coordinate is that the inertia operator has a weak form that 
can be decomposed exactly into a symmetric (self-adjoint) part and an anti-symmetric (non-self-adjoint) 
part; the resulting semi-discrete equations are similar to those of gyroscopic systems, even though the 
system has only sliding, not rotating, motion. 

While the full Lagrangian formulation for sliding beams, before the transformation using a stretched 
coordinate, differs from the formulation for beams with fixed material length given in [35] only in the 
changing of the material domain, the proposed Eulerian-Lagrangian formulation begins from a 
different viewpoint. An intermediate configuration fixed in the inertial frame plays the role of a 
‘material’ configuration with respect to the current deformed configuration. On the other hand, with 
respect to the sliding undeformed beam in rigid body motion, this intermediate configuration plays the 
role of a (spatially fixed) Eulerian domain (with moving boundary, though). The equations of motion 
are expressed with respect to the coordinates of the intermediate configuration. Even though the 
resulting equations in the two formulations are different, they can be obtained from each other via 
appropriate coordinate transformations. 

The present formulations encompass formulations in previous works on sliding beams, among which 
are the linearized approaches widely adopted in the past, as particular cases. The sliding geometrically- 
exact beam can accommodate shear deformation, extensibility, large deformation, large overall motion. 
Many robotic and space structure applications involve large overall motions, and in particular large 
angle maneuvers, of flexible beams under deployment or retrieval. A salient feature of the present 
geometrically-exact formulation is a natural accommodation of large overall motions in sliding beams. 
Even though the inertia operator becomes more complex due to the presence of convective terms, the 
versatility of geometrically-exact theory with respect to large overall motion and large deformation is 
intactly preserved. The dynamics of sliding beams is referred directly to the inertial frame, bypassing 
the need for a floating reference frame. We use this versatile tool to investigate the fully non-linear 
spaghetti problem, the combined sliding motion and large angle maneuver, and the contained 
parametric resonance. 

In the present work, we consider only the cantilever boundary conditions. From the stability 
viewpoint, a linear sliding cantilever beam is neither a conservative nor a gyroscopic system (cf. [39]). 
The problem will become more complex, if in addition, we have large deformation. From the energy 
balance viewpoint, the rate of change of energy in a sliding beam with prescribed time-varying length, 
which is an open physical system, is time-dependent. It was shown that a sliding linear Euler-Bernoulli 
beam exiting a channel with uniform velocity has a positive energy supply rate [26]. Thus, the total 
energy can accumulate in time if damping is weak enough. Such accumulation of energy provides a 
physical ground for instability. Wang and Wei [26] presented numerical examples of parametric 
resonance existing in linear sliding beams. 

There is a fundamental difference in the character of parametric resonance found in the present fully 
non-linear sliding beam formulation as compared to that in the linear formulation: Unlike the linear 
theory, which leads to a blow-up of the structural displacement to infinity at resonance, we have here 
contained resonance in the sense that, even though the beam can undergo violent vibration at 
resonance, its structural displacement always remains finite. Infinite structural displacement can only 
occur if the beam material breaks down, but this possibility is not considered herein. On the other 
hand, considerable numerical difficulties are encountered at such parametric resonance, as the semi- 
discrete differential equations become much ‘stiffer’ than usual, requiring extreme care in the choice of 
the solution strategy and the choice of the time-step sizes. In these cases, the failure of conventional 
integration strategy manifests itself through the blow-up of the numerical results at resonance, 
indicating that a revision of the integration strategy is needed. 

An important issue worth addressing here is the role of non-linear beam theories in capturing the 
stiffening effects in structures subjected to significant centrifugal forces and/or longitudinal inertial 
forces. Centrifugal forces are present in rapidly rotating structures, whereas longitudinal inertial forces 
are present in axially moving structures having transverse deflections. In sliding beams under large 
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angle maneuvers, one encounters a combination of both motions (see Section 5 for an example). Since 
often linearized equations are of interest because they are easy to work with (e.g. for the control 
purposes), it was pointed out in [40,41] that unless a consistent linearization of the non-linear equations 
of motion is performed-as opposed to using small deformation assumption at the outset of the 
formulation-the stiffening effects cannot be correctly captured. A ‘premature’ linearization can lead to 
results opposite to that found in reality.” The present formulations readily include all relevant dynamic 
effects due to rapid rotation and rapid sliding motion. 

The organization of the paper is as follows. In Section 2, we present the full Lagrangian formulation 
for planar, sliding, geometrically-exact beams. The partial differential equations (PDEs) of motion are 
derived for the case with time-varying domain, followed by a transformation of the governing PDEs to 
a fixed domain. The alternative, but theoretically equivalent, Eulerian-Lagrangian formulation is given 
in Section 3. Discussed in Section 4 is Galerkin projection for discretizing the full Lagrangian PDEs on 
fixed domain, leading to a convenient finite element implementation. Time discretization is introduced 
via the Newmark algorithm. A brief discussion will be given on the computational formulation and 
computer implementation aspects for the Eulerian-Lagrangian PDEs developed in Section 3. Some 
comparison with linearized models will be given. Finally, we present in Section 5 several numerical 
examples that involve the spaghetti problem, reverse spaghetti problem, combined dynamic deployment 
and large angle maneuvers, and parametric resonance of sliding beams. 

2. Full Lagrangian formulation 

The essential ingredient in the full Lagrangian formulation for sliding beams is the use of 
geometrically-exact theory [35] based on a spatially fixed material (initial undeformed) configuration 
with moving partition boundary. 

It is common to assume that the material frame coincides with the spatial frame, which plays the role 
of an inertial frame. Such choice is purely for the convenience of the formulation. The initial 
undeformed configuration is customarily chosen as the material configuration whose coordinate systems 
do not necessarily coincide with those of the spatial configuration. A general concept is to view the 
material configuration as a different space than the spatial configuration, with a different coordinate 
system, even though both configurations are embedded in the same ambient Euclidean space (e.g. R’). 
The structural deformation is described by a mapping, which could be time-dependent, from the 
material configuration to the spatial configuration. 

The deformation of sliding beams can be ‘naturally’ decomposed into a rigid sliding translation of the 
initial undeformed beam to the sliding undeformed beam, and a superposed finite deformation from the 
sliding deformed beam; a description of the sliding motion is given in Fig. 1.’ As shown in Fig. 3, the 
sliding undeformed beam is not the same as the ‘shadow beam’ discussed in [35]: Unlike the shadow 
beam that undergoes rigid body translation and rotation for structures subjected to large overall 
motions, the sliding undeformed beam only translates, but does not rotate, with respect to the inertial 
spatial frame. Thus, the orientation of the sliding undeformed beam in the spatial frame remains 
constant throughout the motion. 

We will postpone, however, the above ‘natural’ viewpoint of sliding deformation until Section 3. 
Somewhat less ‘natural’ is the viewpoint adopted in the present full Lagrangian formulation. The initial 
undeformed configuration, which can have any arbitrary orientation and is fixed within the spatial 
configuration, is chosen to be the material configuration, which may have a coordinate system not 
necessarily coincident with the spatial coordinates (Fig. 3). The material configuration is divided into 
two parts-inside the joint channel and outside the channel-with the partition boundary (or channel 
orifice) moving with respect to the material frame, i.e. the channel orifice is moving relative to the 
material observer 0, as shown in Fig. 2. On the other hand, in the ‘natural’ viewpoint, the sliding 
undeformed beam is moving relative to the spatial observer 0,. 

’ It is perhaps due to a certain ‘linearization’ process that the equations in [59] did not reduce exactly to those in [32], as noted 
in [31]. 

‘Even though the initial undeformed configuration is drawn horizontal in Fig. 1 to avoid confusion in the explanation of 
different configuration spaces, the formulations presented here allow arbitrary orientation of the initial configuration; see Fig. 3. 
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* m 

* SLIDING MOTION 

Fig. 1. Sliding beam: Description of sliding motion, time-varying length Y(t). 

Let (x1, x2) be the coordinate system for the spatial configuration, denoted by S,, and {e, , e,} the 
related basis vectors. The material configuration, denoted by 9$,, is parameterized by the coordinates 
(X’ , X’), having basis vectors {E, , I&}. The material basis vectors {E, , E2} do not necessarily coincide 
with the spatial basis vectors {e,, e2}. The origin 0, of the spatial coordinates (x’, x2) is also the center 
of rotation in the present formulation. Let 0, designate the origin of the material coordinates. Thus, 
the material configuration 633” in Fig. 2 can be described as8 

Channel Motion 

Material Beam (fixed) & 

ox 0 
Er ix., 1 

,_........“““““.............., I 
* 

.~.~.........___..................~ 
Channel Orifice 

c(t) 
B1 

c(t) 
* 0 

1 0 

L 

Fig. 2. Sliding beam: Material configuration g,,. Moving partition boundary (channel orifice). The figure shows the case of beam 

under deployment: The channel orifice is moving toward the material observer 0,. 

” An open interval is written as ]a, b[. 



L. Vu-Quoc, S. Li I Comput. Methods Appl. Mech. Engrg. 120 (199.5) 65-118 71 

Let 19~ denote the (constant) angle from e, to E, (see Fig. 3); the angle 19~ essentially represents the 
initial orientation of the undeformed sliding beam with respect to the inertial frame {e, , e2}. The basis 
vectors describing the shadow beam configuration are denoted by {a,, az} (Fig. 3). 

2.1. Basic kinematic assumptions 

The part of the material (undeformed) beam B,, inside the channel is assumed to be non-deformable 
(even axially); the part outside the channel, denoted by C!%*, is finitely deformable, and is the part that 
we are interested in. Let the length of the material beam inside the channel be denoted by 

C(t) : = L - -(e(t) , (2.2) 

where L is the total length of the material beam, and 9(t) the time-varying length of the material beam 
outside the channel (Fig. 1). The time-dependent vector 

C(t) := C(t)E, = C(t)[cos a0 e, + sin 19” ez] (2.3) 

essentially describes the motion of the channel orifice relative to the material observer 0,. Thus, the 
time-varying subset a, of the material configuration $B3,, corresponding to the deformable part of the 
sliding beam outside the channel, can be described by 

B, := {(X’, X’) E [w* Jx’ E]C(t), L[, X2E]-h, h[} c 93”. (2.4) 

Let the spatial point x = (x’, x2) E B3, be the image of the material point X = (X’, X2) E ao, outside the 
channel under the deformation map; the relationship between x and X at a given time t is 

x=X-C(t)+u(X,t), forXE@,, 

where u(X, t) = u*(X, t)e, denotes the displacement vector” of the material point X. 

(2.5) 

n Shadow Beam 

SLIDING DEFORMED BE&~ 

Initial Undeformed Beam 

Sliding Undeformed 

Fig. 3. Sliding beam: Configuration spaces. Initial (material) configuration, sliding undeformed configuration, shadow beam, 

sliding deformed (spatial) configuration. 

’ Summation convention is implied on repeated indices, with Greek indices take values in (1,2}. Also, similar to X = (X’. X’), 

we write u(X, t) as a shorthand notation for u(X’, X’, t). 
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REMARK 2.1. The displacement vector u = uaea is customarily defined as 

u:=x-X, or x=x+u. (2.6) 

There is a major difference between (2.5) and (2.6). The assumption that there is no deformation inside 
the channel, and thus the translation C(t) of the channel orifice with respect to the material observer 
O,, is already accounted for in the displacement vector u as defined in (2.5). On the other hand, unlike 
the shadow beam approach (see Fig. 3), displacements due to finite large overall rotations are not 
eliminated from the displacement u in (2.5), i.e. the displacement u is measured relative to the fixed 
spatial frame {e, , e2}. This feature of the present full Lagrangian formulation allows a convenient 
accommodation of the sliding motion of the beam, while retaining the versatility of geometrically-exact 
formulation with regards to large overall motions. As an illustration, we refer the reader to Example 
5.3 for a deployment of a beam under large angle maneuver in Section 5. 0 

Let us now introduce some kinematic quantities. The orthonormal basis vectors attached to a typical 
cross section at the point with position X’E, are denoted by {t,(X’, t), t,(X’, t)}, with t, being always 
normal to the cross section. The angle from the spatial basis vector e, to the section basis vector 
t,(X’, t) is denoted by 6(X’, t). The whole system can be subjected to large angle rotation about the 
origin of the spatial frame; such angle of rotation (from E, to a,) is denoted by G(t).‘” Purely due to 
structural deformation is the rotation angle 0(X1, t) from the shadow beam (or channel) axis u1 to the 
section basis vector t,(X’, t). Let A6(X’, t) denote the angle from B, to f,, i.e. the total angle of 
rotation of a cross section-which includes the rigid body rotation I,/I(~) and the deformation rotation 
B-from its initial orientation to its current orientation. Therefore, 

6(X’, t) := 4, + A6(X’, t) , (2.7) 

A6(X’,t):=$(t)+B(X’,t). (2.8) 

The definition of various angles is best summarized in Fig. 4. 
Let A be the rotation tensor from the material configuration to the spatial configuration defined as 

follows 

A= Aiea @E” , such that tp:=A-Ep=t;e,. 

Then the matrix of components of A, denoted by [AZ] E Rzx2, is” 

Fig. 4. Sliding beam. Angles of rotation. 

(2.9) 

‘” The angle $(t) is similar to that in [35], where it represented the angle from the spatial basis vector e, to the basis vector a, of 
the shadow beam. 

” With the convention that the superscript (Y in AZ designates the row index. whereas the subscript p designates the column 
index. This convention is to be applied to all matrices throughout the paper. 
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(2.10) 

Extending the Timoshenko kinematic assumption for linear beam deformation-i.e. sections that are 
plane before deformation remain plane after deformation, but not necessarily perpendicular to the 
deformed centroidal line-to non-linear deformation to account for shear, the deformation map 
@ : 8?13,* 92, can be written as follows 

x = @(X, t) : = @“(X1, t) + x2t2(X’, t) ) (2.11) 

where a0 represents the deformation map of the beam centroidal line (see Fig. 5). The main difference 
between relation (2.11) above and a similar relation in [35] is in the expression for GO(X’, t), which will 
be given below shortly. 

Let X0 = ([X’ - C(t)], 0) E %$ denote a point on the centroidal line (since X2 = 0); the material 
position vector of X0 relative to the material observer O,, denoted by X0, is 

x, := X” - 0, = [X’ - C(t)]E, . (2.12) 

The image of the centroid X0 under the deformation @J is denoted by x0. We have from (2.11) that 

x,, = @(X0, t) = @JX’, t) . (2.13) 

The expression for @,,(X’, t) for each part of the material configuration will be given below. We denote 
the spatial position vectors of x and x0 relative to the spatial observer 0, by @ and a,,, respectively 

@:=x-O,, @$:=x0-ox, (2.14) 

i.e. @ is a point-to-point mapping, whereas @ is the spatial position vector of the image point under the 
map @; a similar interpretation holds for Q0 and @“. Inside the channel, i.e. for X’ E]O, C(t)[ in (2.12), 

c(t) fj L 

( c X’ 
Q c 

Fig. 5. Sliding beam. Kinematics of deformation. The case with a0 = 0 is presented above to explain clearly the kinematics of 

deformation. 
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the point x,, is given by a rigid body motion 

aO(x’, t) = [X’ - C(t)]a, 

= [X’ - C(t)]{co~(fi~ + $(t))e, + sin(aO + $(t))e,} . (2.15) 

Let u,,(X’, t) = uz(X1, t)e, denote the displacement vector of the point X, on the centroidal line. Then 
inside the channel, u0 = 0. Outside the channel, i.e. for X’ E ]C(t), L[, the spatial point x0 is related to 
the material point X0 by 

X” = @“(Xl ) t) = X” + U”(X’) t) ) (2.16) 

thus, with the position vector of X0 defined in (2.12), we have 

@“(Xl, t) = [X’ - C@)]E, + u,(X’, t) 

= [X’ - C(t)]{cos 7Y0 e, + sin 9Y0 e,} + ui(Xl, t)e, , YX’ E]C(t), L[ . (2.17) 

REMARK 2.2. Apart from the time-varying domain ]C(t), L[, the deformation map for the centroidal 
line (2.17) accommodates the case where a0 # 0 (i.e. when the material frame is not coincident with 
spatial frame), whereas Simo and Vu-Quoc [35] consider the particular case where 19” = 0. A discussion 
on this aspect in a more general context can be found in [42]. q 

2.2. Full Lagrangian equations of motions 

We briefly review the derivation of the equations of motion for geometrically-exact beams, with a 
particular emphasis on sliding beams. Recall that inside the channel, i.e. in 98,\$@ (see (2.1) and (2.4)), 
the beam is assumed to be non-deformable. Even though we are considering planar deformation of 
beams, it is sometimes convenient to think in a 3-D context, where the beam is considered as having a 
unit width in the E, direction, such that, e.g. X3 ~10, l[. The area of a cross section in the material 
configuration is then denoted by 

d” := {(X2, X3) E R2 Ix2 El-h, h[, x3 E]O, l[} . (2.18) 

Let P(X, t) denote the first Piola-Kirchhoff stress (two-point) tensor 

P(X, t) = E; @ T’(X, t) ) and T’=E’*P, (2.19) 

where T’ is the spatial traction force corresponding to the material facet with normal E’ (see e.g. 

[43])‘*. The stress resultantf, and the stress couple m with respect to the displaced centroid x,), per unit 
of undeformed beam length, are defined as 

f(X1,O:=j-~OT’d.pl,, (2.20) 

m(X’, t) := I,,, [x - x0] x T ’ d& = j- X2t2 x T’ dtiO , (2.21) 
%I 

where the last equality follows from (2.11) and (2.13). 
Consider a spatial control volume 0, C 9$ with normal it on the boundary &It. The time rate of the 

linear momentum, and of the angular momentum with respect to O,, of 0t in terms of the applied 
forces (i.e. the Euler equations) is given by 

(2.22) 

d 
-1 @xpud(R,)= 
dt R, I -, 

@ x (n - a) d(a0,) + 
I 4 

@ x pb d(Q) VQ c L3flt , (2.23) 

“The symbol E’ designates a covector, such that E’*E, = 8;, where 8; is the Kronecker delta. For Cartesian coordinates, 
E’=E I’ 
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where 

u(x, t) 3 V(X, t) = 
d@(XY t) = :& 

at (2.24) 

is the spatial velocity vector at the spatial point x = @(X, t) E B3, (see [43]), a@, t) is the Cauchy stress 
tensor, b(x, t) the body force, and p(x, t) the mass density. Now let fiO be a fixed material volume in the 
material configuration @, (see Fig. 2), with normal N = N@ on the boundary ati0 such that 

a, = @(Q,, t) I (2.25) 

i.e. Q is the image of d, under the deformation @. Even though the boundary of .5?$ (channel orifice) is 
changing with time, the material volume fiO remains fixed with respect to the coordinates (X1, X2), thus 
the subscript ‘0’ in 4,. By pulling the integrals in (2.22) and (2.23) back to the material volume flu, one 
obtains (see [43]) 

(2.26) 

where p,,,(X) = p(x, t)J(X, t) the mass density per unit volume of undeformed beam, with J(X, t) being 
the Jacobian determinant of the deformation map @(X, t), and B(X, t) = b(x, t) is the body force.13 By 
the divergence theorem, and using DIVP = Tiji, the balance of linear and angular momenta (2.26) and 
(2.27) can be rewritten as 

i- p 4, 
ref + d(fi,J = I,, DIVP d(f=kJ + i,,, pref B d(%) vfin, = a, 2 

(2.28) 

I,,,, pref @ x + d(fio,) = 1,,(9 x T’)I, d(f%) + Jl,,, @ x ~r,rB d(fk) vfio C g3, . (2.29) 

We first consider the reduction of the balance of linear momentum (2.28) to a resultant form. From the 
relation (2.11), we have 

&(X, t) = &“(Xl, t) +x%,(x’, t) . (2.30) 

Let A, be the mass per unit of undeformed beam length, i.e. 

A,:= Pref dd” 3 (2.31) 

and assume that the origin of the X2 coordinate coincides with the center of mass of a cross section, i.e. 

i 
pref X2 d&” = 0 (2.32) 

%I 

Using (2.30)-(2.32), the inertia operator in (2.28) can be written as 

I 
pref & ds8, = A, &o(X’, t) . (2.33) 

.*I, 

Next, by the divergence theorem on do and the definition (2.20) of the stress resultant f, we can write 
the divergence term in the balance of linear momentum (2.28) as (cf. [60]) 

af + DIVPd&,=- 
dX’ 

(N2TZ + N,T3) d(&Q . (2.34) 

“B(X, t) is the spatial body force, parameterized on the material configuration %I,,; in other words, B is a spatial vector field 

covering the deformation map Cp [43]. 
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The second term in (2.34) is then combined with the body force term in (2.28) to define the applied 
stress resultant fr per unit of undeformed beam length 

(2.35) 

Now, since the choice of fin, in the balance of linear momentum (2.28) (and also in (2.29)) is completely 
arbitrary, we can particularize fiil, to be a transverse slice AL x .G$, of the material beam S?&, where AL 
is any interval in ]C(t), L[. The balance of linear momentum (2.28) then becomes 

With 

I ( A&, - 
AL 

dX’ = 0 V AL c ]C(r), L[ . (2.36) 

L being a constant, we have from (2.2) that 

C(t) = -P(t) . (2.37) 

Then, by using the expression (2.17) for a,, in (2.36), we arrive at the local resultant form of the 
balance of linear momentum 

A,[z& + $&El] =df+fr 
ax’ 

vx'qC(~),L[, (2.38) 

by virtue of the du Bois-Reymond lemma (assuming that the integrand in (2.36) is continuous). We 
now consider the balance of angular momentum (2.29). With the aid of the balance of linear 
momentum (2.38), and by using the divergence theorem on do, the right-hand side of (2.29) can be 
written as follows (cf. [60]) 

Ia, 
0 

(@ X T’)li d(‘“) + I,,, @ ’ PrefB d(‘~) 

= -+- xf+m,+ I "90 P,,r(@o x iio> d&, (2.39) 

with the applied stress couple m, defined as 

m,- := 
j do (@-@II) (2.40) 

0 
x[$JV”]d@&)+ j~0(@-@&%Pd91,. 

Now, using (2.11), (2.30), the choice of the X2 coordinate in (2.32), together with the definition of the 
mass moment of inertia of a cross section 

1, := 
i ,*a 

P,,AX~)~ dA, > (2.41) 

the inertia term (left-hand side) of the balance of angular momentum (2.29) and the inertia (last) term 
in (2.39), which is shifted to the left-hand side, become 

I,, pref{ @ x & - @,, x &} d(fiO) = I,, Zpt2 x i;2 dX’ = i,, Z$)e, dX’ , (2.42) 

where the last equality comes from the restriction to the planar sliding motion in the present work, i.e. 

t2 =$t2 = -Bt, - a2t2 ) (2.43) 

which follows directly from (2.9), and 

t, x t, = t, = e3 . (2.44) 

Using (2.39) and (2.42) in (2.29), and by virtue of the du Bois-Reymond lemma, we arrive at the 
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balance of angular momentum in local resultant form 

77 

am a@, 
Z,Be, =-+- 

ax' ax' 
Xf +m, (2.45) 

For beams with fixed undeformed lengths, we refer the reader to [38] for a detailed literature review on 
the subject. 

With the rotation angles defined in (2.7) and (2.8), and recalling that f = f aeu, m = me3, m, = mre3, 
etc., the equations of motion for sliding geometrically-exact beam in component form are summarized 
below 

VX’ E]C@), L[: 

af’ A,,@; + &os~~)=,x,+ f;. 

af’ A,(ii~+$sin19~)=----+f~ 
ax’ 

*e,+m, 

with the clamped (essential) boundary conditions at X1 = C(f) 

(2.46) 

I I 

~;(c@>, t) = 0 3 

~;(c(~>, t> = 0 , (2.47) 

0(C(t), t) = 0 , or NC(t), t) = *Ll + J/(r) 

where it should be noted that the deformation angle 0 is used to specify the clamped boundary 
condition, and not the angle AI?, which includes the rigid body rotation angle JI. Alternatively, if 6 is 
chosen as a primary unknown function-which is the case in our computational formulation and 
implementation to be discussed in Section “then the clamped boundary condition is imposed if 6 is 
equal to the rigid body rotation angle (~9~ + 9) as indicated in (2.47),. At X’ = L, the ‘beam tip is 
subjected to the free (natural) boundary conditions 

I 1 

f’W)=O, 

f 2(L, c) = 0, (2.48) 

m(L, t) = 0. 

REMARK 2.3. By following the above development, one obtains the equations of motion for 3-D 
sliding geometrically-exact beams below 

vx’ E]C@), L[: 

A,(iO+%,)=--!$+f,,, 

am a@, z,w+wxz,w=--+ -Xf+m,. ax’ ax’ 

(2.49) 
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where w is the angular velocity of the cross section basis vectors ti, for i = 1,2,3, 

ii(X1, t) = w x t;(x’, t) (2.50) 

The reader is referred to [44] for more details on the case of beams with fixed undeformed lengths. 0 

2.3. Equations of motion in stretched coordinate 

The equations of motion (2.46) for 2-D sliding geometrically-exact beams are defined on the 
time-varying material domain ]C(t), L[. We could devise algorithms that account for time-varying 
domain to solve (2.46). Evidently, these algorithms must contain the update of the domain with time. 
There is a number of ways to deal with time-varying domain: Keeping the same number of finite 
elements, but having the element length changing in time, or increasing with time the number of 
elements, whose length has an upper limit, etc. There are certainly some complications that must be 
addressed in the implementation of such algorithms regarding the data structure and data flow when 
using conventional finite element codes. 

To circumvent these difficulties, our approach in the present section is to transform the equations of 
motion (2.46) to a constant domain by introducing a ‘stretched’ coordinate. Consider the following 
constant domain 

~~,:={(~1,~2)~[W2(~‘~]0,1[,~2~]-h,h[}. (2.51) 

Let 5 = (5 ‘, ,_$ ‘) E C%jo be the image of the material point X = (X1, X’) E a3, by the mapping 4 : S?%‘* + 6” 
defined as follows: & = 4,(X, t), and 

El% l[ 3 

El-h, h[ . 
(2.52) 

In other words, instead of parameterizing the material body S!& using the coordinates (X1, X2), we use 
the coordinates (5 ’ , 6’). The same material point X E %I~ can now be described by two coordinate 
system? (X1,X2) and (.!jl, S’), 
4-l: B3,+ a, defined as 

which are related to each other as in (2.52), or equivalently, with 

1 

x1 = C(t) + qtg’ e]C(t), L[ ) 

x2+ El-h, h[ . 
(2.53) 

Since the coordinate 5’ belongs to a fixed interval IO, l[ for all time t, it is also referred to as the 
‘stretched’ coordinate, with Z(t) as the stretching factor, 
coordinate X1 and the new coordinate 5 ‘, 

representing the ratio between the old 

X1-L 
.2?(t) = ~ 

t’-1. 
(2.54) 

We use the superposed tilde on functions that have (X, t) as arguments to indicate that the arguments 
for these functions are now (e, t) 

(g(& t) -(g(+‘(x’, t), t) := (*)(X1, t) . (2.55) 

Thus, for example 

ii,(~l,t)=iq~l(X’,t),t):=u,(X1,t), (2.56) 

~(~‘,t)-&&(X1,t),t):=7Y(X’,t), (2.57) 

and similarly for other relevant functions. The time derivatives in the equations of motion (2.46) must 
now be interpreted as the material time derivatives, keeping the material point X fixed. Thus, in terms 
of the new variable tl, the balance of momenta (2.38) and (2.45) become 
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WY’ E]O, l[ , 

A, 1 a2ii, 
(&>2 (442 + 2 agl at 

Y%$+!$j)l+A%+pq +?!t+j, 

1 - 

(2.58) 

4 xj:+rii,. (2.59) 

Elementary manipulations on (2.52) yield the following relations 

a+' 1 
-=- 
ax' 2' 

(2.60) 

(2.61) 

((1 - [‘)_% - Pi’}Z - (1 - <l)(P)’ 

Z2 
(2.62) 

Substituting (2.60)-(2.62) into (2.58) and (2.59), and multiplying the resulting equations throughout by 
2’ to avoid numerical difficulty when the (undeformed) length P’(t) of the beam outside the channel 
gets close to zero, we obtain the following full Lagrangian equations of motion in stretched coordinate. 

Axial and transversal motion: V,$ ’ E IO, l[ 

Flexural motion: Vtl E IO, l[ 
,,.63) 

(2.64) 

REMARK 2.4. Some rearrangements of terms had been made to obtain the convective terms (I) in the 
inertia operators of (2.63) and (2.64); these terms will lead to symmetric matrices-in addition to the 
symmetric matrices resulting from the regular mass terms (IV)-in a Galerkin projection of (2.63)- 
(2.64). On the other hand, anti-symmetric matrices will result from the convective terms (II) and (III). 
The fact that we obtain gyroscopic-like anti-symmetry matrices in a (sliding) cantilever beam is a nice 
feature of the present formulation (see Section 4 for more details). The term (V) in (2.63) is a forcing 
term. q 

REMARK 2.5. It is shown in [35] that by referring the dynamics of geometrically-exact beams in planar 
motion directly to the inertial frame, the inertia operators become simple, and are devoid of the 
non-linear, coupling terms that result from referring the dynamics to a floating reference frame or a 
shadow beam. Even though there are still convective terms due to the sliding motion and the use of a 
stretched coordinate, the inertia operators in (2.63) and in (2.64) remain linear and uncoupled, because 
the dynamics is referred to the inertial frame. The use of a shadow beam to describe the dynamics of 
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sliding beams will introduce non-linear, coupling terms in the inertia operators, in addition to the 
convective terms due to the sliding motion and the use of a stretched coordinate. 0 

The boundary conditions in the t1 coordinate equivalent to (2.47)-(2.48) are (see also Remark 3.2) 
At 5’ =0: 

I I 

(2.65) 

3w=o, I (2.66) 
rn(l, t) = 0. 

REMARK 2.6. A feature of the full Lagrangian formulation is the forcing term (V) in (2.63); this term 
can be called the material-axial-inertia force due to the sliding motion, because this force remains 
directed along the axis E, of the (initial undeformed) material configuration, even though the sliding 
beam can undergo large angle maneuvers. 0 

We now need to relate the internal resultant force and moment (f and fi) to the displacement & and 
the rotation I!?, which are the three primary unknown functions via the strain measures. The strain 
measure y(X’, t) = y”(X1, t)err, employed in [35] and defined as follows 

YW, t) := 
@0(X’, f) 

ax, - t&f’, t> , 

now takes the following form in terms of the stretched coordinate 5’ 

r(P,t) = 
a&@(x’, 9, t) 

I& 
-$~l,t)=E,+~*-;l, 

I& ax’ 

1 a;; 
= cosi30+----cos~ e,+ 1 [ 1 ai.7: 

2 at 
sinfiO+--_-sinS 

2 at 1 e2, 

(2.67) 

(2.68) 

where q and ;a are related to y and t, as indicated in (2.55), and a4'/ax' as given in (2.60). Similarly, 
the curvature in the t1 coordinate is given by 

q&f)= 
a&+'(x',t),t) ai7 a+' 

ax' at1 ax" 
(2.69) 

With the matrix of beam section stiffness coefficients denoted by 

(2.70) 

where EA is the section axial stiffness and GA, the section shear stiffness, we postulate the following 
constitutive law relating f” to + (see [35]) 

(2.71) 
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where the rotation tensor /I is defined similar to (2.9)-(2.10) 

In component form and in matrix notation, (2.71) reads as follows’J 

{f”“} = [i;][%$q’{ r”‘} E 5Px1 ) 

(2.72) 

(2.73) 

(2.74) 

(2.75) 

respectively. Let EZ denote the section bending stiffness; we postulate the following relation between 
the internal moment fi and the curvature K” 

rii = EIK” . (2.76) 

In szthe balance equations (2.63)-(2.64), in terms of the stretched coordinate 5’ on constant 
domain [0, 11, together with the relations between the internal stress resultants/couple and the primary 
unknown functions {Cd, i$, a}-i.e. relations (2.71) and (2.68), (2.76) and (2.69)-yield the partial 
differential equations (PDEs) governing the motion of sliding geometrically-exact beams. These PDEs 
together with the boundary conditions (2.65)-(2.66), and appropriate initial conditions, form a 
complete mathematical statement for the sliding beam problem considered herein. 

Next we will discuss an alternative, but equivalent, formulation for the equations governing the 
motion of sliding geometrically-exact beams. 

3. Alternative approach: Eulerian-Lagrangian formulation 

An advantage of restricting the dynamic formulation for sliding beams-viewed as systems with 
changing mass-to the part outside the joints, is that the formulation remains valid regardless of what 
happens inside the joint. The formulation presented in Section 2-which can be considered as a full 
Lagrangian formulation-does possess this advantage, even though we did prescribe ‘harmless’ 
assumptions on the beam kinematics (not kinetics) inside the joint.” 
(2.63)-(2.64) . 

The resulting governing equations 
involve strictly kinematic quantities outside the joint channel. 

Instead of the full Lagrangian viewpoint, we present here an Eulerian-Lagrangian viewpoint-which 
is a ‘natural’ way to formulate the sliding beam problem as mentioned at the beginning of Section 
2-via the introduction of an intermediate configuration between the material (undeformed) configura- 
tion and the current (deformed) configuration. This intermediate configuration plays the role of an 
Eulerian domain with respect to the sliding undeformed beam, and the role of a Lagrangian domain 
with respect to the beam deformation to the current configuration. We thus distinguish the intermediate 
configuration-which is fixed in the spatial frame-from the sliding undeformed beam, which is 
translating in the spatial frame. The intermediate configuration has, however, time-varying boundary 
determined by the tip of the sliding undeformed beam. 

3.1. Intermediate configuration 

Recall that the material configuration CB,, in (2.1) is chosen to be the same as the initial undeformed 
configuration; see Fig. 3. The intermediate configuration, denoted by .C$$, is parameterized by the 

I4 Strictly speaking,_i-’ = (i-‘);E- @eP, where [(A-‘)J = [ii]-‘. Since [Ai] is an orthogonal matrix, we have [&-’ = 
[ii]‘, i.e. (A-‘); = Afl. On the other hand, I? = G”‘Arg,,Ea Be’. For Cartesian coordinates, G”’ = 6”’ and gWP = ScO, thus 
leading to the identification A-’ = AEE= @ea = /I’. 

” The formulation is of a displacement-driven type; thus, the kinetics of the beam part inside the channel is of no consequence 
anyway. 
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coordinates (X ‘, x2), which are parallel to the coordinates (X’ , X2), and having the orthonormal basis 
vectors ( 8,) &), such that %‘a = Ea. The origin of the coordinates (x ’ , ,y “) is chosen to be at the 
channel orifice, i.e. m at the origin 0, of the spatial (inertial) coordinates;r6 we have 

~,~=~(X1,X2)~~21X’~10,~(~)[,X2~l-~r~~~~ (3.1) 

The intermediate configuration &‘t thus defined has a time-varying boundary. 
The mapping from the material configuration B, to the intermediate configuration $, denoted by cp, 

is a sliding rigid body motion along the channel axis. Consider a point x = (X1, X2) fixed in G&(31; 
therefore x is also inertially jixed. The Eulerian description of the motion of the sliding undeformed 
beam is as follows: The point x = (x ’ , ,y ‘) E C?& being fixed in the spatial (inertial) space-i.e. the 
coordinates (X ‘, x2) in (3.3) are constant in time-we look at the material points X E at that pass by 
and coincide with the point x at various instants of time such that x = cp(X, t). The sliding rigid body 
motion cp : &,+ Ci& is given by 

1 

x’=&,t)=X’+Lqt)-L, x’qC(t),L[ 

x2 = (p2(/y, t) =x2 ) x2 El-h, h[ 
(3.2) 

With respect to the spatial basis (e,, e,), the position vector of the point x is given by 

~:=~-0,=~~iEkb,=(~1cos~~-~2sin~~)e,+(~1sin~,+~2cos~~)e2. (3.3) 

The intermediate configuration gs, can be thought of as coincident with the part outside the channel of 
the sliding undeformed beam in Fig. 3. The motion of the beam tip of the sliding undeformed beam 
represents the time-varying boundary of the intermediate configuration 8$. 

Once we have defined the intermediate configuration 6$ as above, the deformation map from @ to 
the current configuration B3, is a Lagrangian description from the inertially fixed point X E &t to the 
spatial point x E B! in a similar manner as for geometrically-exact beams with fixed undeformed length, 
i.e. 

x=&(x,t)=Xo+ri”(X1,t)+X2t2(X1,t), 
(3.4) 

di,(X’> t) 

where X0 = (x1, 0) is a point on the centroidal line of the intermediate configuration $, having the 
position vector X18,. Relating the above kinematic relations in the Xa coordinates back to the material 
point X = (X’, X2) that coincides with the point X = (X1, X2) at the current instant of time, we can use 
the relation (3.2) together with the following identification: Similar to (2.55)-(2.57), a superposed 
check mark on a function having (X, t) as arguments indicates that this function now has (X, t) as 
arguments such that 

(:)(x1, t) = (y(qJ1(xl, t), t) := (0)(X’, t) . (3.5) 

For example 

6,(x1, t) EfE i”(‘p’(X1, t), t) := *“(xl, t) ) (3.6) 

8(X1, t) = lq,‘(X’, t), t) := 6(X’, t) ) (3.7) 

and similarly for other relevant functions. The section basis vector t’, in (3.4) is related to the spatial 
basis vector e2 via the total rotation angle 8 in the same manner as in (2.9)-(2.10), 

li=&e,@%‘, such that ip:=A.$=$e,, (3.8) 

l6 The channel orifice can have a prescribed motion in the inertial frame (see Remark 3.2 below). We assume at present that the 

channel orifice does not translate from, but can rotate about, the spatial observer 0,. 



L. Vu-Quoc, S. Li I Comput. Methods Appl. Mech. Engrg. 120 (1995) 65-118 83 

(3.9) 

and 

3.2. Eulerian-Lagrangian equations of motion 

Consider a control volume 0, C S3, as in the balance of linear and angular momenta (2.22)-(2.23), 
and a volume fi, C &13, with normal fi = &;gi on the boundary afi[ such that 

fl[ = &(.fq, t) . (3.10) 

Now, pulling the balance of linear and angular momenta (2.22)-(2.23) back to the intermediate 
configuration, we have the counterpart of (2.26)-(2.27), but for the intermediate configuration, as 

(3.11) 

(3.12) 

where 1; = gj @ i;’ is the first Piola-Kirchhoff stress tensor based on the intermediate configuration, 
b(X, t) = p(x, t)&, t) the mass density per unit volume of a,, with &, t) being the Jacobian 
determinant of the deformation map 4, I&x, t) = b(x, t) the body force,” ri the spatial velocity field 
covering the deformation map di (i.e. parameterized on the intermediate configuration) defined as (cf. 

(2.24)) 

V(X, t) = u(x, t) -V(X, t) ) (3.13) 

and & the spatial position vector with respect to the observer 0, 

&=x-oo,=&-0,. (3.14) 

The spatial velocity field v is the material time derivative of 4, keeping to the material point X-such 
that X = cp(X, t)-fixed 

a& acp’ ” 
q/y, t) = & 4(x, t) = $ dqcp(X, t), t> =y- + G. 

a/y’ at (3.15) 

Consider a material domain 0, E B3, such that 

Q = cp(% t) 3 (3.16) 

with cp defined in (3.2) as the sliding rigid body motion. Then by standard procedure,” the time rate of 
the linear and angular momenta in (3.11)-(3.12) is given by 

From the sliding motion cp as defined in (3.2), it follows from (3.15) that 

D& a$ dq’ -=-_ 
Dt a/y’ at 

+!!?=*g I a& 
at ax’ at 2 

(3.17) 

(3.18) 

(3.19) 

” B(x, 1) is the spariul body force, parameterized on the intermediate configuration. 

lx I.e., pulling the integrals on the right-hand sides of (3.11)-(3.12) back to 12,, taking the time derivative, and push forward 

the resulting integrals to fi, (see [43]). 
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D2& a’& -=~ 
Dt2 (ax’)” 

(3.20) 

Now, following essentially the same argument as for the full Lagrangian formulation in Section 2, we 
arrive at the following governing PDEs for the Eulerian-Lagrangian formulation VX’ E 10, 2’(t)[, 

I I 

(3.21) 

where the inertia operators had been particularized to planar sliding motion, with” 

A,:= 
I %I 

ci ds8, > i, := ~” (,y’)‘fi d&, , 
i 

(3.22) 

and with the position vector & and the displacement vector li, of the centroidal line related to each 
other as indicated in (3.4); the stress resultant 3: and stress couple ti are defined similar to (2.20)-(2.21) 

nx’,t):=j-dC,i’ds9,. di(x’,t):=[d X2i2#dZB,,; (3.23) 

the applied stress resultant & and applied streis couple ni, are defined similar to (2.35) and to (2.40), 
respectively 

(3.24) 

(3.25) 

A similar procedure can be followed to obtain the equations for the 3-D sliding motion (see Remark 
2.3). 

REMARK 3.1. If prer is a constant, then so will be the mass per unit length A, and the section mass 
moment of inertia Z, in the intermediate configuration. On the other hand, if pref is a function of Xi, 
then so will be A, and Z,, while A, and ip will be functions of (X1, t). 0 

The boundary conditions in 
At X’ =0: 

At X1 = .2’(t): 

the X1 coordinate equivalent to (2.65)-(2.66) are (see also Remark 3.2) 

(3.26) 

(3.27) 

I9 By virtue (3.2),, we can identify the cross section c&, with ti,,, 
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REMARK 3.2. Of course the displacement boundary conditions in (2.47), (2.65) and (3.26) need not 
be zero, i.e. one can prescribe arbitrary displacement pattern for the channel 

uo(C(t), t) = u”“(0, t) = r&(0, t) = Go(t) ) (3.28) 

where G,,(t) is some given function in time. Such prescription of the channel displacement can be used 
to simulate for example the translational motion of a robot manipulator arm or the orbital motion of a 
satellite. Likewise, one could consider to have a concentrated force j(t) and a concentrated couple h(t) 
applied at the beam tip, i.e. 

f(& t) =.&I, t) =&W, 0 =&> 1 (3.29) 

m(L, t) = rn(l, t) = G+Y(t), t) = h(t) ) (3.30) 

instead of the free end conditions in (2.48), (2.66) and (3.27). q 

In the coordinates (X ’ , x2) of the intermediate configuration @,, the strain measure y as defined in 
(2.67) becomes 

al&f) ali 
= cos fiO +I- cos 8 e, + sin 8” +-+-sin 8 L dX I L dX I 

e2, 

since 

dd -= 
dX’ 

1 

according to (3.5). Likewise, the curvature ri is given by 

(3.31) 

(3.32) 

(3.33) 

The expressions (3.31) for + and (3.33) for ri are the counterparts of q in (2.68) and of I; in (2.69). 
The constitutive laws equivalent to (2.71) and (2.76) are 

(3.34) 

having the component form-based on (3.8)-(3.9)-similar to (2.74)-(2.75) and 

pq (3.35) 

In summary, the balance equations (3.21), in terms of the X1 coordinate of the intermediate 
configuration CZ&, together with the relations between the internal stress resultants/couple and the 
primary unknown functions {ai, ii:, a}-i.e. relations (3.34) and (3.31), (3.35) and (3.33)-yield the 
partial differential equations (PDEs) governing the motion of sliding geometrically-exact beams. These 
PDEs together with the boundary conditions (3.26)-(3.27), and appropriate initial conditions, form a 
complete mathematical statement for the sliding beam problem considered herein. 
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3.3. Comparison of formulations 

Of course, one expects that the full Lagrangian formulation and the Eulerian-Lagrangian formula- 
tion are equivalent in that the equations from one formulation can be transformed to those fr_om the 
other. The (Lagrangian) deformation map @ : !%I,+= 93, can be written as a composition of 3 : 53” -+ 3, 
with 4 : S@+ B. for the full Lagrangian formulation in stretched coordinate, i.e. 

@= &#C @+%,,, (3.36) 

and as a composition of 6 : ~28~ * 53, with cp : &I+ &It for the Eulerian-Lagrangian formulation, i.e. 

CD=& “9: C?++. (3.37) 

It follows from (3.36) and (3.37) that we can obtain 6 from 6, and vice versa, by 

6 = ~iocpQ#-’ = @&: @+YJ,) (3.38) 

&= &@o(p~’ = @(p-r: &,+J&. (3.39) 

Thus, from (3.39), Eqs. (3.21) of the Eulerian-Lagrangian formulation can be obtained from Eqs. 
(2.46) of the full Lagrangian formulation by composing @ : c?$+ 93, with cp-’ : P-8, --, 4, defined as (see 

(3.2)) 

r 

x1=,$-2?(t)+& 

x2=x2, 

With cp : al-+ L$ defined 
~~04~‘: 6,,-+ 63, defined as 

(3.40) 

in (3.2) and 4-l : 5%+ a, defined in (2.53), the transformation 

(3.41) 

when composed with 6 : C%‘( + L!& as indicated in (3.38) will allow a recovery of the full Lagrangian 
equations in stretched coordinate (2.58)-(2.59) from the Eulerian-Lagrangian equations (3.21), and 
vice versa-i.e. (3.21) can be obtained from (2.58)-(2.59)-by virtue of (3.39). 

Even though from the theoretical formulation standpoint, the governing equations for sliding 
geometrically-exact beams can have various equivalent forms as just indicated above, a comparison of 
the two formulations from the computational standpoint offers a markedly different picture. By 
discretizing the Eulerian-Lagrangian equations (3.21), one has to deal with a time-varying domain, 
thus affecting the data structure and the data flow in conventional finite element codes, similar to the 
case of the full Lagrangian equations (2.46) as already remarked at the beginning of Section 2.3. But 
then little can be gained by working with the Eulerian-Lagrangian equations (3.21) instead of the full 
Lagrangian equations (2.46): The Eulerian-Lagrangian equations contain convective terms; the full 
Lagrangian equations do not. In addition, as pointed out in Remark 3.1, the full Lagrangian 
formulation-particularly the one in stretched coordinate-offers a definite advantage over the others 
when the mass per unit length AP and mass moment of inertia Z, are not uniform along the beam 
(undeformed) length (i.e. A, and Z, are functions of Xi). 

4. Algorithmic treatment of the full Lagrangian equations in stretched coordinate 

In the present section, we discuss the Galerkin projection of the full Lagrangian equations (2.63)- 
(2.64) in terms of the stretched coordinate {‘, leading to a system of semi-discrete equations. The 
constancy of the domain of 5’ makes the computational algorithm simpler, as mentioned in Section 3.3. 
A post-processing is necessary to express the computational results back in the actual physical (spatial) 
space. The discrete inertia operator has a structure similar to that found in the equations describing the 
dual problem (see Section 1) of dynamic interaction between high-speed vehicles and flexible guideways 
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[4,5]. Namely, the convective terms in the inertia operator lead to a velocity-convection term and the 
stiffness-convection term in the semi-discrete equations. In particular, an elegant feature of the present 
formulation is that the inertia operator can be decomposed into a symmetric (self-adjoint) part and an 
anti-symmetric (non-self-adjoint) part (see Remark 2.4), thus making the semi-discrete equations 
having a structure similar to those of a gyroscopic elastic system, even though there is no rotating, but 
only sliding, motion. 

4.1, Weak form and decomposition of operators 

We will consider first the common part of the inertia operators in (2.63)-(2.64), where it can be 
noticed that the second material time derivative of a function (‘)( 5 ‘, t) as defined in (2.55) can be 
written as 

(4.1) 
where (‘)(+‘(X’, t), t) can be either GO or 6. By the clamped boundary conditions (2.65) and the order 
of the PDEs in (2.63)-(2.64), we consider the space of admissible variations, satisfying the homoge- 
neous essential boundary condition,” defined as (see e.g. [45]) 

2’:={wEH1(]0,1[)~w(0)=0}, 

for the operator (4.1) whose weighted residual form is 

(4.2) 

i 
w,z D*(‘) 

IO.11 
Dt’dE’ . (4.3) 

The weak form of operator (4.1) results from the integration by parts of the first three terms; the result 
for each term is as follows. For the first term 

d(7) <‘=I 
= w(l - 51)2(-rp)2~ 5,=” -(4”)2~ol,$(l-&($~1. (4.4) 

. 

=o 

Similar to the vanishing of the (underbraced) boundary terms in (4.4) above, the boundary terms in the 
weak forms of the other terms in the operator (4.1) also vanish (see Remark 4.1). The second term in 
(4.1) can be decomposed into two equal terms, with integration by parts on its weighted residual form 
performed only on one of the two terms to obtain 

2 w( 1 - I!+&? ~d[1=.iYY:/&l-51) 
a”(-> aw e(y) 

w---- d[‘. 
at1 at a&’ at 1 

For the third term in (4.1), we have 

(4.5) 

(4.6) 

Thus, gathering the results in (4.4)-(4.6) together, the weighted residual form (4.3) of the operator 
(4.1) has the following weak form 

*” Homogeneous essential boundary conditions are also imposed on the variations even when there are the type of prescribed 
large overall motions for the channel as noted in Remark 3.2, i.e. the choice of V as in (4.2) is valid for both (2.65) and (3.28). 
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L 

Mass Velocity-convection: Anti-symmetric 

Symmetric Anti-symmetric 

Stiffness-convection 

(4.7) 

showing the clear structure of the mass, velocity-convection, and stiffness-convection operators. 

Remark 4.1. The validity of the weak form (4.7) for both u”,, and 8 is somewhat fortuitous due to the 
following reason. The boundary terms in (4.4)-(4.6) vanish because of the vanishing of the factor 
(1 - 5’) at 5’ = 1, and because of the homogeneous essential boundary condition w(0) = 0 at t1 = 0, as 
reflected in the definition of “Ir in (4.2). It should be noted that the free end condition (2.66) does not 
lead to 

a(7) = 
at1 5'=1 

0 

in general. In fact, condition &l, t) = 0 leads to y(l, t) = 0 by (2.71), and thus 

(4.8) 

a&(1, f) 
(x1 

= z(t)[;i(l, t) -E,] #O (4.9) 

by (2.68). On the other hand, we do have 

&lJ) o 
& = ’ 

(4.10) 

from the condition fi(l, t) = 0, the constitutive law (2.76), and the curvature (2.69). For the same 
reasons as just discussed, one does not obtain the antisymmetric weak form of the operator 

2 a’(:) $ I W) 2 

ax’ at ax’ 
(4.11) 

in the Eulerian-Lagrangian equations (3.21) for x1 E IO, z(t)[ because of the non-vanishing of the 
boundary terms. q 

Now consider the admissible variations w = w”e,, with w” E V, for z& and w3 E ‘V for &. Using the 
definition of the following pseudo displacement vectors and its corresponding variation 

ii := GP;e, + $e, , W := w + w3e3 E 7f3 , (4.12) 

and the section inertia tensor 4 
Z, : = Zge, @ e, , [I;]= 

[ 1 A, E[w~‘~, (4.13) 

ZP 

we can write the weighted residual form of the full Lagrangian equations (2.63)-(2.64) in stretched 
coordinate as follows: 
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where 

corresponds to the linear inertia operator,21 and 

89 

(4.14) 

(4.15) 

(4.16) 

corresponds to the non-linear stiffness operator, and 

G,.W:= -2’ 
i 

{w .& + w’&} d[’ (4.17) 
10,1[ 

the applied force/moment operator. Next, using the weak form (4.7), we obtain the following 
decomposition of the weak form of the inertia operator (4.15) for sliding beams 

G, -(W, fi) := {G,,, + G,,v + G,,,) - (W 6) + G,,, - W > (4.18) 

where 

G,,,.(W, fi):=a2j-I,W.ZP.$df1 (4.19) 

is the mass operator, 

the velocity-convection operator, 

G 1.S ~(W,~):=-(~)2j-,,(1-~1)2~~Z,,~~d~’ 

1 
++E? 

I lO.ll 
W.I’..$-z.Z/fi 1 dtl 

the stiffness-convection operator, and 

G ,,F -w := _y2.p I lO,l[ 
W-APE, dtl 

A,(w’ cos a0 e, + w2 sin 13~ e2) dtl 

(4.20) 

(4.21) 

(4.22) 

the inertia force due to sliding motion. All of these operators are explicitly time-dependent because 
they contain 3(t) and/or its time derivatives. We now look at the weighted residual form (4.16) of the 
non-linear stiffness operator. The boundary terms resulting from the integration by parts of the first two 
terms in the stiffness operator (4.16) vanish by the homogeneous essential boundary condition on the 
variations, i.e. W(0) = 0, and by the free-end condition (2.66). We therefore obtain the following weak 
form of the non-linear stiffness operator 

“The dot ‘a’ m G, . (W, 6) is used to indicate that the operator G, is linear with respect to both arguments (W, fi). 
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I I 

=.T 
i lO.l[ 

[~(~P'l-p(fi)d5', 
I I 

where the time-dependent differential operator L?J is defined as follows 

9 = 9i”eic3ej ) [g ij] = 

with 

aSo a@ aii, 
ag’= a(’ 

-e, = Z(t)E, + ---i- = 
at 1 au”’ 

2 cos a0 + + e, + 
8-5 I { aiT 

_Y sin fro + +- 
at I 

e2 , 

(4.23) 

(4.24) 

(4.25) 

by virtue of (2.18) and (2.53), and where p( 6) is a pseudo resultant force vector defined as 

P:=j:+me,. (4.26) 

REMARK 4.2. Concentrated force/couple at beam tip. In the case where there are a concentrated force 
f(t) and a concentrated couple k(t) at the beam tip, as described in (3.29)-(3.30) of Remark 3.2, we 
then have the following additional boundary terms in the weak form (4.23) denoted by G,(W, fi), as a 
result of the integration by parts, 

-2(t){ w( 1) -j(t) + w’( l)h(t)} . (4.27) 

The above weighted residual form (4.27) for concentrated force/couple can also be obtained from the 
weighted residual form (4.17) for distributed force/couple as follows. By letting 

&(X’ , t) = !(t)W - If,) 3 m,(X’, t) = rqt)S(X’ - L) ) (4.28) 

where 6 is the Kronecker delta, and by noting that 

dX’ 
d[‘=T, (4.29) 

which follows from (2.52), we obtain from (4.17) 

-Z2 
I lO.lI 

{w *jr + w’fi;,} dll = -Z(t){w(l) -j(t) + w3(l)&(t)} . (4.30) 

Thus, while the distributed force/couple is multiplied by the factor Z’(t), the concentration force/ 
couple is only multiplied by the factor Z’(t). An example of sliding beam with an applied concentrated 
force at the beam tip will be given in Section 5. 0 

4.2. Linearization of weak form 

The non-linear equation (4.14) can be, solved using Newton’s method, which requires a linearization 
of (4.14). Consider a fixed state U = *U and a variation (direction) 4 E V”. Then the linearization of 
the dynamic weak form Gdyn at *c is 

UG,,,(W, *cl1 := G,,,W, *fi:> + Wj,,(*fi) - W, 4) , (4.31) 
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where DG,,,( * fi) - (W, q) is the tangent dynamic operator, and is the directional derivative of Gdyn at 
*U, in the direction q (e.g. [46]). The direction q can be thought of as an incremental pseudo 
displacement-in the sense of (4.12)-at *U. We have 

DG,,,(*fi).(W, q) = G,.(W, q) + DG,(*fi).(W, q) . (4.32) 

where DGs(*fi), the tangent stiffness operator at *I?, is obtained from (4.23) as 

DG,(*fi)*(W, q) 

-I IO. 
[EJ(*fi).(W,q)].p(*ti)d<‘+ 

I 
[9(*c).W].Dp(*fi).(W,q)d5’. (4.33) 

IO.11 

The tangent stiffness operator DG, can be decomposed into two parts: The tangent geometric stiffness 
operator D”G, and the tangent material stiffness operator DmG, 

DG,(*fi).(W, q) = [D’+ D”]G,(*fi).(W, q). (4.34) 

It should be noted that the tangent geometric stiffness operator includes not only the first term in 
(4.33), but also part of the second term in (4.33). In a similar manner as in [35], we obtain the 
expression for the tangent geometric stiffness operator D’G, as follows 

(4.35) 

where the operators Y = YLie, 8 ei and B = Biie, Oe, have the following matrices of components 

d 

X’ 
d 

at’ 

[yii] = 
3 

[B”(*fi)] zz 

1 

7 (4.36) 

where * (:) designates that the quantity (:) is to be evaluated at the state fi = * fi. 

REMLARK 4.3. Note the difference between the tangent geometric stiffness (4.39, expression (4.36) 
for [B”] and their counterparts in [35]. The operator in (4.35) is explicitly time dependent by the 
presence of the factor Z(t), and a0 # 0 in general here (see (4.25)), whereas 19~ = 0 in [35]. 0 

The tangent material stiffness operator D”G, is given by 

D”G,(*fi)*(W, q)=L!?~a 1, [~(*fi)~W]+i(*~)~Cvi’(*ii)~~(*fi)~q]d~’ (4.37) 

Thus, the linearized weak form (4.31) at * fi, to be solved in a Newton iteration, 

VWEP, UG,,,(W, *@I = 0 

can now be written as 

(4.38) 

VWEV”) 

[G,,, + G,,” +GI,s + D’G,(*fi) + D”G,(*ti)].(W, q) = -G,,,(W, *ti). (4.39) 

Total tangent stiffness 
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REMARK 4.4. The total tangent stiffness operator in (4.39) evaluated at *fi contains three 
components: the convection stiffness G, s (which in turn contains a symmetric part and an anti- 
symmetric part), the tangent geometric ‘stiffness D’G,(* fi) (symmetric) and the tangent material 
stiffness D “G,( * c) (symmetric). q 

REMARK 4.5. Eq. (4.39) has a similar structure to the equation of motion for the dual problem of 
dynamic vehicle/structure interaction formulated in [4,5]. q 

4.3. Semi-discrete equations 

Consider the following approximation 

wwwh(~l):=A~, qJ(S1)CA E(vh)3 c “y3 ) 

r?(F, t) = fih(5’, t) := i NB(g)dB(t) E(vh)3 c “lr3 ) (4.40) 
B=l 

where N’, cA = c>e, E R3, and dA(t) = da(t)ei E R3, for A = 1, . . . , n, are a set of basis functions with 
their associated pseudo vectors, and “Irh a finite-dimensional subspace of ‘V spanned by these chosen 
basis functions. In particular, for a Galerkin nodal finite element method, the following discretization of 
the interval [0, 11 can be considered 

~:,EO<~:<...<~~<...<~~II, withA=l,...,n. (4.41) 

Define the global column matrices** 

c:={cA}‘{c ,,..., C,}TElR3nx1, d:=(dA}~(dl,...,d,}TEIW3nx1, (4.42) 

and the unit tensor 

1 := Si’ei@cei , (4.43) 

with 6” being a Kronecker delta. We proceed to obtain the discrete operators for the weak form 
G,,,(W, V) in (4.14). For the mass operator (4.19), we have 

(4.44) 

where M(f) is the time-dependent mass matrix. For the velocity-convection operator (4.20), 

G,,” - (W", fi:") = cTV(t)li(t) , V(t) = .E?[V,,] E R3nx3n ) 

I Y4B = 
lO.ll 

(I -~‘){[N,~].z;[N,,,I] -[IV’,~~].Z~ *[NJ]) d5’ER3x3 9 

(4.45) 

where 

(4.46) 

” From here on, we often identify a tensor quantity to its matrix of components to simplify the exposition. 
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and V(t) is the time-dependent velocity-convection matrix. For the stiffness-convection operator (4.21) 

G,,, - (W”, ti”) = cTSc(t)d(t) , SC = SC’ + sc2 E fJ$3nx3n ) 

Sca=[S~B]BIElR3nx3n, CY=1,2, 

S%:,(t) = - (2)’ LC, 1, (I- 5’)2~[N,,~ll~‘P~ NJ} &? E R3x3 , 

s;;(t) = + 22w*B E R3x3 ) 

(4.47) 

where the stiffness matrices SC’ and SC2 correspond to the symmetric part and the anti-symmetric part of 
the stiffness-convection operator, respectively. For the inertia force due to sliding motion (4.22), 

G l,F * Wh = cTFSlid(t) ) pyq = {Fy(t)} E [W3nx1 ( 

F;‘d(f) = ,pp I lO.l[ A,[N,l]*E, dtl E [w3’l, 

(4.48) 

where F ‘lid (t) is the time-dependent inertia force column matrix due to sliding motion. For the 
nonlinear stiffness operator (4.23) 

G,,, . (W”, fi:“) = cT$(d, t) , ,={,~}aR3nx1) 

P(d):= qiq= “(T N,d,) ) 

#(d) := P(fi”) “P(T N,d,) , 

/ %tW=~~o;l, {9h(d)-[NA1]}T~ph(d)d~1 ElR3”‘, 

(4.49) 

where S(d, t) is the column matrix of nonlinear internal force/moment. For the applied force/moment 
operator (4.17), 

G, - Wh = - cTFappl(f) , FaPPl = {F;PPl} E [W3nx1 , 

pr :=j. + &ire, , 

F;ppl(t) =c!Z’~o 1, [NA1]-prdll E[W~~‘, 

(4.50) 

;v;eftraz’$) is th e column matrix of applied force /moment. The above discrete approximation of the 
dyn in (4.14) leads to the following semi-discrete equation 

M(t)d + V(t)d + S’(t)d + ZF(d, t) = -Fslid(t) + Fapp’(t) , 

F(l) 

(4.51) 

a set of non-linear ODES, which together with appropriate initial conditions for d(0) and (i(0) govern 
the dynamic behavior of geometrically-exact sliding beams. 
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4.4. Time discretization: conceptual algorithm and algebraic equation 

Our emphasis here is not on any particular time discretization algorithm. The reader is referred to, 
e.g. Smolinski et al. [47] and the references therein for various time-stepping algorithms. Our goal is to 
present a conceptual procedure that would cover a large class of time-stepping algorithms for solving 
the structural dynamics equation (4.51). The approximations for the acceleration, velocity and 
displacement at time t, are denoted by 

ak = a(t,) : = ii , vpU(tk):=Ci(tk), d, =d(t/J . (4.52) 

Assume that the solutions {ai, u,, di 1 for i = 1, . . . , k}, had been known; we are looking for the solution 
at time tk+l. Equilibrium of the system at time tk+, dictates that {uk+,, uk+r, d,,,} must satisfy (4.51), 
i.e. 

Mk+luk+l +vk+lUk+l + Sck+ldk+l + sk+l(dk+,) =Fk+I ) (4.53) 

where it is clear that Mk+l :=M(tk+,), V,,, : = V(tk+ 1), etc. Thus, we consider here a conceptual 
time-stepping algorithm defined as follows 

(4.54) 

where %Y and % are functions of {a,, ui, di 1 for i = k + 1, k, k - 1, . . .}, i.e. the unknown solution at tk+, 
and the known solutions at previous time steps. 

REMARK 4.6. For example, for the Newmark algorithm, the conceptual algorithm (4.54) takes the 
form 

(4.55) 

‘k+l =~3(dk+,):=~k+h[(l-~)ak+~~(dk+,)l 7 (4.56) 

where h is the current time step size, p E [0, +I, and y E [0, 11. The Newmark algorithm involves only 
the unknown solution at tk+l and only the known solution at t,, i.e. a single-step algorithm. The 
algorithm proposed by Hoff and Pahl [48] is yet another algorithm belonging to the category described 
by the conceptual algorithm (4.54). 

More generally, equilibrium can be considered at a time r E ]tk, t,, 1 [, instead of at t,, 1 as in (4.53), 

M(T)+) + V(~)U(T) + S“(-r)d(T) + $(d(T), T) = F(T) . (4.57) 

Now, if M, V, S, and 9 do not depend explicitly on time t, then approximations for {u(r), U(T), d(7)) in 
terms of {a,, ui, di ) for i = k + 1, k, k - 1, . . .} are introduced conceptually as follows 

a(r) = ‘u(d,+,) > ‘6) = a3(Uk+l) ) 47) = B(dk+,). (4.58) 

Examples of this class of algorithms are the one proposed by Hilber et al. [49] and more recently the 
one by Hulbert and Chung [50]. The main goal of these last two algorithms and the Hoff and Pahl [48] 
algorithm mentioned above is to damp out the high-frequency oscillations in the numerical results. 

In the case of the Hulbert and Chung [50] algorithm, a(r) is a linear combination of uk+r and a,; 
similarly for u(r) and for d(r). Then the Newmark algorithm (4.55)-(4.56) is used to relate ak+l and 

uk+l to dk+l, i.e. to obtain explicit expressions for I?l and for !B in (4.58), and in (4.58),, respectively. 
The operator b in (4.58),, as just mentioned, is a linear combination of dkil and dk. 

Note however, that if M,V, S, and 9 depend explicitly on time t, then these algorithms are not 
convenient because one has to interpolate in time the mentioned matrices, in addition to the fact that 
the analyses of these algorithms were performed and tested only for the case of time-invariant 
coefficients. We will use the conceptual algorithm (4.54) for our numerical examples in Section 5, and 
thus will restrict our attention in what follows to the conceptual algorithm (4.54). 0 
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Using (4.54), the equilibrium equation (4.53) becomes a nonlinear matrix algebraic equation in terms 
of the primary unknown dk+, : 

Rk+,tdk+,):=Mk+l(ZI(dk+l) +vk+lwk+l)+S~+ldk+l+ ~k+lPk+l)-Fk+l =o- (4.59) 

Newton’s method for solving (4.59) then takes the form 

d(‘+‘) 
k+l = df;, + Ad;;;’ , 

R,+,(d;;,) + DR,+,(dt:,)- Ad;;;’ = 0, 
(4.60) 

where the derivative of the residue Rk+, at dab,---i.e. DRk+,(d~!I)E[W3”x3n in the last term of 
(4.60),-is the dynamic tangent stiffness matrix. We have 

DR k+, h’:I k+l k+l k+l k+l k+l + Dsk+ddi%)) (d’ )=M DI?I(d”’ )+V D%(d”’ )+S= 

D9-k+,(d(‘) ) = [Dg + Dm]ZF k+l k+l (d(‘) ) k+l 3 

(4.61) 

where D%k+l(dtiI) E [W3nx3n . 1s the tangent stiffness matrix at time t,, , , evaluated at the current iterate 
d”’ 

k+lr and contains the tangent geometric stiffness matrix Dg9k+l(df!,), and the tangent material 
stiffness matrix 0”‘s k+l (d”’ ) 

k+l 2 as per (4.34). 

REMARK 4.7. For the Newmark algorithm (4.55)-(4.56), we have 

D‘i’I(djl;,) =L 
h2P ’ 

D%(d&) =$j. 

The update of the acceleration and velocity is carried out as follows 

(i+l) (i) 1 
‘k+l = uk+l + 

_ A&+1) 

h2P 

k+l ) 

u(i+l) 
k+l =‘k+l 

ci) +$A&;;). 

Also, the initial guess at the beginning of each time step is chosen to be 

d(O) = d 
k+l k? 

.I - 
(0) - P 

ak+l - - 
uk 7 

hP +‘---’ 1 P k’ 

up;, = uk + h[(l - y)a, + ~a~:~] . 

The expression for the tangent geometric stiffness matrix is given by 

J,::. 

%,(k+&f::,) ==%+I lo 1[ ~~[N,~l~=~~(~:(:)l)~(NB~l} dtl E tr83x3 , 

according to (4.35), and where Zk +, : = .Z(tk + 1). The tangent stiffness matrix 

(4.62) 

(4.63) 

(4.64) 

(4.65) 

(4.66) 

(4.67) 

0 

(4.68) 

is given by 
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(4.69) 

according to (4.37). 
The reader is referred to Li [51] for a discussion on time discretization specifically based on the 

Newmark algorithm, which is used to produce the numerical results in Section 5. 

5. Numerical examples 

We present here results of numerical simulations of sliding beams undergoing large deformation and 
large overall motion. The examples are selected with emphasis placed on their important engineering 
applicability, and on their significance from the applied mechanics viewpoint. The numerical results are 
obtained using the space-time discretization procedure presented in Section 4. A sliding geometrically- 
exact beam element is implemented in the finite element analysis program (FEAP) developed by R.L. 
Taylor; a simplified version of FEAP is described in [52]. The program was run on a DEC 5000 
workstation under the Ultrix 4.2 operating system. Throughout this section, linear or quadratic finite 
element functions are used for the spatial discretization (4.40), and the Newmark method (4.55)- 
(4.56), with p = + and y = + for the time discretization. Uniformly reduced integration is used to 
evaluate the static residual force and the tangent stiffness matrix, while exact integration is used to 
evaluate all other matrices. 

5.1. The spaghetti problem 

As mentioned in Section 1, Carrier [81’s study of the spaghetti problem (the dynamics of a cord being 
drawn into an orifice) was based on the linear string theory to model the cord. He observed that near 
the end of the motion ‘the amplitude of the oscillation usually increases sufficiently so that the cord 
frequently ‘slaps’ the plate containing the orifice.’ Anyone who had played with a handyman’s 
retractable tape rule for measuring would have experienced the ‘slapping’ of the metallic tape on his 
hand when the tape is retracted quickly into its canister. Mansfield and Simmonds [33], motivated by 
the dynamics of papers in copy machines, provide a nice explanation to Carrier’s observation: ‘If the 
string has an initial transverse motion, the associated kinetic energy, in the linear theory employed by 
Carrier, does not change, so as the string moves into the hole, its kinetic energy is squeezed into an 
ever shrinking piece. On reaching the hole, the tail of the string must therefore have infinite transverse 
velocity. ’ 

The slapping of the tail of a string under retrieval cannot be described using linear theory. However, 
none of the previous studies using non-linear theories exhibit the slapping phenomenon. The present 
example will do just that, using the proposed sliding geometrically-exact beam formulation (see Figs. 6 
and 7).23 We are considering here a highly flexible beam, with shear deformation accounted for, having 
large deformation and being retrieved into a prismatic joint. The beam has an initial undeformed length 
L = 10, with mechanical properties set to 

A,=2, I, = 10 ) (5.1) 

EA=lOOOO, GA, = 10 000 , El = 500 . (5.2) 

The beam is uniformly discretized using 10 linear elements, i.e. IZ = 10 in (4.41). A uniformly reduced 
integration with one Gauss point is used for evaluating the static residual force sk+1 in (4.59) and the 

*‘The first author thanks his student, Kyle Thornton, for producing these figures. 



L. Vu-Quoc, S. Li I Comput. Methods Appl. Mech. Engrg. 120 (1995) 65-118 

4 

2 

0 

-2 

-4 

I I I I I 

0 2 4 6 8 

Fig. 6. Spaghetti problem. Sequence of snapshots of the beam deflected shapes at different time stations. Slapping phenomenon 
toward the end of the retrieval. 

tangent stiffness matrix L)Sk + 1 in (4.61),; all other matrices in (4.61), are evaluated with two Gauss 
points. A transverse load with increasing magnitude is applied statically at the tip of the beam until the 
transverse tip deflection is close to 5, i.e. about half the initial length. Fig. 6 shows this initial deflected 
shape (t = 0.1) in the same scale as for the undeformed beam, with no magnification. The tip load is 
then completely released to begin the dynamic retrieval process. We implemented a quadratic sliding 
motion of the form 

.9(t) = ; a,? + a,t + a3 . (5.3) 

The following parameters 

u,=o, a2 = -0.5, a3 = 10 ) (5.4) 

are used in the quadratic sliding motion (5.3) for the present example. Thus, according to (5.4), the 
beam is being retrieved at a constant rate of 0.5 unit of undeformed length per unit of time. We use a 
time step size of h = 0.005 for integrating the equations of motion over the time interval [0,20]. 

In addition to the initial deflected shape at t = 0.1, a sequence of snapshots of the deflected shapes of 
the beam at ten other time stations during the retrieval are shown in Fig. 6; the deflected shapes are 
plotted without artificial magnification of the displacement. In Fig. 6, one can clearly see the slapping 
phenomenon at the end of the retrieval. At this point, the beam tip begins to flip completely backward 
to face the orifice wall (or prismatic joint). The curvatures in the deformed shapes in Fig. 6 do not 
appear to change sign. However, a change in sign of the curvature of the deformed beam is clearly 
shownz4 in Fig. 7, which is a zoomed-in on a half-cycle of the slapping process toward the end of the 

24 Look at the deformed beam, e.g. at time t = 18.635 in Fig. 7. 
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Fig. 7. Spaghetti problem. A zoomed-in on a half-cycle of slapping phenomenon for t E [l&515, 18.7051. Sequence of snapshots 
of deformed shapes, exhibiting the change in sign of the curvature along the beam. 

retrieval, from t = 18.515 to t = 18.705. The slapping phenomenon increases in frequency as the beam 
length gets shorter, as can be seen from the time history of the transverse displacement of the beam tip 
in Fig. 8. Rather than snapshots of the deformed shapes at discrete time stations, a better feeling of the 
dynamic motion in the present spaghetti problem can be obtained by looking at the continuous trace of 
the beam tip throughout the retrieval operation, as recorded in Fig. 9. For a diner who is improperly 
ingesting spaghetti, the quickening of the slapping of the tail of the spaghetti as the length gets 
shorter-as can be visualized from Fig. 9-will scatter tomato sauce on his shirt. 

5.2. The reverse spaghetti problem 

The term ‘reverse spaghetti problem’ refers to the reverse of the retrieval process, i.e. the 
deployment of the sliding beam. The sliding beam considered in this example has the same mechanical 
properties as in (5.1)-(5.2). We will consider the case without tip loading and the case with tip loading. 

5.2.1. Without tip loading 
The numerical simulations are performed using two different sliding (deployment) motions as defined 

by two different sets of coefficients a,‘s for (5.3). Each deployment motion will be described shortly. 
The sliding beam will be subjected to an initial transverse velocity distribution as part of the initial 

conditions. A practical situation corresponding to such initial transverse velocity distribution can be 
found, for example, in the deployment of flexible appendages from a satellite. As pointed out by 
Creamer [19] and others, when a long flexible appendage is axially deployed from a satellite canister, 
the functioning of the internal motor will produce some initial perturbations on the appendage. Such 
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Fig. 8. Spaghetti problem. Time history of the transverse tip displacement. Increasing vibration frequency with the shortening of 
beam length. 

perturbations can be modeled in simulations as an initial transverse displacement or transverse velocity 
distribution on the beam, or as an initial angular velocity imparted at the clamped end of the beam. In 
the present example, we choose a perturbation in velocity. In practical calculations, the sliding beam 
has a small initial length (i.e. a3 is small). The initial transverse perturbation velocity is then distributed 
linearly on that small initial length of the beam. 

The beam considered here has an initial length of L = 10, which is uniformly discretized using 10 
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-6.0 

-1.0 0.1 1.2 2.3 3.4 4.5 5.6 6.7 7.8 8.9 10.0 

Fig. 9. Spaghetti problem. Motion of the beam tip throughout the retrieval. Slapping phenomenon with increasing frequency 
toward the end of the retrieval. 
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linear elements, i.e. IZ = 10 in (4.41). The numerical integration of the element matrices is as in Section 
5.1 for the spaghetti problem. The initial transverse velocity is distributed linearly over the beam in e1 
coordinate according to 

au”‘((‘, t) 
at I = 0 

=c1g+c2, VI$‘EIO,l], (5.5) 

with c, and c2 being the parameters to be specified as input data. Note that in (5.5) the left-hand side is 
the velocity with respect to the 5’ coordinate (i.e. the partial time derivative of u”*(tl, t) keeping 5’ 
fixed) and not the actual velocitv with respect to the material coordinate X’ (i.e. the material time 
derivative of u”‘( 5 ‘(X1, t), t), keeping 

u”‘(& 0) =o ) VI$‘E]O, l[ =$ 

it follows that 

X’ fixed). However, with the initial condition 

G2(& 0) 

&?’ 
‘0, vg’E]O,l[ (5.6) 

Du”“(&O) = arY2(&0) a+‘(O) ~. 
Dt 

au”‘(cO) = tG2(&O) 
%? at + at at ’ (5.7) 

In the computation, we set all components of the initial velocity u0 defined in (4.52), to zero, except for 
the components 

2 

Ull,A =&4+c*, forA=l,...,n, (5.8) 

where t,!, is the coordinate of node A defined in (4.41). 
The first deployment motion corresponds to the parameters 

a,=O, a2 = 0.5 , a3 = 0.1 (5.9) 

in the quadratic sliding-motion (5.3), i.e. the beam is being deployed with no acceleration, at a constant 
velocity of 0.5, and with an initial length of 0.1. The computation is performed over the time interval of 
[0,30]. Thus, the final (undeformed) length of the sliding beam is 15. Compared to this value, the initial 
length of 0.1 is small. The linear distribution of the initial transverse perturbation velocity is chosen to 
be 

au”‘(& t) 
at 

= 0.025l , V.$‘E[O,l]. 
,=o 

(5.10) 

We use a time step size of h = 0.01 for the computation. The time history of the transverse displacement 
of the beam tip is given in Fig. 10, and the rotation of the section at the beam tip in Fig. 11. It can be 
seen from these two figures that, as expected, the amplitude of vibration increases as the beam slides 
out of the channel. 

The second deployment motion corresponds to the parameters 

a, = 0.0 , a2 = 0.5, a3 = 0.01 (5.11) 

in the quadratic sliding-motion (5.3). A difference between the second deployment and the first 
deployment is the initial length of the beam, i.e. a3 = 0.01 in (5.11) versus a3 = 0.1 in (5.9). Another 
difference is in the initial transverse perturbation velocity coordinate 

aiqg, t) 
at 

= 0.25l , vglEIO,l]. 
r=o 

(5.12) 

However, the magnitude of the velocity perturbation as measured by the area of the velocity 
distribution curve (i.e. V,,, x a3 = 0.2 x 0.01) remains the same as in the first deployment (i.e. 
0.02 X 0.1). The computation is performed with a time step size of h = 0.002 over a time interval of 
[0, lo]. Fig. 12 shows the time history of the transverse displacement at the beam tip, with increasing 
vibration amplitude. Comparing Fig. 12 to its counterpart Fig. 10, one can see that the amplitude of 
vibration at t = 10 is larger in the second deployment. In Fig. 13, we superpose the transverse 
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Fig. 10. Reverse spaghetti problem without tip loading. First deployment. Time history of transverse tip deflection 

displacement of the beam tip during the time interval [0, l] and during the time interval [8,9] to display 
the increase in the vibration period with the increase in beam length. 

5.2.2. With transverse tip loading 
To simulate a load that the sliding beam may be required to carry at its tip, we now impose a vertical, 

constant, concentrated force at the beam tip, and this without an initial velocity perturbation. The beam 
tip is expected to vibrate about the static deflection position, as recorded in Fig. 14. Unlike the previous 

6.0 e-2 
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-6.0 e-2 I I I I 

0.0 10.0 20.0 30.0 

Fig. 11. Reverse spaghetti problem without tip loading. First deployment. Time history of rotation of tip cross section. 
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where knal and +final are the final length and the final angle of rotation of the joint.*’ Here, we 
prescribe the following motion parameters 

Lfinal = lo 7 a2 = 0.4, Linitml = 0.001 ) 

lJlfina, = 2.5~ ) b, = 0.4, 
(5.19) 

Fig. 15 depicts the time history of the angle Q(t) as expressed by (5.18), where it can be seen that the 
angle $(t) rises rapidly to an angle of about 360” (i.e. -6 rad), at about 4 computational time units, 
then slows down to reach the angle 450” asymptotically. The time history of the effective length Z(t) 
described by (5.17) is similar. 

The mechanical properties of the beam in the present example are the same as in (5.1)-(5.2), except 
for a stiffer bending stiffness EZ = 800. The computation is performed with a time step size of h = 0.01 
over the time interval [0,40]. A sequence of snapshots of the deformed shapes of the beam at different 
time stations is depicted in Fig. 16, where large deformation in the beam can be noticed with little 
difficulty even though there is no magnification of the deformation. In particular, it can be observed 
that the beam bends backward as the base rotates from JI = 0” through to about 360”; then the beam 
bends forward as the base rotation slows down from 360” to 450”; finally, vibration with large amplitude 
can be seen when the rotation comes virtually close to a halt at 450” = 2.51~. Fig. 17, depicting the trace 
(or orbit) of the beam tip, provides a better visualization of the simultaneous deployment and large 
angle maneuver in this example. 

With respect to the shadow beam (see Fig. 3) or the nominal position of the beam, the beam tip 
experiences a transverse motion with time as depicted in Fig. 18 for the time interval [0,40]: Indeed, as 
observed above, the beam bends backward (negative values) when the rotation angle 4(t) is between 0” 
and approximately 360”, or equivalently the time parameter t is between 0 and approximately 4 
computational time units (see Fig. 15). The amplitude of displacement during this time interval is small 
compared to that in subsequent vibration; this is because the effective length 2 of the beam in this time 
interval is smaller than the beam length one in subsequent time interval. At the stop angle 450” = 
2.5~ rad, the beam settles into a steady-state vibration regime with a rather large amplitude of about 2 
(recall that the fully extended length of the beam is 10). 

10.0 

8.0 

6.0 

Fig. 15. 

0.0 8.0 16.0 24.0 32.0 40.0 

Deployment under large angle maneuver. Time history of the rotation angle t/~(t). 
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Fig. 14. Reverse spaghetti problem with transverse tip loading. Transverse displacement of beam tip versus time. 

to produce Fig. 14.‘5 With the exponential sliding motion (5.13), the sliding beam starts from its initial 
length a3, and approaches asymptotically its final length a,. The computation is performed over the 
time interval [0,40] with a time step size of h = 0.005. The transverse load has its amplitude increased 
linearly over the interval [0, 0.11, and remained constant over the remainder of the time interval 
]0.1,40]: Thus, all components of the applied force Fapp’(t) in (4.51) are zero except for 

301 
F;@@(f) = { 1 

for 1 E [0, 0.11 , 

fortE]0.1,40], 
(5.15) 

where IZ = 10 is the node number at the beam tip. There is a sudden decrease in the load amplitude 
from 3 to 1 at c = 0.1. The maximum deflection as shown in Fig. 14 compares well with the static 
deflection of the tip for an Euler-Bernoulli cantilever beam under a unit tip load 

PL3 
3EIz0.67, (5.16) 

where P=l,L=lOand EI=500. 

5.3. Deployment under large angle maneuver 

The sliding beam is subjected to a simultaneous deployment motion and large overall rotation (large 
angle maneuver) of the prismatic joint about the joint orifice.” This problem of engineering significance 
is encountered in many robotic systems and spacecraft systems, as indicated in Section 1. Simo and 
Vu-Quoc [36] present results for the case of beams with fixed lengths. We consider here a combined 
deployment motion Z(t) and large overall rotation angle I@) (defined in (2.8) and in Fig. 4) of the 
exponential form as follows 

(5.17) 

(5.18) 

25 The first author thanks his students, Kyle Thornton and Hui Deng, for their help in regenerating the correct results presented 
here. 

“More general motions of the prismatic joint can be prescribed as noted in Remark 3.2. 
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where Lfinal and lClfinal are the final length and the final angle of rotation of the joint.27 Here, we 
prescribe the following motion parameters 

LFinal = lo 3 a* = 0.4) Linitia, = 0.001 ) 

!Pfina, = 2.51r , b, = 0.4. 
(5.19) 

Fig. 15 depicts the time history of the angle (cl(t) as expressed by (5.18), where it can be seen that the 
angle G(t) rises rapidly to an angle of about 360” (i.e. =6 rad), at about 4 computational time units, 
then slows down to reach the angle 450” asymptotically. The time history of the effective length T(t) 
described by (5.17) is similar. 

The mechanical properties of the beam in the present example are the same as in (5.1)-(5.2), except 
for a stiffer bending stiffness EZ = 800. The computation is performed with a time step size of h = 0.01 
over the time interval [0,40]. A sequence of snapshots of the deformed shapes of the beam at different 
time stations is depicted in Fig. 16, where large deformation in the beam can be noticed with little 
difficulty even though there is no magnification of the deformation. In particular, it can be observed 
that the beam bends backward as the base rotates from Cc, = 0” through to about 360”; then the beam 
bends forward as the base rotation slows down from 360” to 450”; finally, vibration with large amplitude 
can be seen when the rotation comes virtually close to a halt at 450” = 2.5~. Fig. 17, depicting the trace 
(or orbit) of the beam tip, provides a better visualization of the simultaneous deployment and large 
angle maneuver in this example. 

With respect to the shadow beam (see Fig. 3) or the nominal position of the beam, the beam tip 
experiences a transverse motion with time as depicted in Fig. 18 for the time interval [0,40]: Indeed, as 
observed above, the beam bends backward (negative values) when the rotation angle +(t) is between 0” 
and approximately 360”, or equivalently the time parameter t is between 0 and approximately 4 
computational time units (see Fig. 15). The amplitude of displacement during this time interval is small 
compared to that in subsequent vibration; this is because the effective length .L!? of the beam in this time 
interval is smaller than the beam length one in subsequent time interval. At the stop angle 450” = 
2.5~ rad, the beam settles into a steady-state vibration regime with a rather large amplitude of about 2 
(recall that the fully extended length of the beam is 10). 
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Deployment under large angle maneuver. Time history of the rotation angle 1+9(t). 

” By the definition of I/I(~) and of 4 as shown in Fig. 4, we do not have to account for the constant I,!J~~,,_,, which is in fact ;tO, in 

(5.18). The angle I?~ is, on the other hand, determined by the initial configuration of the beam. 
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Fig. 16. Deployment under large angle maneuver. Sequence of snapshots of deformed shapes at different time stations. El = 800. 
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Fig. 17. Deployment under large angle maneuver. Trace (or orbit) of the beam tip. 
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Fig. 18. Deployment under large angle maneuver. Time history of the transverse displacement of the beam tip with respect to the 

nominal position (shadow beam). 

Using the more flexible beam of previous examples (i.e. with EZ = 500), subjected to the same 
combined deployment and large angle maneuver, one can see clearly the large deformation in Fig. 19. 

5.4. Parametric resonance 

The beam is now subjected to a sinusoidal sliding motion of the form 

2(t) = _YZo + 2, sin wt. 

12.0 

7.6 

3.2 

-1.2 

-5.6 

-10.0 i 

-10.0 -5.6 -1.2 3.2 7.6 12.0 

Fig. 19. Deployment under large angle maneuver. Sequence of snapshots of deformed shapes at different time stations. EI = 500. 

(5.20) 
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Depending on the parameters .$,, Y,, w, the dynamic behavior of the beam can change drastically. 
Resonance occurs for a given set of beam properties and appropriate parameters in (5.20). As 
mentioned in Section 1, stability analysis of periodically sliding Euler-Bernoulli beams were performed 
in [22-241; numerical simulations of a more complex Euler-Bernoulli model were given in [26]. We 
provide here some results on parametric resonance obtained with the present geometrically-exact 
sliding beam. A general feature in the results obtained with geometrically-exact theory is that, unlike 
results from stability analyses using linearized theories where the displacement of the beam tip at 
resonance blows up to infinity, we have here contained resonance, i.e. even though there are strong 
vibrations with large amplitude at resonance, the magnitude of the displacement remains finite. 
Contained resonance is a consequence of fully-non-linear theory. It follows that the system would not 
have clear-cut stability regions and boundaries-within which the displacement is finite, and beyond 
which the displacement blows up to infinity-as obtained with linearized theories (see e.g. [23,24]). On 
the other hand, considerable difficulties are encountered in the numerical integration (convergence 
failure in Newton iterative process) when the dynamic behavior of the sliding beam changes drastically. 
Two sets of numerical simulations are performed. 

5.4.1. First set of simulations 
The beam mechanical properties are chosen to be 

A, = 12.23, I, = 0.001631 , (5.21) 

EA = 2 049 840 000 , GA, = 694 861017, El = 273 312. (5.22) 

The beam is discretized uniformly using 5 quadratic elements, instead of 10 linear elements as in 
previous examples. The number of nodes (11) remains, however, the same as in previous examples. A 
uniformly reduced integration with 2 Gauss points were used for the tangent stiffness matrix in (4.61),; 
an integration with 3 Gauss points is used for all other matrices in (4.61), . The sliding-motion 
parameters in (5.20) are taken to be 

,ze,, = 16 , 
IT 9n 

&=6, wE X,10 . [ 1 (5.23) 

An initial perturbation in displacement and velocity is introduced to induce subsequent vibrations as 
follows. At t = 0, we have Z(O) = 16; the mass matrix at t = 0 in (4.61) is M,,, and tangent material 
stiffness matrix is S,” according to (4.69). Let !P, be the eigenvector corresponding to the lowest 
eigenvalue pul of the eigenvalue problem 

M, - /.&IV = 0 3 (5.24) 

with !P, being normalized so that it has a unit transverse displacement at the tip. The initial 
(perturbation) displacement d, and velocity u0 for the equation of motion (4.53) are as follows 

d,, = -O.Ol!P, ) U” = 0.0005ur, (5.25) 

Specifically, for complete documentation, we use the following numerical values for the initial 
perturbation in displacement (Table 1) and in velocity (Table 2).28 

The computation is carried out over the time interval [0,30], with time step sizes varying from 0.01 to 
0.004. Fig. 20(a, b) is obtained with h = 0.01 over the whole time interval [0,30]; Fig. 20(c,d) and Fig. 
21(a,b) with h = 0.01 over [0,20], then with h = 0.004 over [20,30]. For w = 0.9On, the last time- 
stepping strategy leads to a numerical instability (i.e. an increase of the amplitude without bounds) at 
about time t = 22 as shown in Fig. 21(c). A further refined time-stepping strategy29 of h = 0.01 over 
[0, lo], then h = 0.005 over [lo, 201, then h = 0.0025 over [20,30] still leads to a numerical instability at 
about time t = 24 (Fig. 21 (c)). Finally, a converged solution over the interval [0,30] for o = 0.9 IT shown 

‘* From Table 1, it can be seen that the transverse tip displacement in WI is not exactly one (0.99935) due to round-off error. 

*‘For the present set of simulations, from here on, the results were generated by two students of the first author, Kyle 
Thornton and Hui Deng. Their help is appreciated. 
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Table 1 
Parametric resonance. Initial perturbation in displacement 

Node I 
UO 

2 
UO 0 

1 0.0 0.0000000 0.0000000 

2 0.0 -0.0001681 -0.0002051 
3 0.0 -0.0006401 -0.0003798 
4 0.0 -0.0013673 -0.0005243 
5 0.0 -0.0023022 -0.0006396 

6 0.0 -0.0033991 -0.0007270 
7 0.0 -0.0046148 -0.0007887 
8 0.0 -0.0059110 -0.0008280 

9 0.0 -0.0072548 -0.0008491 
10 0.0 -0.0086210 -0.0008570 
11 0.0 -0.0099935 -0.0008580 

in dotted line in Fig. 21(c) is obtained with a refined time-stepping strategy of h = 0.005 over [0, lo], 
then h = 0.0025 over [lo, 201, and then h = 0.00125 over [20,30]. One can see that even though the 
previous two time-stepping strategies lead to numerical instability beyond a certain time, the responses 
are similar to the converged solution obtained from the last time-stepping strategy. The same can also 
be seen from Fig. 22 describing the projection of the position of the beam tip along the axial direction 
as a function in time. Fig. 22 gives an idea on the sliding motion defined in (.5.20), particularly at the 
beginning of the motion, i.e. prior to t = 21, where the large transverse displacement toward the end 
does not have yet a significant effect, at this scale, on the axial position of the beam tip. 

Thus, it can be seen from the results that as the sliding frequency w in (5.23) varies, the dynamic 
behavior of the beam changes back and forth through various moods from quiescent to agitated, as 
testified by Figs. 20 and 21. At w = 0.5~ rad/s, Fig. 21(c), the vibration amplitude of the beam tip 
increase with time to a relatively large value. At w = 0.97r rad/s, Fig. 21(c), large amplitude vibration is 
observed within a short time. The complex pattern of combined large transverse deflection and sliding 
motion, together with the trace of the beam tip, are delineated in Fig. 23 (without magnification of the 
transverse deflection as compared to beam geometry), for the time interval [19.6,24.6]. Subharmonic 
resonance can be seen by comparing Fig. 21(c) and Fig. 22: Toward the end of the time interval [0,30], 
the fundamental frequency of transverse vibration is about half of the sliding excitation frequency 
w = 0.9~ rad/s. At this sliding excitation frequency, the amplitude of transverse vibration becomes very 
large (greater than 10) as compared to the length of the beam. However, due to the full non-linearity of 
the model, the transverse vibration remains bounded (contained resonance), as shown in Fig. 24 
(without magnification), instead of increasing without bounds as would be predicted from a linearized 
formulation. At the beginning, since the transverse vibration is small, the motion of the beam remains 
close to the horizontal axis, and the beam (underformed) length varies between 10 and 22. The beam 

Table 2 
Parametric resonance. Initial perturbation in velocity 

Node .1 .2 
U0 UO e 

1 0.0 0.0000000 0.0000000 

2 0.0 0.0000084 0.0000103 
3 0.0 0.0000320 0.0000190 
4 0.0 0.0000684 0.0000262 

5 0.0 0.0001151 0.0000320 

6 0.0 0.0001700 0.0000363 
7 0.0 0.0002307 0.0000394 
8 0.0 0.0002956 0.0000414 
9 0.0 0.0003627 0.0000425 

10 0.0 0.0004310 0.0000428 
11 0.0 0.0004997 0.0000429 
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Fig. 20. Parametric resonance. First set of simulations. (a) or) = rr/6, (b) w = ~13, (c) o =0.5-n and (4 w = 0.67~. 

tip can be seen to detach completely from the horizontal axis toward the end; the amplitude of 
transverse vibration amplitude exceeds 10. The origin of the coordinate system in Figs. 23 and 24 is the 
location of the orifice of the beam channel. 

5.4.2. Second set of simulations 
We now decrease the mass per unit underformed length A, and the mass moment of inertia Z, of the 

cross section by ten times to 

A, = 1.223 , Z, = 0.0001631 . (5.26) 

The frequency of sliding motion o is varied between 27~ rad/s and 37~ rad/s. The same spatial 
discretization and numerical integration are used as in the first set of simulations. The computation is 
carried over a time interval of [0,20] with the time step size h = 0.005 to produce Figs. 25 and 26. 
Similar to the first set of simulations, although with a different characteristic, the dynamic behavior of 
the sliding beam goes through various moods from quiescent to agitated, depending on the value of o. 
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1 

Fig. 21. Parametric resonance. First set of simulations (Contd.). (a) w = 0.7~, (b) w = O.&r, and (c) w = 0.9a (Dotted line: 
Converged solution with the third time-stepping strategies; the beginning of numerical instability is indicated for the first two 
time-stepping strategies). 

In particular, numerical difficulties are encountered for the values of w at 2.6~ rad/s and at 2.7~ rad/s 
as shown in Fig. 26(b, c): The dynamic response is apparently very quiescent for a long period of time; 
then at a finite time, a failure in the numerical convergence occurs for the chosen time step size. In Fig. 
26(d), resonance can be observed for w = 2.8~ rad/s, with an apparent blow-up in the numerical results 
at about t = 8. 

To investigate the behavior of the system for the last three values of w, we decrease the time step size 
using a number of different time-stepping strategies.30 For the two cases with o = 2.61~ radls and 

20 

15 

10 

5 

0 5 10 15 20 25 30 
Time 

Fig. 22. Parametric resonance. First set of simulation (Contd.). Position of beam tip along the axial direction versus time. Dotted 
line: Converged solution with the third time-stepping strategies. The beginning of numerical instability is indicated for the first 
two time-stepping strategies. 

3” From here on, the two students of the first author, Kyle Thornton and Hui Deng, helped in generating the results presented. 
Their help is very much appreciated. 
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Fig. 23. Parameteric resonance. First set of simulation (Contd.). Deformed shapes and trace of beam tip in the time interval 
[19.6,24.6] for o = 0.9~ radls. 

o = 2.71~ rad/s, it is sufficient to halve the time step size (i.e. h = 0.0025) to have numerical 
convergence over the whole interval [0,20]. The results, presented in Fig. 27, can be seen to be similar 
to that in Fig. 26(a). 

The resonance case with w = 2%~ rad/s is more difficult, and does take some trial and error to arrive 
at an acceptable strategy within the time interval of interest, i.e. [0,20]. We made maximum use of the 
restart capability of FEAP to store partial results corresponding to subintervals of [0,20]. We begin with 
a time step size of h = 0.0003125, and decrease it to h = 0.0000390625 at the end. The acceptable 
time-stepping strategy is as follows: (i) h = 0.0003125 in the time interval [0, lo] (or 32 000 steps), (ii) 
h = 0.000078125 ( i.e. divided by four) in the time interval 110, 151 (or 64 000 steps), (iii) h = 
0.0000390625 (i.e. divided by two) in the time interval 115,201 (or 128 000 steps). 

The results are presented in Figs. 28 to 31. The time histories of the axial displacement and the 
transverse displacement of the beam tip are given in Fig. 28(a, b), respectively. In Fig. 28(a), one can 
see that the beam tip follow the prescribed sliding motion (5.20) and (5.23) up to about time t = 11. 
Meanwhile, the amplitude of the transverse displacement increase gradually as shown in Fig. 28(b). 
Between t = 11 and t = 16, considerable non-linear effects can be observed in both axial displacement 
and transverse displacement of the beam tip. The trace of the beam tip within the time interval 
[0,16.29] is plotted in Fig. 29:i where it can be seen that the beam tip follows the prescribed axial 
sliding motion at the beginning, with a gradual increase in the amplitude of the transverse displacement 
to the same order of the beam length. While Fig. 29 has a similar feature as Fig. 24, the trace of the 
beam tip becomes wild beyond the time t = 16 as shown in Fig. 30. A sequence of snapshots of the 

” The same scale is used for both axial and transverse directions. The orifice of the channel is at the origin of the coordinate 
system. 
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Fig. 24. Parametric resonance. First set of simulation (Contd.). Trace of beam tip in time interval [0,30] for w = 0.97~ rad/s. 
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Fig. 28. Parametric resonance. Second set of simulations (Contd.). w = 2.8~. Time histories of beam tip displacement: (a) axial, 
(b) transverse. 
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Fig. 30. Parametric resonance. Second set of simulations (Contd.). w = 2.85~. Trace of beam tip within time interval [16.29,20]. 

deformed shapes about the time t = 18 presented in Fig. 31 shows some of the very peculiar deformed 
shapes during this wild motion.32 

In summary, from Figs. 20 to 31, a qualitative observation consistent with results from linearized 
theories (e.g. [23,24]) is that increasingly agitated behavior in the beam vibration is encountered at 
higher sliding frequencies w. 

6. Closure 

We have presented two formulations for sliding geometrically-exact beams. In addition to the sliding 
motion, the beam can undergo large deformation, large overall motion, with shear deformation 
accounted for. Both the sliding motion of the beam and the rigid body motion of the prismatic joint can 
be prescribed. The first formulation is based on a full Lagrangian description of the motion, leading to a 
set of PDEs defined on a time-varying domain. A stretched coordinate is introduced to map the 
resulting equations of motion to a constant domain. The second formulation is based on the Eulerian- 
Lagrangian description with the introduction of an intermediate configuration, and is shown to be 
theoretically equivalent to the full Lagrangian formulation. The Eulerian-Lagrangian equations, 
defined on a time-varying domain, do not offer much more of an advantage over the original full 
Lagrangian equations (in material coordinates), also defined on time-varying domain. Here, we adopt 
the full Lagrangian equations in stretched coordinate, defined on constant domain, for the computation- 
al works. The inertia operator of these equations has a structure similar to that found in the equations 

” Further investigations need to be carried out to determine whether the wild motion of the beam in the interval [16.29,20] is 

due to numerical instability. 
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Fig. 31. Parametric resonance. Second set of simulations (Contd.). w = 2&r. Sequence of snapshots of deformed shapes about 
time r = 18. 
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of motion for the class of problems dual to the sliding beam problem, e.g. the dynamic interaction of 
high-speed vehicles on flexible guideways. That the inertia operator is, however, decomposable into a 
symmetric part and an anti-symmetric part, despite the absence of any rotating motion found in 
gyroscopic systems, is a distinct feature of the present formulation. A Galerkin projection of the full 
Lagrangian equations in stretched coordinate leads to a set of semi-discrete equations having time- 
varying coefficients, and with clear identification of various terms: Mass, velocity-convection, stiffness 
convection, non-linear internal force, inertia force due to sliding motion and applied force. A 
conceptual time discretization algorithm that covers a large class of structural dynamics algorithms is 
presented to provide a general framework; the resulting non-linear algebraic equations together with 
their linearization are discussed in detail. Several numerical examples emphasizing the salient features 
of the proposed formulation are given, ranging from the spaghetti problem, reverse spaghetti problem, 
combined deployment and large angle maneuver, non-linear parametric resonance due to periodically 
sliding motion. These numerical examples not only demonstrate the versatility of the proposed 
formulation, but also reveal the complex character of the non-linear dynamic behavior of sliding 
geometrically-exact beams, not obtainable with linearized theories. 
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