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Multi-scale methods
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SUMMARY

In this paper four multiple scale methods are proposed. The meshless hierarchical partition of unity is used
as a multiple scale basis. The multiple scale analysis with the introduction of a dilation parameter to perform
multiresolution analysis is discussed. The multiple �eld based on a 1-D gradient plasticity theory with material
length scale is also proposed to remove the mesh dependency di�culty in softening=localization problems.
A non-local (smoothing) particle integration procedure with its multiple scale analysis are then developed.
These techniques are described in the context of the reproducing kernel particle method. Results are presented
for elastic-plastic one-dimensional problems and 2-D large deformation strain localization problems to illustrate
the e�ectiveness of these methods. Copyright ? 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Meshfree methods, such as smooth particle hydrodynamics (SPH) method and its variations, [1–3],
element-free Galerkin method (EFG) [4–6], Reproducing kernel particle method (RKPM), [7–16],
multiple scale �nite element methods [17], di�use element method [18], particle in cell methods
(PIC) [19], partition of unity [20], marker-and-cell (MAC) method [21], hp-cloud method [22–24],
�nite Point method [25; 26] have been proposed as an alternative to �nite element methods. To
improve the attributes of this class of meshfree methods, we are incorporating the concepts of
reproducing kernel and multiple scale analysis (also referred to as multiresolution analysis in
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wavelet theories) into this class of meshfree analysis. Due to their construction, arti�cial boundaries
are generally needed in wavelet and SPH analysis. Both wavelet and SPH methods can be shown
to belong to a class of kernel methods where the image=approximation uRa(x) is given by

uRa(x)=
∫ +∞

−∞
u(y)�a(x − y) dy (1)

In Equation (1), u(y) is the given image data to be reconstructed and �(x) can be viewed as
a customized low pass �lter. In [15; 27–30], Liu and coworkers showed that with the construc-
tion of a correction function to SPH (it also applies to scaling functions and wavelets) not only
can boundary e�ect be eliminated, but also the accuracy of discrete solutions can be enhanced
throughout the entire domain. To incorporate a correction function, Equation (1) is rewritten as

uR(x)=
∫


u(y) ��a(x − y) dy (2)

where ��a is modi�ed window function given by

��a=C(x; x − y)�a(x − y) (3)

where C(x; x − y) is the correction function and 
 is the computational domain. The correction
function is of the form

C(x; x − y)= b0(x) + b1(x)(x − y) + b2(x)(x − y)2 + · · · (4)

where bi(x) are obtained from reproducing conditions. It compensates for the boundary e�ect. With
the corrected scaling functions and wavelets and by varying a dilation parameter ‘a’, we are able
to perform multiresolution analysis on an arbitrary domain using only a set of nodes (or particles).
The incorporation of this dilation parameter into the reproducing kernel Equation (2) gives

uRa(x)=
∫


u(y) ��a(x − y) dy=

∫


u(y)Ca(x; x − y)�a(x − y) dy (5)

One can view ��a(x) as a window function, so that the integral window transform of ��a(x) and u(x)
is a ‘reproduction’ of the original u(x) with resolution of ��a(x). It is equivalent to the convolution,
��a ∗ u(x). In other words, with the proper design of ��a(x); uRa(x) will conserve the resolution and
properties of the original solution u(x) up to scale ‘a’. For this reason, we prefer to call ��a(x)
and ‘a’ the scaling function and the scaling (or re�nement) parameter, respectively. A smaller ‘a’
implies a �ner scale solution of u(x).
The proposed multiple scale particle method in computational mechanics will consist of the

following �ve tasks.

(i) Convolution: The interpolation of the trial function u(x) is considered as the convolution
of u(x) with a window function �a(x):

uR(x)=
∫

y

�a(x − y)u(y) dy ⇔ ûR(!)= �̂a(!)û(!) (6)

(ii) As indicated above, the kernel approximation where �̂a and û are Fourier transform of �a

and u and ! is the frequency. In Equation (6), u(y) is a given function to be reconstructed
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MULTI-SCALE METHODS 1345

and uR(x) is the reconstructed image with the customized �lter, �a(x − y). Even though
the computations are done in the spatial domain, the interpretation of the solution can
be understood in the frequency domain. In this interpretation, the scale is the frequency
content of the reconstructed solution.

(ii) Decomposition of the �lters (i.e. multiple scale solution): Due to the fact that a multi-
physics problem might contain several scales, it is reasonable to decompose the solution
accordingly. By this procedure, each scale can be studied separately:

uRa(x) =
∫

y

�a0(x − y)u(y) dy +
∫

y

�a1(x − y)u(y) dy +
∫

y

�a2(x − y)u(y) dy + · · ·

= uR
0 (x) + uR

1 (x) + uR
2 (x) + · · ·

= Scale0 + Scale1 + Scale2 + · · · (7)

The construction of these multiple scale �lters and selection of scales is described in later
sections.

(iii) Discretize approximation: For computational purposes, a discretization of the governing
equations must be constructed. To interpret Equation (6) discretely, we use (6) gives

uRa(x)=
NP∑
I=1

�a(x − xI )�VIuI (8)

where �VI is the nodal volume distributed to each particle and uI is the unknown. The
number of particles in the discrete system is denoted by NP. Hence uRa(x) is discretized
to give

uRa(x) = uRa
0 (x) + uRa

1 (x) + uRa
2 (x) + · · ·

=
NP∑
I=1

�a0(x − xI )�VIuI +
NP∑
I=1

�a1(x − xI )�VIuI + · · · (9)

(iv) Discrete equations: For a given problem, for each scale a the uI unknown can be obtained
by substituting Equation (8) into the weak form of the equilibrium equations and the
additional equations provided by the multi-physics model.

(v) These procedures are described in the subsequent sections.

2. WAVELET APPROACH

The simulation of shear-band formation in an elasto-viscoplastic material by meshless hierarchical
basis is shown as an example. To demonstrate the multiresolution properties of meshless methods,
a wavelet decomposition is performed in the numerical simulation of shear-band formation. A
displacement based meshfree Galerkin formulation is used in the computation. The hierarchical
reproducing kernel interpolant for the displacement in terms of the Lagrangian coordinate X is
[31; 32]:

ui(X; t)=
NP∑
I=1

��[�]aI (X )uiI (t) (10)
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where NP is the total number of particles and � is a multiple index. The reproducing kernel
hierarchical interpolant is a partition of unity. It can also be constructed as follows:

��[�]a‘ (X ) :=P
(
X‘ − X

a

)
b(�)(X )�a(X‘ − X )�V‘ (11)

In this case, the dimension of the space is n=2; �=(0; 0); (1; 0); (0; 1); (1; 1); and X‘=(X1‘; X2‘);
X =(X1; X2) are referential coordinates. The vector b(�)(X ) in (11) is determined by the moment
equation




mh
00 mh

10 mh
01 mh

11

mh
10 mh

20 mh
11 mh

21

mh
01 mh

11 mh
02 mh

12

mh
11 mh

21 mh
12 mh

22







b(�)1
b(�)2
b(�)3
b(�)4


 =




��(0;0)

��(1;0)

��(0;1)

��(1;1)


 (12)

The wavelet multiple scale of this hierarchical partition of unity is given by

utotali (X; t)=
NP∑
I=1

��[0;0]aI (X )uiI (t)

uhighi (X; t)=
NP∑
I=1

��[1;1]aI (X )uiI (t)
(13)

where utotali and uhighi are the total scale and high-scale solution, respectively. The low-scale com-
ponent ulowi is then obtained by subtracting the high-scale component from the total scale. Thus,

ulowi (X; t)= utotali (X; t)− uhighi (X; t) (14)

The total and high-scale components of the e�ective plastic strain, �� total and �� high, are de�ned
as [35]

�� total =
∫ t

0
�̇� total dt

�� high =
∫ t

0
�̇� high dt

(15)

The e�ective plastic strain rate, �̇�∗, is de�ned as

�̇�∗=
√
2=3dp∗ij d

p∗
ij (16)

where the superscript ‘∗’ in Equation (16) represents either total scale or high scale. The plastic
rate of deformation dp∗ij is given by

dp∗ij =d∗
ij − de∗ij (17)
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The total scale and high-scale components of the rate of deformation, dtotalij and dhighij , are evaluated,
respectively, by

dtotalij =
1
2

(
@vtotali

@xj
+

@vtotalj

@xi

)
=
1
2

(
NP∑
I=1

��[0;0]I; j (X; a)viI +
NP∑
I=1

��[0;0]I; i (X; a)vjI

)

dhighij =
1
2

(
@vhighi

@xj
+

@vhighj

@xi

)
=
1
2

(
NP∑
I=1

��[1;1]I; j (X; a)viI +
NP∑
I=1

��[1;1]I; i (X; a)vjI

) (18)

where @=@xi is the spatial derivative in current con�guration, and viI is the nodal velocity coe�cient
which is the time derivative of the displacement uiI . The elastic part of the rate of deformation
de∗ij is

de∗ij = Selasijkl
5
�kl (19)

where Selasijkl is the elastic compliance tensor and
5
�kl is the Jaumann rate of Cauchy stress which

is computed by

Ob = ḃ − wb + bwT (20)

The total scale and high-scale components of the spin tensor, wtotalij and whighij , are evaluated,
respectively, by

wtotalij =
1
2

(
@vtotali

@xj
− @vtotalj

@xi

)
=
1
2

(
NP∑
I=1

��[0;0]I; j (X; a)viI −
NP∑
I=1

��[0;0]I; i (X; a)vjI

)

whighij =
1
2

(
@vhighi

@xj
− @vhighj

@xi

)
=
1
2

(
NP∑
I=1

��[1;1]I; j (X; a)viI −
NP∑
I=1

��[1;1]I; i (X; a)vjI

) (21)

By subtracting the high-scale component from the total scale component, the low-scale component
of the e�ective plastic strain �� low can be obtained

�� low = �� total − �� high (22)

2.1. High-resolution shear-band computation

In this example, a plane strain tension test is simulated for an elasto-viscoplastic material. A
velocity of 10 m=s is prescribed at both ends of the tensile bar as shown in Figure 1.
In the numerical simulation, 3321 particles are used. The total solution is shown in Figure 2.

By a wavelet transform, it can be decomposed into a low-scale solution and a high-scale solution.
Based on this procedure, each scale can be studied separately.

3. MULTIPLE SCALE DECOMPOSITION

From the analysis of Fourier transformation, it is noted that the RKPM kernel function is
regarded as a low-pass �lter in the reconstruction procedure [28; 29]. The multiple scale RKPM
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1348 W. K. LIU ET AL.

Figure 1. Description of model problem.

Figure 2. Wavelet’s approach for shear-band computation: (a) total scale solution; (b) low-scale solution; and
(c) high-scale solution.

is de�ned by a family of kernel functions. A two-scale decomposition of any response can be
written as

uRa(x) = u0(x) �nest scale
= u1(x) + w1(x) two-level decomposition

(23)

Copyright ? 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 2000; 47:1343–1361
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where

u1(x) =
∫


C(2a; x; y)�(2a; x − y)u(y) d


w1(x) =
∫


 (x − y)u(y) d


(24)

with

 (x − y)=C(a; x; y)�(a; x − y)− C(2a; x; y)�(2a; x − y) (25)

where C is the correction function and a is dilation parameter. The discrete counterparts of equation
(24) are obtained as

u1(x) =
NP∑
J=1

��J (x; xJ ; 2a)uJ (26)

w1(x) =
NP∑
J=1
[ ��J (x; xJ ; a)− ��J (x; xJ ; 2a)]uJ (27)

in which ��J (x) is the shape function of RKPM. The two-level decomposition of a function uRa(x)
in discrete form is given as

uRa(x) =
NP∑
J=1

��J (x; a)uj

=
NP∑
J=1

��J (x; 2a)uj +
NP∑
J=1
[ ��J (x; a)− ��J (x; 2a)]uj

=
NP∑
J=1

��
low
J (x; a)uj +

NP∑
J=1

��
high
J (x; a)uj (28)

The shape function ��J (x) is now decomposed into a low-scale (scaling function) component,
��
low
J (x), and a high-scale (wavelet) component, ��

high
J (x). In [8; 14; 33; 34], the application of mul-

tiple scale analysis is straightforward. However, for non-linear problems, in particular the prob-
lems involved with plastic deformation, the stress and strain cannot be separated as in Equations
(26)–(28). Hence, in this paper we rede�ned the de�nition of high- and low-scale solutions. The
total scale and low-scale components of the e�ective plastic strain, �� total and �� low, are de�ned
as [35]:

�� total =
∫ t

0
�̇�
total
dt

�� low =
∫ t

0
�̇�
low
dt

(29)

The de�nition of the e�ective plastic strain rate, �̇�∗, is the same as in Equation (16), �̇�∗=√
2=3dp∗ij d

p∗
ij , with the superscript ‘∗’ represents either total scale or low-scale in this section.
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Similar to the description in Section 2, the total scale and high-scale components of the rate of
deformation, dtotalij and dhighij and the spin tensor, wtotalij and whighij , are evaluated accordingly

dtotalij =
1
2

(
NP∑
I=1

��I; j(x; a)viI +
NP∑
I=1

��I; i(x; a)vjI

)

dlowij =
1
2

(
NP∑
I=1

��I; j(x; 2a)viI +
NP∑
I=1

��I; i(x; 2a)vjI

) (30)

and

wtotalij =
1
2

(
NP∑
I=1

��I; j(x; a)viI −
NP∑
I=1

��I; i(x; a)vjI

)

wlowij =
1
2

(
NP∑
I=1

��I; j(x; 2a)viI −
NP∑
I=1

��I; i(x; 2a)vjI

) (31)

Thus, the high-scale component of the e�ective plastic strain �� high is obtained by subtracting the
low-scale component from the total scale, as in Equation (22).

3.1. Large deformation fracture and Lueder’s bands in a notch-bend specimen

In this section, the deformation process and shear bands in a notch-bend specimen are studied [35].
The setup of a plane-strain notch-bend specimen is shown in Figure 3. According to the classical
plastic theory, the slip-line �eld of the specimen has been constructed and presented in Figure 3.
At the upper boundary (Local A), the rigid loading die punches into the specimen and works like
a penetration process in metal forming where an idealy lubricated contact surface is assumed. At
the crack tip (Local B), a Prandtl’s crack tip �eld is present. These two local �elds are connected
by the arc-like shear bands. The global slip-line �eld has the feature of the Green–Henchy solution
for a notched bar under pure bending. Thus, the analysed structure represents the basic features
of localization phenomenon in the materials.
The geometrical parameters are a :W : L=1 : 2 : 8 with a=0:0762 (m). The deformation pro-

cesses are considered to be quasi-static. The constitutive law introduced previously has been applied
but assuming the visco-plastic e�ect for the yield stress of the matrix material. That is

�y
g(�eq)

=
(
�̇eq
�̇0

)m
(32)

where

g(�eq)=


�0

(
�eq
�0

)N
�eq¿�0

�0 �eq¡�0
(33)

In the analysis, the material constants are as follows: Young’s modulus E=210 GPa, �0 = 470
MPa, Poisson’s ratio �=0:3, the strain hardening exponent N =0:001, and the reference strain rate
�̇0 = 0:00218 with the strain rate exponent m=0:001. The initial void volume fraction f0 = 0 and
the volume fraction of second material phase for void nucleation is 0:001.
In the numerical simulation, the specimen is modeled by 5504 RKPM particles. The deformation

sequence at di�erent time steps is shown in Figure 4. Large deformation can be observed with the
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Figure 3. Large deformation fracture and Luders bands in a notch-bend specimen.

loading process. Note that in the computation, only the contact condition between the specimen
and the die at the original con�guration has been taken into account. To demonstrate the localized
deformation around the crack tip and ligament clearly, a close-up of the deformed RKPM particles
at the crack tip-ligament area of the specimen is shown in Figure 4. The comparison between
particle (meshfree) and mesh-based methods is also presented. As shown in Figure 4, the mesh-
based analysis will fail at the �nal deformation since it leads to a severe mesh distortion. On the
contrary, the RKPM computation ran continuously until the right and the left parts of the specimen
overlap with each other.
A �ne discretization of 22016 particles is also used in the numerical simulation. The comparison

between �ne and coarse discretizations of the deformation sequence at di�erent time steps is
shown in Figure 5. The RKPM multiresolution analysis is performed and compared between �ne
discretization and coarse discretization. As shown in Figure 6, both the total solution and the
high-scale solution capture the location of the Luders band. The �ne discretization, however,
represents more detailed features of the shear bands which can only be observed in the experimental
investigation.

4. MULTIPLE FIELD RKPM

Multiple �eld RKPM can be viewed as a generalization of the multiple scale method [36]. Thus,
�elds representing di�erent scales in the problem are incorporated into the formulation, and any
overlap between �elds is automatically eliminated. Consequently, the consistency of solutions is
achieved.

Copyright ? 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 2000; 47:1343–1361
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Figure 4. Large deformation fracture of a notch-bend specimen at di�erent time steps.

Figure 5. Large deformation fracture of a notch-bend specimen for �ne and coarse discretizations.

The basic concept of multiple �eld RKPM is explained for a two-scale decomposition of u(x):

v(x)= v1(x) + v2(x) (34)

where v1(x) and v2(x) are the solutions to di�erent scales or di�erent �elds. It will be assumed
that v1(x) and v2(x) represent the primary and secondary scale=�elds of the total solution, v(x).

Copyright ? 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 2000; 47:1343–1361
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Figure 6. Multiresolution analysis for large deformation fracture of a notch-bend specimen: (a) coarse dis-
cretization; and (b) �ne discretization.

A sampling projection operator can be de�ned such that the primary scale=�eld is reproduced
exactly, i.e.

v1(x)=Pv1(x) (35)

Applying the same projection operator, P, to Equation (34) to obtain

Pv(x)=Pv1(x) + Pv2(x) (36)

which is simpli�ed by using Equation (35) to

Pv(x)= v1(x) + Pv2(x) (37)

The primary �eld, v1(x), can be solve for from Equation (37), and substituted into Equation (34)
to obtain

v(x)=Pv(x)− Pv2(x) + v2(x) (38)

where Pv is the projected solution of v and Pv2 is the interaction term, and Equation (38) can
be interpreted as a general expression for a multiple scale analysis. In particular, if there is no
overlapping of scales between v1(x) and v2(x), then by the property of the projection operator, the
interaction term is zero.
To illustrate the micro–macro material length-scale bridging model, we partition the total dis-

placement into three scales as follows [37]:

vtotal = vhom + vlocal + vbridging (39)

Copyright ? 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 2000; 47:1343–1361
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where vhom =Pv(x) is the low-scale solution, which is accurate up to the continuum scale using
a micro-mechanical material model without a length scale. This solution can be approximated by
the usual FEM or a meshfree method. vlocal = v2(x) is the material length-scale solution, which is
a function of the length-scale material model and the low-scale solution. vbridging = −Pv2(x) is the
bridging scale solution. It is noted that the length scale can be of order of 1 �m micron or less.
The local, homogeneous, bridging and total strain rates can similarly be de�ned by di�erentiating
the above equation:

�̇total = �̇hom + �̇ local + �̇bridging (40)

For demonstration purpose, we have developed a vlocal solution which is based on a 1-D gradient
plasticity theory with material length scale. The governing equation can be simpli�ed as

F0 + F1
dvlocal

dx
+ l
d2vlocal

dx2
= 0 (41)

with

vlocal|x=0 = 0; dvlocal

dx

∣∣∣∣
x=±w=2

= 0;
d2vlocal

dx2

∣∣∣∣
x=0

= 0 (42)

and

F0 = 2

[
f( �� total)f′( �� total)− f( �� hom)f′( �� hom)

(
f2( �� total) + l �� total

f2( �� hom) + l ��hom

)1=2]
�̇ hom11

F1 = 2f( �� total)f′( �� total)

(43)

The decomposed velocity �elds are de�ned as:

vtotal = vhom + vlocal

U̇total = U̇hom + U̇ local
Ẇtotal = Ẇhom + Ẇ local

(44)

where

Ẇ local = 1
2 (gn + ng) (45)

with

g = @vlocal=@xn; n the unit normal to the surface (see Figure 7) (46)

In [37], the vlocal solution is obtained numerically and analytically.

4.1. A rod under tension

In conjunction with the recent development of strain gradient theory, the multiple �eld RKPM can
be applied for simulating strain localization problem. For the specimen illustrated in Figure 3, the
corresponding multiple �elds are shown in Figure 7 where the high-scale solution is computed by
embedding the 1-D solution in n direction.
The problem statement of the 1-D case in Section 3:4 is given in Figure 8. In the computations,

the following material parameters are used in both tests: E=2000; Et = −1; �Y =1; eY =1=2000,
and l=5:0e−4 mm.

Copyright ? 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 2000; 47:1343–1361
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Figure 7. Multiple scale decomposition of the localization �eld in a notched bending bar.

Figure 8. Localization in a rod.

The numerical interpolated localization solution for this 1-D case is given as [37]

vlocal =
F0
F1B

[
B− 1

B[1− B2l2=f2( �� total)]

(
exp−Bx − B2l2

f2( �� total)
expf( �� total)=l

)
− 1− Bx

]

with

B=
f( �� total)

l
+

l
w

and �̇ local =
dvlocal

dx1
(47)

The numerical interpolated width of the localization zone w is given as

w=
1
�
tan−1

�
�

(48)

Copyright ? 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 2000; 47:1343–1361
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Figure 9. A rod under tension: multi-scale analysis of gradient plasticity: (a) �ne discretization; and (b)
coarse discretization.

where

� = 2f( ��)f′( ��)

�= �2 + 2
f( ��)
�Y

(Et − E)
(49)

Its solutions at the localized region (over 8 material length scale) are depicted in Figure 9 for a bar
pulled at both ends. The bridging solutions ubridging and �bridging, are then constructed following the
multiple-�eld solution procedure given in Liu et al. [36]. It is plotted in Figure 6 along with the
total strain solutions. Figure 9(a) is obtained using a �ne discretization (901 particles for 8 material
length scale). Figure 9(b) is obtained using a coarse discretization with �x (the distance between
two particles) much greater than the material length scale. Obviously, �bridging is signi�cant in the
�ne discretization model and it is almost equal to zero in the coarse discretization model (see
Figure 9(b)). The total strain distributions, however, are the same. Hence, we believe that with
such a micro-to-macro material length scale bridging model, the micro solution can be obtained
with a very coarse discretization (i.e. (x/ material length scale). Comparing the �ne and coarse
discretization solutions (Figures 9(a) and 9(b)), it can be concluded that this multi-scale–multi-
physic solution is mesh independent.
Even though the micro-scale solution gives a high-amplitude plastic strain in a narrow band, as

shown in Figure 9, the width is of the order of the material length-scale. This width is too small
to be computed from a macro (continuum) solution, as illustrated in Figure 10(a). Consequently,
the di�culty associated with numerically capturing strain localizations and fracture in solids has
posed a serious challenge in the computational mechanics community. The proposed method is
able to embed higher resolutions (scales) within the framework of wavelet packets and multi-
physics solution enrichment without any additional nodes. From the above illustration, we have
demonstrated that the bridging scale solution indeed bridges the material length-scale solution to
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Figure 10. A rod under tension: material length scale: (a) micro-localization-induced force versus strain curve;
and (b) nominal stress versus opening displacement.

the continuum meso-scale solution. As can be seen in Figure 10(b), fracture and fragmentation
can be modelled by this ‘micro-localization-induced force versus strain curve’. It can be seen that
the nominal stress (or the separation force) and the opening displacement are strong functions of
the material length-scale (see Figure 10). In this manner, a micro-scale discretized crack initiation,
micro-scale crack growth (order of the material length-scale) and ultimate growth to fracture and
fragmentation sequence can be predicted.

5. NON-LOCAL PARTICLE APPROACH

In this section, a non-local (smoothing) particle integration procedure is proposed. Using Taylor
series expansion about node xA to compensate underintegration

F(x)=F(xA) +F; x(xA)(x− xA) (50)

where variable F(x) can be u(x), �U(x) or b(x). Here, the set of points xA may be any points
about which we choose to take our Taylor expansion. In an e�ort to work toward a nodally based
numerical scheme, we will take xA as nodal points. In large deformation problems, however, this
nodally based numerical scheme may results in unstable deformation pattern. Thus, a nonlocal
(smoothing) approximation is introduced in this section [38]. In the nonlocal approximation, a
variable F(x) and its derivatives at xA are replaced by

F(x)= F(xA)+ F; x(xA)(x− xA)
⇑ ⇑

〈F(xA)〉 〈F; x(xA)〉
(51)
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De�ne the non-local RKPM smoothing operators as ( for xA ∈
J )

〈F(xA)〉 =
∫

A

�(xA − �)F(�) d�=
NPSA∑
K=1

NK (xA)F(xK)

〈F; x(xA)〉=
∫

A

� x(xA − �)F(�) d�=
NPSA∑
K=1

NK;x(xA)F(xK)

(52)

where the number of particles in the smoothing region for a subdomain 
A is denoted by NPSA.
Partition the domain of node J into M (for example, in the algorithm shown below: M =3)

subdomains. Hence, the Jth nodal internal force

FJ =
∫


BTJ b d
 '

∫
SJ−1

�B
T
J (J−1)b dSJ−1 +

∫
SJ

�B
T
J (J )b dSJ +

∫
SJ+1

�B
T
J (J+1) b dSJ+1 (53)

Substitute Equations (51) and (52) into the above relation, one gets

FintJ =
∑

A∈
J

[∫
SA
〈BTJ (xA)〉〈b(xA)〉 dSA +

∫
SA
〈BTJ (xA)〉〈b; x(xA)〉(x− xA) dSA

+
∫
SA
〈BTJ; x(xA)〉〈b(xA)〉(x− xA) dSA +

∫
SA
〈BTJ; x(xA)〉〈b; x(xA)〉(x− xA)2 dSA

]
= 〈FJ 〉0 + 〈FJ 〉stab (54)

with

〈FJ 〉0 =
∑

A∈
J

〈BTJ (xA)〉〈b(xA)〉M 0
A

〈FJ 〉stab =
∑

A∈
J

[〈BTJ (xA)〉〈b; x(xA)〉+ 〈BTJ; x(xA)〉〈b(xA)〉]M 1
A

+
∑

A∈
J

〈BTJ; x(xA)〉〈b; x(xA)〉M 2
A

(55)

where the moments from computational geometry are de�ned by

M 0
A =

∫
SA
dSA; M 1

A =
∫
SA
(x− xA) dSA; M 2

A =
∫
SA
(x− xA)2 dSA (56)

By using Equations (51) and (52), the reproducing kernel interpolants with the non-local
(smoothing) approximation uSA and USA are

uSA(x) =
NP∑
J=1

NJ (x)
NPSA∑
K=1

[NK (xJ ) + BK (xJ )M 1
K ]u(xK)

USA(x) =
NP∑
J=1

BJ (x)
NPSA∑
K=1

[NK (xJ ) + BK (xJ )M 1
K ]u(xK)

(57)

The multiple scale analysis of non-local smoothing �elds can be expressed as

Fhigh(x) =FRa(x)−FSA(x) (58)
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Figure 11. Stress and velocity at the center of elastic–plastic bar under compression.

where variable F can be u(x); �U(x) or b(x) and the superscript SA and Ra are denoted as the
reproducing kernel interpolants with and without the non-local (smoothing) approximation, respec-
tively.

5.1. 1-D elastic=plastic wave

Results are presented for a one-dimensional bar subjected to an impact load. An elastic–plastic
material model was used with the following properties: Young’s modulus E = 3× 107 psi, �0 =
7:24 × 10−4, the cross section area A = 1:0 in2; Ep = 7:5 × 106 psi and �y = 30 000 psi. Time
integration was performed using a Newmark-� predictor–corrector algorithm (� = 0; 
 = 0:505)
Two other integration methods are used for RKPM for comparison, 3-point Gauss quadrature

scheme and the reduced integration scheme. Figure 11 show the stress and velocity at the centre
of the bar for a compressive step load of �0 = 50 000 psi. As can be seen from these �gures, the
tensile instability associated with SPH [39] has been eliminated through the use of the correction
function. The solution is slightly more accurate with reduced integration. However, when single-
point Gaussian integration was used, no solution was achieved. The high-scale solution of the
stress computed by Equation (58) is also shown in Figure 11.

5.2. Impact problem

As an example, the impact=penetration process of a disk hitting a steel target has been simulated
[38]. The disk is assumed rigid with a given initial velocity of 3000 M=s. The target steel is
modelled by the Johnson–Cook constitutive law (visco-plasticity) with damage where the failure
of a material point occurs when the damage reaches its critical value and the stress level approaches
to zero.
Figure 12 depicts the time history of the damage evolution of the target. A complete description

of this problem is given in [38].
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Figure 12. Simulation of penetration process using truly multiple scale meshfree method.

6. CONCLUSION

In this paper, several multiple scale techniques have been demonstrated and used successfully in
meshfree computations in solving large deformation problems of inelastic solids, such as shear band
formation and impact=fragmentation. This class of methods has a build-in capacity to decompose
the resolved numerical solutions into di�erent scales. The associated physical phenomena can be
interpreted according to the di�erent scales of the numerical solutions. In addition, the proposed
multiple scale method, especially the one introduced in Section 4, may signi�cantly reduce the
mesh dependency that usually occurs in numerical simulation of strain localization problems.
All these approaches are basically a spectral decomposition of the numerical solutions, which

is di�erent from the usual notions of h-re�nement or p-re�nement in �nite element method, we
believe that a new class of spectral re�nement=decomposition algorithms can be constructed by
using this class of multi-scale meshfree particle methods.
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