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SUMMARY

A parallel computational implementation of modern meshless methods is presented for explicit dynamic
analysis. The procedures are demonstrated by application of the Reproducing Kernel Particle Method
(RKPM). Aspects of a coarse grain parallel paradigm are detailed for a Lagrangian formulation using model
partitioning. Integration points are uniquely de"ned on separate processors and particle de"nitions are
duplicated, as necessary, so that all support particles for each point are de"ned locally on the corresponding
processor. Several partitioning schemes are considered and a reduced graph-based procedure is presented.
Partitioning issues are discussed and procedures to accommodate essential boundary conditions in parallel
are presented. Explicit MPI message passing statements are used for all communications among partitions
on di!erent processors. The e!ectiveness of the procedure is demonstrated by highly deformable inelastic
example problems. Copyright ( 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A variety of new meshless modelling method have recently emerged. Particle [1], Element Free
Galerkin [2] (EFG), cloud [3], and other kernel [4}6] and partition of unity [7] methods are



examples that compete, for various applications, with "nite elements, boundary elements, and
classical meshless methods (e.g. Rayleigh}Ritz). These methods may be attractive for certain
cases, since they possess various characteristics that overcome some of the shortcomings of more
traditional methods. Large parallel computings systems have also become commonly available.
E!ective utilization of such systems generally involves explicit message passing statements in
conjunction with elaborate load balancing-communication minimizing schemes. Parallel com-
puting is especially attractive for modern meshless methods, since they frequently require more
computations than other competitive techniques. In addition, the applications where the new
meshless methods can be advantageous are usually highly complex and thus computationally
intensive.

The present treatment will focus on the Reproducing Kernel Particle Method [4}6, 8] (RKPM)
for explicit dynamic analysis of solid and structures, but the procedures are directly applicable
to some other meshless methods (e.g. EFG). Several distinct advantages of RKPM are its ability
to accurately model extremely large deformations without mesh distortion problems and its ease
to adaptive modelling by simply changing particle de"nitions for desired re"nement regions. An
overview of a Lagrangian RKPM for non-linear explicit dynamic analysis is "rst given and a new
method for enforcement of essential boundary conditions is presented. A general description of
the parallel implementation is then described. The parallel procedure primarily consists of a mesh
partitioning pre-analysis phase, a parallel analysis phase that includes explicit message passing
among partitions on separate processors, and a post-analysis phase for gathering separate
processor output "les into a single coherent data structure for post-processing. Load distribution
and message passing minimization aspects are outlined, and data structures for processing on
large scalable computing platforms are described. Bene"ts of the essential boundary condition
enforcement method are identi"ed for parallel processing and application to large strain/defor-
mation inelastic example problems is provided.

2. REPRODUCING KERNEL PARTICLE METHOD

For spatial position, x, RKPM formulations use a kernel approximation to the displacements,
u(x), such that

uK(x)"P
=

~=

u (x8 )K (x!x8 ) d< (1)

where K(x!x8 ) is a kernel function which is typically taken as the SPH particle interpolation
function that is modi"ed by a correction function to accommodate the presence of boundaries of
"nite domains in order to satisfy consistency (reproducing) conditions. Evaluation of Equation (1)
produces an interpolation in terms of NP particle values, d

J
, within the subregion of in#uence

(see Figure 1)

uK(x)"
NP
+
J/1

N
J
(x)d

J
"NT(x) ' dS (2)

where dS is the vector of generalized particle displacements in the support zone and N(x) is
a matrix of RKPM interpolation functions (sometimes referred to as shape functions). The size
and shape of the in#uence region can be general and can vary within the domain and between
di!erent analyses. The support nodes are determined by searching within each individual support
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Figure 1. Support nodes for RKPM interpolation.

zone for any desired point (e.g. node, integration point, output location, etc.). Detailed descrip-
tions of RKPM procedures can be found, for example, in References [4}6, 8].

A distinct characteristic of the interpolation in Equation (2) is that it is non-local (i.e. the
Kronecker delta property is not satis"ed). The displacements at particles are not the particle
values, but are determined by the values of all particles in its proximity. This is

uK(x
I
)"

NP
+

J/1

N
J
(x

I
)d

J
Od

I
(3)

Particles (frequently referred to as nodes) are distributed with regard to the degree of interpola-
tion re"nement. To evaluate the governing particle equations (see next section), many more
integration points than nodes are frequently required. A typical RKPM model is shown in
Figure 2.

3. EXPLICIT DYNAMIC ANALYSIS

3.1. ¸agrangian form of the governing equations

Using virtual work [9], the large strain/deformation equations for dynamic equilibrium at any
time, t, are

P<
$

o
$
uK ' du d<

$
"P<

$

o
$
b ' du d<

$
#PA

$

t( ' dudA
$
!P<

$

r :
Ldu

Lx
d<

$
(4)

where d is the variational operator, each dot refers to di!erentiation with respect to time, o
$
is the

current mass density, b are body forces, t( are applied surface tractions, r are cauchy stresses, and
A

$
and <

$
are the deformed con"guration surface area and volume, respectively. The equivalent
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Figure 2. RKPM model of a plate with a circular cutout (6329 particles, 55 296 integration points).

virtual power statement is obtained by di!erentiating the virtual displacements with respect to
time. The current position, x, is related to the undeformed position, X, by

x"X#u (X, t) (5)

A Lagrangian formulation is chosen so that all quantities are referred to the undeformed
con"guration. Thus

uK (X, t)"
NP
+

J/1

N
J
(X)d

J
(t)"NT(X) ' dS(t) (6a)

LuK(X, t)

LX
"

NP
+

J/1

LN
J
(X)

LX
d
J
(t)"

LNT (X)

LX
' dS(t) (6b)

The Lagrangian formulation provides tremendous computational bene"ts, since the search for
neighbouring support nodes and the interpolation function calculations in Equation (6) are only
done once at the beginning of the analysis. As shown in following sections, the Lagrangian
formulation is also advantageous for the present essential boundary condition enforcement and
parallel processing approaches.

The interpolation of Equation (6) is inserted into Equation (4), so that the resulting approxima-
tion is equivalent to a Galerkin weak form of the momentum equation (equations of motion). To
simplify the use of Equation (6) with the virtual work statement, the following properties of the
deformation gradient, F, and conservation of mass are used to de"ne an alternate form of
Equation (4)

F"

Lx

LX
"I#

Lu

LX
(7)
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DFDd<
0
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$
(8)
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$
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so that

P<
0

o
0
uK ' du d<

0
"P<

0

o
0
b ' du d<

0
#PA

$

t( ' dudA
$
!P<

0

r :
Ldu

Lx
DF D d<

0
(10)

where the subscript, 0, refers to the undeformed con"guration. Second Piola}Kirchho! stresses,
S, and Green}Lagrange strains, E, may also be used to refer integrand quantities within the
internal virtual work expression to the undeformed con"guration.

P<
0

S : dEd<
0
"P<

$

r :
Ldu

Lx
d<

$
"P<

0

r :
Ldu

Lx
DF D d<

0
(11)

This form is especially e!ective for elastic and hyperelastic material models,, whereby S is easily
computed. For other constitutive models, r is more convenient so that either Equation (10) is
evaluated directly, or Equation (11) is used in conjunction with the following relationship:

S"
o
0

o
$

F~1 ' r 'F~T"DF DF~1 ' r 'F~T (12)

Finally, derivatives with respect to the deformed con"guration can be conveniently obtained by

L( )

Lx
"F~1 '

L ( )

LX
(13)

An advantage of the forgoing Lagrangian RKPM formulation is that it may accurately
perform highly deformable analyses without mesh distortion problems. RKPM does not use
elements that may become poorly shaped during such analyses. Instead, the formulation accuracy
is governed by the ability to invert the deformation gradient tensor, which is assured when the
determinant of F is greater than zero.

3.2. Enforcement of essential boundary conditions

For an approximation with the virtual work principle, the Essential Boundary Conditions (EBC)
must be satis"ed directly by the interpolation functions or accommodated by augmenting the
variational statement with constraints. A major di!erence between RKPM and other methods
(e.g. "nite element) is the manner in which essential boundary conditions can be enforced. The
non-local interpolation condition of Equation (3) poses an additional computational challenge.
Whereas essential boundary conditions for "nite elements are imposed locally at nodes (because
they possess the Kronecker delta property), EBC enforcement with RKPM is non-local over
a patch of particles/nodes. In some cases, the EBCs can be adequately approximated by local
speci"cation at the nodes (assuming a Kronecker delta property). This approximation can be
accurate, by St. Venant's Principle, when the primary regions of interest are away from the EBCs.
In general, however, a coupled set of equations is usually solved, even for explicit analyses.
Previous e!orts used Lagrange multipliers to constrain the variational statement [2] or a set of
simultaneous equations was directly solved [8]. In either case, signi"cant computations were
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generally necessary to enforce the essential boundary conditions. These procedures also are not
well suited for parallel processing, since they must generally be made over multiple processors.

The authors now propose an alternate approach that may also require signi"cant computa-
tional e!ort, as it is algebraically equivalent to other existing equation solving methods. By
treating the imposition as a transformation of the interpolation functions, however, this form is
better for parallel processing (discussed in Section 4). Describing the EBC equations by

g
B
"uK(X

B
)"

NP
+
J/1

N
J
(X

B
)d

J
(14)

where g
B
is the speci"ed EBC at X

B
or can be an integral relation along X

B
(e.g., zero displacement

along a edge). In the matrix form for all conditions

GT ' d"g (15)

whereby Gram}Schmidt or Householder orthogonalization

GT 'G"I (16)

JT 'G"0 (17)

JT 'J"I (18)

The generalized variables are now represented by

d"J ' d3 #G ' g (19)

Equation (19) inserted into Equation (6) produces

uK(X)"NT(X) 'J ' d3 #NT(X) 'G ' g (20a)

LuK(X)

LX
"

LNT(X)

LX
' J ' d3 #

LNT(X)

LX
'G ' g (20b)

or
uK(X)"(NJ(X))T ' d3 #(NG(x))T ' g (21a)

LuK(X)

LX
"A

LNJ(X)

LX BT ' d3 #A
LNG(X)

LX B
T
' g (21b)

where
NJ(X)"JT 'N (X) (22a)

NG(X)"GT 'N(X) (22b)

Note that the constraint conditions are recovered. That is

GT ' d"GT ' (J ' d3 #G ' g)"g (23)

Since the new transformed interpolation functions of Equation (21) satisfy the essential
boundary conditions, they can be directly used in the virtual work statement. The alternate
displacement vector, d3 , is now determined with the essential boundary conditions directly
speci"ed in g. The orthogonalization in Equations (16)}(18) may require a signi"cant number of
computer operations. These computations and the creation of the alternate interpolation func-
tions of Equation (21), however, are done only once in the preprocessing phase. Transient
displacement conditions (e.g. speci"ed displacements) are then accommodated by only changing
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the values in g. Note that this approach may be e!ective for serial computations. For analyses on
a single processor, it might be more bene"cial to use the transformation directly on the
displacements, instead of the interpolation functions. As shown in Section 4, transformation of
the interpolation functions in this manner is convenient for parallel processing.

To use the interpolation form of Equation (21), g is simply appended to the end of the
displacement vector as dummy degrees of freedom. For insertion into the virtual work statement,
the values in g are then just treated like other displacements having their own interpolation
functions (22b). Note that separate interpolation functions are generally required for each degree
of freedom in Equation (21), instead of for each node as in Equation (2). This does not require
signi"cantly more computations, however, and the additional storage requirements are not
detrimental on most large parallel processing computer systems. In many cases (e.g. zero
conditions), the additional degrees may be omitted. In other cases, the conditions may be static or
have a simple time variance, so that the second term in Equation (21) may be collapsed into
a single dummy node, such that

uK(x)"(NJ(X))T ' d3 #g8 (X) (24)

In such cases, the product of the interpolation functions and speci"ed quantities are summed into
a single nodal vector. The dummy node interpolation functions are speci"ed as unity, and g8 is
multiplied by a time factor during the analysis.

In the above method, the EBCs are only speci"ed at discrete points; the EBCs are not generally
satis"ed in between these points and an integral expression only imposes in an average sense.
Nevertheless, the method is e!ective and the accuracy is increased with model re"nement. EBC
imposition continues to be a research area with much activity [10}13]. One popular approach
is to transform potential essential boundary condition nodes, using the interpolation functions
determined at the nodes, to recover the Kronecker delta property at the nodes [13]. This is
especially e!ective for contact problems where the contacting nodes are not known a priori. The
transformation can be done in a similar manner to that of Equations (14)}(24) and would thus
possess a form with similar bene"ts for parallel processing that is discussed in Section 4.

3.3. ¹ime-integration scheme

A Newmark-b method is used to integrate the governing equations in time. Grouping expressions
with common variational degrees of freedom in Equation (10) produces the following discretized
expression in matrix form:

MdG t"pt!f t (25)

where M is the mass matrix, d is the generalized nodal displacement vector, p is the vector of
applied and body forces, and f is the vector of internal resistance forces. The temporal integration
begins by specifying initial conditions and then, for each time increment

(i) Use a predictor phase:

d) t#*t
"dt#*tdQ t#( 1

2
!b) (*t)2dG t (26)

d0) t`*t"d0 t#(1!c)*tdG t (27)

(ii) Update accelerations:

dG t#*t
"M~1(pt#*t

!f t#*t ) (28)
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(iii) Use a corrector phase:

d t#*t
"d) t#*t

#b (*t)2dG t`*t (29)

d0 t#*t
"d0) t#*t

#c*tdG t#*t (30)

(iv) Continue with the next time increment.

The particle/node mass is lumped, so that the mass matrix, M, is diagonal. The computations
associated with Equations (26)}(30) are primarily vector operations. Therefore, CPU usage is
dominated by the determination of f in Equation (28), which frequently involves intensive
computations of r for inelastic constitutive relationships.

4. PARALLEL CODE DEVELOPMENT

For e!ective parallel computing, it is critical to balance the computational load among proces-
sors while minimizing interprocessor communication. Therefore, separate pre-analysis software
was created to partition any general unstructured RKPM model. Similar to explicit "nite element
codes [14}16], the partitioning is made with regard to the determination of f in Equation (28),
since it involves more computational e!ort than the lumped mass equation solving. Therefore,
integration points are distributed to processors and nodes are shared by integration points on
di!erent processors. In contrast to "nite elements, the amount of computations will vary among
integration points, since each may contribute to a di!erent Number of Particles/nodes (NP).
Depending on the levels of local re"nement, NP may vary drastically within the model. Unlike
most Smooth Particle Hydrodynamics (SPH) formulations that do not distinguish between
particles and integration points, the present RKPM models usually have many more integration
points than particles/nodes. Whereas parallel SPH implementations [15] typically partition the
particles, the RKPM partitioning is thus done on the integration points. The objective of the
partitioning software is to provide partitions of nearly equal computational e!ort while also
generally minimizing the size of the partition interfaces. An outline of the overall analysis
procedures is provided in Table I.

4.1. Partitioning schemes

A variety of di!erent partitioning procedures exist that are based on graph theory (e.g. [17}19])
or geometric techniques (e.g. [19}21]). Graph based procedures are quite popular for "nite
element analysis whereby they are generally accurate and e$cient. Furthermore, publicly avail-
able partitioning codes like Metis [17], Jostle [18] and Chaco [19] have matured to the point
where they can be easily and reliably used as &black boxes' for most "nite element applications.
Graphs for the present RKPM implementation are the integration point to integration point
connection lists. In graph theory terminology, each integration point is called a vertex. The list of
other integration points to which the vertex is connected is then de"ned as a list of edges to other
vertices.

Each RKPM integration point has a list of support particles/nodes within its region of
in#uence that it must provide a contribution to the particle/nodal forces of Equation (28). This list
is used to create the graph edges by identifying integration points with common support nodes.
For the graph, vertex weighting permits the speci"cation of variable amounts of computational
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Table I. Outline of procedures for parallel computation of RKPM explicit dynamic analysis.

I. Serial pre-analysis phase
A. Input data
B. Set up Gauss integration points
C. Perform global search for support nodes
D. Calculate lumped mass matrix
E. Partition model

1. Create reduced graph of integration points
2. Use Metis to produce integration point processor list
3. Create local model input for each processor

a. List of partition integration points
b. List of partition nodes
c. Processor communication lists of duplicate nodes
d. Materials, loads, etc., applicable to partition

II. Parallel analysis phase on each processor
A. Read input data for the appropriate partition
B. Setup data structure for local analysis of partition
C. Read lumped mass matrix for nodes within partition
D. Calculate shape functions and their derivatives
E. Calculate initial accelerations, qK 0
F. Begin time-incrementation loop

1. Post-non-blocking receives for force vectors of duplicate nodes;
2. Determine predictor quantities in Equations (26), (27);
3. Compute applied forces and place in pt#*t ;
4. Calculate f t#*t and store as pt#*t

"pt#*t
!f t#*t ;

5. Gather duplicate node force vectors from pt#*t and post-non-blocking sends;
6. Post non-blocking waits for completion of communications in steps 1 and 5;
7. Add received force vectors contributions from other processors to pt#*t;
8. Determine qK t#*t, q5 t#*t, and qt#*t via Equations (28)}(30);
9. Output, if timely

10. For the total time, repeat steps 1}9 with new con"gurations.
III. Serial post-analysis phase

A. Read common output "les from each processor
B. Create a single output "le for post-processing

e!ort associated with each vertex. Edge weighting speci"es the amount of communication
associated with each edge. For the present RKPM implementation, vertex weighting is applied
according to the number of nodes to which an integration point contributes. All graph edge
weights are de"ned to be the same. The goal of a graph-based partitioner is to distribute the
vertices so that each partition has equal amounts of vertex weight, while minimizing the amount
of edge weight connecting partitions on di!erent processors. The quality of a RKPM partitioning
is thus de"ned by the balance of vertex weights and by the number of nodes shared by integration
points on di!erent processors.

RKPM integration points typically contribute to many more nodes than those of similar "nite
element models do. Thus, RKPM graphs can be very large with many edges. For example, the
graph of the simple problem in Figure 2 has an average of 175 edges per vertex and the graph
"le requires almost 120 Mbytes. Using Metis [17], a typical partition could be obtained for this
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model is about 2.5 CPU minutes on an SGI R10000 processor. Although the Metis partitions
were quite good and the amounts of CPU time were reasonable for the example of Figure 2,
this approach may be unfeasible for large three-dimensional models.

To reduce the number of edges with RKPM, an approach using simple geometric checks was
developed for creation of the Metis graph. Only the nearest neighbours (edge members) of each
integration point (vertex) were included in the graph. This should not signi"cantly a!ect the
quality of the partitions, since the nearest neighbours have the greatest level of connection. First,
a radius of in#uence from the vertex points is input to initially remove, from consideration as
edges, points that lie outside this radius. Further reduction may then be applied by retaining only
a percentage of the closest neighbours. A minimum number of edges, however, are used to ensure
adequate connections within the graph. Retaining only 10 per cent of the original number of
edges with a minimum of four, the graph for the model of Figure 2 was reduced to about 5 Mbytes
and excellent partitions were determined with Metis in about 2 CPU seconds on the R10000.

To avoid the creation of large dense graphs, geometric-based partitioners seem to be natural
choices for RKPM. These approaches do not need a graph, as they only require the RKPM
integration point co-ordinates. Partitions are created with these methods by grouping points in
the same spatial proximity. The authors' experiences with existing Recursive Coordinate Bisec-
tion (RCB), Hilbert Space Filling Curve (HSFC), and Unbalanced Recursive Bisection (URB)
codes, however, have not always been satisfactory. In some instances, large imbalances (up to 20
per cent) were noticed. For all cases, Metis provided partitions that were perfectly or almost
perfectly balanced. This may be more of a problem with the software implementation, instead of
the approach itself. Space "lling curves created solely by geometry, for instance, may inherently
exhibit balance di$culties, if a large weight is near a partition boundary on the curve. The weight
signi"cantly contributes too much if the point is added to the partition, but the partition will
be considerably under-weighted if it is not kept within the partition. In either case, a large
imbalance will occur when division of the curve is into equal weighted lengths without rede"ning
the curve under these circumstances. Early Metis releases also experienced similar di$culties for
highly variable vertex weighting, but signi"cant e!ort has been put into Metis to overcome these
problems. The authors did not attempt to alleviate these problems with the other existing codes.
Furthermore, di$culties arise for applications like the one in Figures 3}5. Although integration
points on either side of the notch are spatially close to each other, they do not have common
support nodes. The geometric partitioners typically grouped points on both sides of the notch
within the same partition, which occasionally increased the number of shared interpolation nodes
signi"cantly. For these reasons, the forgoing graph-based method is currently used with the
present RKPM implementation.

4.2. Parallel data-communication structure

The partitioning output provides a list of processor numbers for the integration points, so that
each is uniquely de"ned on a single processor. The diagonal nature of the mass matrix, M, permits
the particle/nodal equation of each degree of freedom to be solved independent of other degrees of
freedom. To retain data locality, particles/nodes are therefore redundantly de"ned on all proces-
sors possessing integration points contributing to these particles/nodes. An example of the
partitioning of integration points and nodes is shown in Figures 4 and 5. Note that the Metis
partitioning occurs naturally without shared nodes along the notch. As a result of the nonlocal
nature of the interpolation in Equation (2), duplicate nodal de"nitions generally do not only lie
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Figure 3. Notched three-point bending problem.

Figure 4. Partitioned RKPM model (integration points) of notched three-point bending problem.

directly on partition boundaries. As seen in Figure 5, a band of shared nodes typically lies at
partition interfaces. Therefore, the amount of communication will generally be larger for RKPM
than for similar "nite element analyses. The present RKPM implementation, however, uses more
integration points and support nodes than FEA, so that the computation to communication ratio
is still high.

The basic parallel approach is for each processor to perform an analysis on its own partition.
These are performed as if they were separate analyses, except that contributions to the force
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Figure 5. Shared and unshared nodes for the partitioned RKPM model in Figure 4.

vectors are sent to and from other processors for the duplicated nodes. All loads, boundary
conditions, material properties, etc., need to be de"ned only on the processors for which they
apply. The Lagrangian formulation of Section 3.1 is well suited for parallel processing. With the
support nodes and interpolation functions "xed to the reference con"guration, the interprocessor
communication structure does not change during a transient analysis. An advantage to this
computational structure is that an original serial code can be made to run in parallel with only
slight modi"cations. Although a considerable amount of code is written for the partitioned
analysis procedures, it is mostly added to the serial program, which essentially remains intact.

All communication is made by explicit Message Passing Interface (MPI) statements. Non-
blocking communication (MPI ISEND/IRECV) is used to avoid possible deadlocks and over-
head associated with bu!ering. For each time increment, *t, the parallel scheme "rst consists of
creating global force vectors for the partitions on each processor, pt#*t and f t#*t. Next, the forces
belonging to redundant particle/nodes are gathered into vectors and sent to the processors
possessing duplicate de"nitions. The partial force vectors are then received from the other
processors and added to the global partition force vector on the current processor. At this point,
other boundary conditions are accommodated in the force vector, and the new accelerations,
velocities, and displacements are determined by the relations in Equations (26)}(30). Using the
new con"guration, the process is then started all over again for a new time increment. When the
analysis is "nally completed, separate software is run serially to gather the individual processor
output and create single output "les for post-processing.

4.3. Comments on essential boundary condition enforcement

The approach described in Section 3.2 maintains the original RKPM interpolation, but also
requires some additional computations. The orthogonalization in Equations (16)}(18), however,
is only done once in the pre-analysis phase. All necessary quantities can then be entirely de"ned
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on each processor, so that the imposition during the transient analysis can be performed locally
without inter-processor communication. That is, the support nodes are rede"ned to accommod-
ate the interpolation in Equation (21) and then, the partitioned data sets are created in the usual
manner described in Sections 4.1 and 4.2.

The e!ectiveness of approach described in Section 3.2 is highly problem dependent. For many
applications, the essential boundary conditions are minimal and the approach is highly e$cient.
For problems with a large number of essential boundary conditions, however, the number of
support nodes can signi"cantly increase for integration points a!ected by the modi"cations in
Equation (21). The vertex weighing by number of support nodes, as described in Section 4.1, will
avoid associated load imbalances, but the number of shared nodes can drastically increase.
Therefore, communications may greatly increase thereby reducing the number of e!ective
processors, in some cases. Further e!ort regarding the accommodation of essential boundary
conditions in parallel is still needed, and thus several other techniques are discussed here.

Projecting integration points across symmetry lines, like those in Figure 2, can accommodate
symmetry conditions [22]. Contributions to particles/nodes are complete for the symmetric
portion of the model, which enforces the symmetry without equations solving. Additional vertex
weighing can be applied to the projected points, in order to account for the additional computa-
tional load of these points. Although this approach reduces the number of simultaneous equa-
tions needed to enforce the essential boundary conditions, additional computations result from
the additional integration. Nevertheless, the integration calculations are entirely local and are
thus better suited for parallel processing. This procedure only addresses some of the conditions,
however, since non-zero essential boundary and initial conditions must be accommodated in
a di!erent manner.

The method by Chen [10, 11] introduces singularities into the kernel functions of essential
boundary condition particles, in order to recover particle values. The interpolation still maintains
the reproducing characteristic of RKPM and the singularity is only at the particles, not at
integration points. The evaluation of the governing equations is thus not made at the singular-
ities. The modi"ed kernel functions permit kinematic constraints to be imposed directly at the
particles, which can be done locally on a processor and without any signi"cant computational
cost that would a!ect load balance. Whereas reasonable results were obtained for the examples
by Chen [10, 11], the modi"ed kernel function does a!ect the solution (the interpolant is
modi"ed). The use of the singular kernels may prove to be a viable approach, but the authors
believe that more evaluation of the method is still warranted.

5. NUMERICAL EXAMPLES

5.1. ¹hree-point bending of a notched beam

The following analyses are applied to the three-point #exural analysis of a notched beam, as
shown in Figure 3. For the temporal integration, the factors in Equations (26)}(30) are c"1.0 and
b"0.0. A viscoplastic constitutive model with damage was used and details of the analyses are
described in Reference [23].

The "rst RKPM model uses 5504 nodes and 21 336 integration points. The original graph of
the model averaged approximately 500 edges per vertex. Using the reduction scheme described in
Section 4.1, the graph was reduced to about 10 edges per vertex. The partitioning is shown in
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Figure 6. Predicted RKPM deformations of notched three-point bending problem (5504 nodes).

Figures 4 and 5, and deformed plots of the RKPM model are shown in Figure 6. The parallel
performance is given in Figure 7 for analyses on the Cray T3E-1200 at the Army High
Performance Computing Research Center. The speedup is signi"cant for this moderately sized
problem. A speedup of almost "fteen was attained on 32 processors which was about the peak
value that could be attained. An analysis that took about "fteen hours on a single processor was
thus performed in less than one hour by parallel processing. In all cases, no signi"cant reduction
in performance occurred by using the reduced graph partitioning instead of the full graph
partitioning.

The second RKPM model is larger with 21 590 nodes and 85 008 integration points. Plots of
the e!ective plastic strain and deformed shape of the RKPM model are shown in Figure 8. The
parallel performance is given in Figure 9 for analyses on the Cray T3E-1200. These analyses
require about six CPU hours on 128 processors. The high level of re"nement permits the sharp
resolution prediction of the shear bands shown by the light areas of high e!ective plastic strain in
Figure 8. For economical reasons, the scalability study depicted in Figure 9 was only performed
with 100 000 time increments and with no less than four processors. Therefore, the scalability is
made with reference to four processors (speedup from the four processor analysis). The speedup is
signi"cant for this large model. The analysis on 128 processors was about seventeen times faster
than the one on four processors. Using these factors as a guideline, the analysis for Figure 8 that
took about six hours on 128 processor would require more than four days on four processors.
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Figure 7. Parallel performance on a Cray T3E-1200 of RKPM for the small notched three-point bending
problem (5504 nodes).

Figure 8. RKPM predictions for notched three-point bending problem at t"0.06 s (21 590 nodes).
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Figure 9. Parallel performance on a Cray T3E-1200 of RKPM for the notched three-point bending problem
(21 590 nodes).

Furthermore, this analysis was also performed on a single dedicated SGI R10000 processor,
which required more than seventeen days of CPU time.

5.2. Three-dimensional shear band simulation in a tensile specimen

This analysis is the three-dimensional development of shear bands in the tensile specimen shown
in Figure 10. The undeformed bar has cross-section dimensions of 2 mm]2 mm and a length of
4 mm. An elasto-viscoplastic constitutive model was used and, for the temporal integration, the
factors in Equations (26)}(30) are also c"1.0 and b"0.0. The RKPM model uses 18 081 nodes
and 128 000 integration points, shown in Figure 10. The original graph of the model averaged
approximately 700 edges per vertex. Using the reduction scheme described in Section 4.1, the
graph was reduced to about 50 edges per vertex.

A plot of the deformed shape, depicting the shear bands, for the RKPM model is also shown in
Figure 10. For an 8]10~5 s duration event, the analysis required about 400 CPU seconds on 256
processors of the Cray T3E-1200 at Waterways Experiment Station. The parallel performance is
given in Figure 11 for the 10 000 time increment analysis. For economical reasons, this scalability
study was again performed with no less than four processors. Therefore, the scalability is made
with reference to four processors. The speedup is signi"cant for this model. The analysis on 256
processors was about 47 times faster than the one on four processors.

6. CONCLUDING REMARKS

A parallel computational implementation of modern meshless methods was presented for explicit
dynamic analysis. Application of the Reproducing Kernel Particle Method demonstrated the
procedures. A coarse grain parallel implementation was used with model partitioning for
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Figure 10. RKPM model for the three-dimensional tensile shear band development: (a) undeformed shape;
(b) deformed shape at t"8]10~5 s; (c) deformed particles at t"8]10~5 s (18 081 nodes).

a Lagrangian formulation. With this approach, integration points are uniquely de"ned on
separate processors and shared particle de"nitions are duplicated, so that all support particles for
each point are de"ned locally on the corresponding processor. Several partitioning schemes were
evaluated and a reduced graph-based procedure was shown to be e!ective. Explicit MPI message
passing statements are used for all communications among partitions on di!erent processors.
Procedures to accommodate essential boundary conditions in parallel were presented. It was
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Figure 11. Parallel performance on a Cray T3E-1200 of RKPM for the three-dimensional tensile shear band
development problem (18 081 nodes).

pointed out that the enforcement of essential boundary conditions in parallel merits more
investigation. Nevertheless, the procedure was demonstrated to signi"cantly reduce computation
time for several highly deformable inelastic analyses.
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