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Numerical simulations of strain localization in inelastic
solids using mesh-free methods
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SUMMARY

In this paper, a comprehensive account on using mesh-free methods to simulate strain localization in inelas-
tic solids is presented. Using an explicit displacement-based formulation in mesh-free computations, high-
resolution shear-band formations are obtained in both two-dimensional (2-D) and three-dimensional (3-D)
simulations without recourse to any mixed formulation, discontinuous=incompatible element or special mesh
design. The numerical solutions obtained here are insensitive to the orientation of the particle distributions if
the local particle distribution is quasi-uniform, which, to a large extent, relieves the mesh alignment sensitivity
that �nite element methods su�er.
Moreover, a simple h-adaptivity procedure is implemented in the explicit calculation, and by utilizing a

mesh-free hierarchical partition of unity a spectral (wavelet) adaptivity procedure is developed to seek high-
resolution shear-band formations. Moreover, the phenomenon of multiple shear band and mode switching
are observed in numerical computations with a relatively coarse particle distribution in contrast to the costly
�ne-scale �nite element simulations. Copyright ? 2000 John Wiley & Sons, Ltd.

KEY WORDS: h-adaptivity; hierarchical reproducing kernel partition of unity; mesh-free methods; strain
localization; spectral adaptivity; wavelet kernel

1. INTRODUCTION

The numerical simulation of strain localization, or localized strong=weak discontinuous deformation
�eld in inelastic solids has important engineering signi�cances and applications, such as predicting
failures of ductile materials.
The strain localization problem has been extensively studied over the past two decades, from

the aspects of both constitutive modelling and numerical simulation (e.g. [1–3], Reference [3]
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is a survey from computational perspective). Nonetheless, some technical issues remain open, at
least from computational standpoint. The phenomenological rate-independent plasticity theory does
not have an intrinsic length scale, and it predicts the shear band with zero width; this not only
conicts with experiment observations, which one might accept as an approximation, or a setback
of idealization of constitutive modellings, but also introduces the well-known mesh-dependent
pathology in numerical simulations. It seems to us that the current trend is leaning towards to
non-local, or strain gradient plasticity theories, and seeking physical justi�cations for them in the
micromechanics framework. Nevertheless, some of the di�culties in numerical simulations, in our
opinion, may be related to computational technology itself rather than to constitutive modelling,
and these issues might exist in upcoming nano-scale plasticity models as well. The present work
is motivated by seeking a robust computational strategy=algorithm for strain localization problems.
The emphasis in this study is placed on explicit, large deformation computations.
In numerical simulations of shear-band formation in inelastic solids, there are two types of

mesh sensitivities. The �rst type of mesh-dependent sensitivity appears in phenomenological rate-
independent plasticity; it is due to the fact that the rate-independent plasticity theories admit the
zero width singular surface solution, and hence the discrete Galerkin formulations with �nite mesh
size are unable to capture this weak discontinuous surface precisely. Mathematically speaking, the
inception of shear bands corresponds to the loss of ellipticity of the governing partial di�erential
equations, which leads to the illposedness of the mixed initial=boundary value problem, and hence
results in the collapse of discrete computation, if the conventional Galerkin procedure is employed.
To eliminate such a type of mesh sensitivity requires regularization of the continuum, or discrete
system; the rate-dependent plasticity, the non-local, and strain gradient plasticity are three main
regularization procedures used in computations. The second type of mesh-dependent sensitivity is
the so-called mesh-alignment sensitivity. It is often referred to as the inability of a �nite element
(FE) mesh to resolve localized shearing at angles oblique to the element boundaries, which occurs
in mesh-based numerical computations regardless of whether a continuum system is regularized or
not [4].
Mesh-alignment sensitivity occurs, in our opinion, because the �nite element mesh poses

additional, unphysical constraints on spatial symmetry of the material under study. Even though
it may be a very weak constraint, and may not be susceptible in conventional stress=strain eval-
uation under normal circumstances, it plays a signi�cant role in simulating bifurcation solutions,
because any small perturbation matters in this situation. For instance, in computations, the localized
shear band tends to go along with edges of �nite element boundaries, regardless of its physical
plausibility. By the way, there is a general belief, which may be worth verifying, that these two
mesh-dependent sensitivities might be related. The argument is as follows: if a continuum has a
�nite length scale, and the characteristic length of FE mesh is smaller than the length scale, then
there will be no mesh sensitivity of any kind at all and if FE mesh size is larger than the intrinsic
length scale of the material, both mesh sensitivities occur.
In contrast to �nite element methods (FEM), mesh-free methods (e.g. [5–10]) possess some

special qualities, which the mesh-based numerical methods generically lack. First, mesh-free meth-
ods tend to be more objective to the ‘mesh’ environment or particle distribution than �nite element
methods; precisely speaking, a quasi-uniform mesh-free particle distribution in a local region tends
to attain isotropy, or maximum symmetry in its spatial orientation. Second, moving least-squares
interpolant-based mesh-free shape functions are constructed by embedding a highly smooth win-
dow function, such that ‘the reproducing kernel interpolation’ is usually a higher-order polynomial
approximation; it can support the purely displacement-based formulation without incurring
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volumetric locking within a certain range of support size of the window function. This fact has
been observed by several authors (e.g. [5; 11; 12]). Third, most meshless methods may be viewed
as non-local approximations, meaning that the approximation is derived as the discretization of a
convolution of a smooth kernel ‘transformation’:

〈u(x)〉=
∫

y

K(x− y)u(y) d
 ≈
NP∑
I=1

K(x− xI )uI�xI (1)

Intuitively, this discrete ‘non-locality’ can be interpreted as that every point in the domain is
covered by multiple shape functions, whereas FEM may be referred to as a local approximation,
because each nodal point of a FE mesh is covered by only one shape function. In principle, it
is also impossible to construct a convolution with continuous kernel function that is equivalent to
a FE interpolation. Thus, meshless methods o�er a numerical mechanism to smear, or to smooth
any discontinuous �elds, enabling them to become regularized concentration �elds. These prop-
erties provide an e�ective remedy for the mesh alignment sensitivity that has long plagued the
computation of strain localization.
The departure in this study is the use of mesh-free discretization in numerical simulation of

shear band formations, which distinguishes the present approach from many other computational
approaches on studying strain localization problems. In this paper, the following aspects of the
problems are studied: (1) explicit displacement-based computations; (2) mesh-alignment sensitivity;
(3) h-adaptivity=spectral adaptivity; (4) multiple shear band=mode switching; (5) and 3-D shear
band simulation.

2. BASIC FORMULATIONS

2.1. Reproducing kernel hierarchical partition of unity

Currently, several di�erent mesh-free methods have been used in computational mechanics, such as
smoothed particle hydrodynamics (SPH) [13], element-free Galerkin (EFG) [5], reproducing kernel
particle method (RKPM) [12; 14–16], h-p clouds [17], etc. The particular mesh-free method used
in this numerical simulation is the latest version of reproducing kernel particle method (RKPM).
A detailed presentation of the methodology can be found in Li and Liu [18]. For clarity, some of
the technical ingredients of the method are outlined below.
By constructing a group of the kernel functions {K[0](x);K[1](x); : : : ;K[�](x)}, one may form

a reproducing =�ltering representation

u%[�](x)= �R
m
% u(x)=

∫


K%(y − x)u(y) d
 (2)

where K%(x)=
∑�

�=0 C�K
[�]
% (x), |�|=m, K%(x) :=

1
�n

K(x) and C� are given constants. Two in-

terpolation schemes may be formed

u%[�];h(x)=
∑
‘=�

u‘K‘(x) (3)

or

u�[�];h(x)=Rm
� u(x)=

∑
‘∈�

u[00]‘ K[00]
‘ (x) +

∑
‘∈

◦
�

�∑
�=1
u[�]‘ K[�]

‘ (x); |�|6m (4)
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where

�= {‘|1; 2; : : : ;NP}; ◦
�⊂⊂� (5)

K[�]
‘ (x) :=P

(
x‘ − x
%

)
b(�)(x)�%(x‘ − x)�V‘ (6)

and

Mb(�)(x)= 1(�); 1(�) = {0; : : : ; 0; 1︸ ︷︷ ︸
�

; 0; · · · ; 0}T (7)

We refer to

	 := {K[0]
‘ (x);K[1]

‘ (x); : : : ;K[�]
‘ (x)}‘∈� (8)

as the hierarchical partition of unity, and refer to {K[�](x)}, � 6=0, as the pre-wavelets, or simply
wavelet functions. Note that {K[0]

‘ (x)} is a partition of unity:
∑
‘∈�

K[0]
‘ (x)= 1 (9)

whereas {K[�]
‘ (x)}; � 6=0 are the partition of nullity:

∑
‘∈�

K[�]
‘ (x)= 0 (10)

Remark 2.1. (i) Equations (2)–(3) are mesh-free discretizations;
(ii) Equations (1)–(3) are non-local approximations;
(iii) The set (8) is at most a frame, not a basis in L2(
);
(iv) Equation (2) is related to the so-called ‘synchronized reproducing kernel interpolant’, which

is an ideal platform to numerically implement the strain-gradient plasticity theory, or non-
local plasticity theory (see Chen and Wu [19]).

Example 2 (2-D bilinear shape function). Let �= (0,0), (1,0), (0,1), (1,1); and x‘=(x1‘; x2‘),
x=(x1; x2). The vectors b(�)(x) in (6) are determined by the moment equations



mh00 mh10 mh01 mh11

mh10 mh20 mh11 mh21

mh01 mh11 mh02 mh12

mh11 mh21 mh12 mh22







b(00)1

b(00)2

b(00)3

b(00)4



=



1
0
0
0







mh00 mh10 mh01 mh11

mh10 mh20 mh11 mh21

mh01 mh11 mh02 mh12

mh11 mh21 mh12 mh22







b(10)1

b(10)2

b(10)3

b(10)4



=



0
1
0
0
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mh00 mh10 mh01 mh11

mh10 mh20 mh11 mh21

mh01 mh11 mh02 mh12

mh11 mh21 mh12 mh22







b(01)1

b(01)2

b(01)3

b(01)4



=



0
0
1
0







mh00 mh10 mh01 mh11

mh10 mh20 mh11 mh21

mh01 mh11 mh02 mh12

mh11 mh21 mh12 mh22







b(111 )

b(112 )

b(11)3

b(11)4



=



0
0
0
1




The kernel-functions constructed based on (6) are displayed in Plate 1.
Then, the zeroth order reproducing kernel interpolation, and higher-order reproducing kernel

approximation can be put in the form

u�[0](x)=
∑
I∈�
u[0]I 	

[0]
I (x) (11)

and the higher-order wavelet interpolation, in the form

u�[�](x)=
∑
I∈�
u[0]I 	

[0]
I (x) +

∑
I∈

◦
�

�∑
�=1
u[�]I 	

[�]
I (x); �=1; 2; 3 (12)

where {	[0]I (x)} is the basis of the zeroth-order kernel function, and {	[�]I (x)}, � 6=0, are the
wavelet-like basis.

2.2. An explicit mesh-free Galerkin formulation

Because of its simplicity, explicit computation is very attractive in practical computations, espe-
cially for large-scale computations of large deformation problems. However, most inelastic ma-
terials are nearly incompressible, which poses some technical di�culties in displacement-based
�nite element simulations. To be more speci�c, the displacement-based Galerkin formulation may
induce volumetric locking, which leads to computational failure. In practice, such di�culty is usu-
ally handled by either mixed formulations, for instance the incompatible element or enhanced strain
methods (e.g. [20]), or some ad hoc treatments, such as one-point (1-pt) integration=hour-glass
control procedure, and selective reduced integration scheme (e.g. the B-bar element proposed by
Hughes [21]). Furthermore, to capture strain localizations in inelastic materials, one may have to
develop special discontinuous incompatible element, which, to some extent, complicates the imple-
mentation since they are usually not suitable for explicit computations. For example, an immediate
di�culty is how to adapt the mixed formulations for a quadrilateral (or hexahedral) grid. One of
the few options available is to use 1-pt integration with hour-glass control scheme [22]. However,
this leads to other problems as well. For instance, the actual shear-band mode may consist of
some hour-glass modes; thus, the suppression of the hour-glass mode while retaining the correct
shear-band mode is entirely based on trial and error. Particularly, for the power-law-governed
elasto-viscoplastic solids, it has been found in a recent study by Watanabe et al. [23] that it may
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be di�cult to suppress hour-glass modes for large power index, m. Besides these drawbacks, there
is a major di�culty for explicit �nite element algorithm to proceed with h-adaptive re�nement,
while keeping the quadrilateral (or hexahedral) pattern intact. To remedy the inadequacy of �nite
element methods, a mesh-free explicit formulation is proposed.
Consider the equation of motion

�ji;j + bi= �v̇i (13)

where b is the Cauchy stress, b is the body force per unit volume, � is the density of the material
and v is the velocity of the continuum. For simplicity, the boundary conditions are speci�ed with
respect to the referential con�guration

Pn0 =T0; ∀X∈�TX (14)

u= u0; ∀X∈�uX (15)

where P is the �rst Piola–Kirchho� stress tensor, and �TX ∪�uX = @
X .
Consider a weighted residual form of (13):∫


x
{� �ui − �ji;j − bi}�ui d
x =0 (16)

Then the following weak form can be derived:

∫

X
�0 �ui�ui d
X +

∫

X
PJi�FTJi d
X −

∫

X
Bi�ui d
X

−
∫
�TX

T 0i �ui d�−
∫
�uX

Ti�ui d�=0 (17)

Assume that the discrete trial, and weighting functions have the form

uhi (X; t) =
NP∑
I=1
NI (X)diI (t) (18)

�uhi (X; t) =
NP∑
I=1
NI (X)�diI (t) (19)

Unlike FE approximation, the RKPM interpolant has a drawback: its inability to represent
essential boundary condition via boundary value interpolation, i.e.

uhi (X; t) 6= u0i (X; t); ∀X∈�u (20)

This is reected in the weak form (17) as the extra term,
∫
�uX
Ti�ui d�, which is a nuisance because

the traction force, Ti, is unknown on the essential boundary. Before proceeding further, we have to
modify the mesh-free interpolant such that the essential boundary conditions are taken into account
in the interpolation scheme. To do this, we distribute Nb number of particles on the boundary �u,
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and impose certain conditions on the mesh-free interpolant, uh(X; t)∈ span{NI (X) | I =1; : : : ;NP},
such that

uhi (XI ; t)= u
0
i (XI ; t)=: gi(XI ; t); I =1; : : : ; Nb (21)

For simplicity, we denote giI (t) := gi(XI ; t); I =1; : : : ; Nb. Let Nnb :=NP−Nb. The particles and
the associated discrete �eld variables can be separated into two groups, each of which are marked
with superscript b and nb respectively:

uhi (X; t) =
NP∑
I=1
NI (X)diI (t)=

Nb∑
I=1
NbI (X)d

b
iI (t) +

Nnb∑
I=1
NnbI (X)d

nb
iI (t)

=Nb(X)dbi (t) +N
nb(X)dnbi (t) (22)

where

Nb(X) := {Nb1 (X); : : : ; N bNb(X)}; dbi (t) := {dbi1(t); : : : ; dbiNb(t)} (23)

Nnb(X) := {Nnb1 (X); : : : ; N nbNnb(X)}; dnbi (t) := {dnbi1 (t); : : : ; dnbiNnb(t)} (24)

Let

Db :=




...
· · · NbI (XJ ) · · ·

...



Nb×Nb

(25)

Dnb :=




...
· · · NnbI (XJ ) · · ·

...



Nb×Nnb

(26)

Thus the enforced discrete essential conditions, (21), may read as follows:

Dbdbi (t) = gi(t)−Dnbdnbi (t) (27)

Db�dbi (t) =−Dnb�dnbi (t) (28)

where gi(t) = {gi(XI ; t)}; I = 1; : : : ; Nb.
After inverting matrix Db, one has

dbi (t) = (D
b)−1gi(t)− (Db)−1Dnbdnbi (t) (29)

�dbi (t) =−(Db)−1Dnb�dnbi (t) (30)
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Substituting (29) back into (22) yields

uhi (X; t) =
NP∑
I=1
NI (X)diI (t)=Nb(X)(Db)−1gi(t)

+ (Nnb(X)−Nb(X)(Db)−1Dnb)dnbi (t) (31)

�uhi (X; t)= (N
nb(X)−Nb(X)(Db)−1Dnb)�dnbi (t) (32)

Obviously, for XI ∈�u; I =1; : : : ; Nb

uhi (XI ; t) = giI (t) (33)

�uhi (XI ; t) = 0; I =1; 2; : : : ; Nb (34)

Equation (31) can also be interpreted as the transformation of shape functions, i.e.

uhi (X; t)=
Nb∑
I=1
Wb
I (X)uiI (t) +

Nnb∑
I=1
Wnb
I (X)diI (t)=W

b(X)u0i (t) +W
nb(X)dnbi (t) (35)

where Wb(X) :=Nb(X)(Db)−1, and Wnb(X) := [Nnb(X)−Nb(X)(Db)−1Dnb]. One may notice that
the new shape functions in (35) at essential boundary possess the Kronecker delta, or interpolation
property.
To this end, only a set of discrete number points, Nb, satisfy the essential boundary condition.

However, based on (32), we claim that∫
�u
T i�uhi d�=

∫
�u
T i(X; t){Nnb(X)−Nb(X)(Db)−1Dnb}�dnbi (t) d� ≈ 0 (36)

In 2-D case, this fact can be made clear by considering a special case. Assume that the essential
boundary is a straight line segment [a; b], and there are Nb particles distributed evenly on the
segment. For �xed t, let

fi(X)= (Nnb(X)−Nb(X)(Db)−1Dnb) · �dnbi (37)

Then each of the three scalar functions, fi(X), has Nb points that have zero values along the
boundary segment [a; b]. This is because

Nb(XI )(Db)−1 = (0; : : : ; 0; 1︸ ︷︷ ︸
I

; 0; : : : ; 0) (38)

(0; : : : ; 0; 1︸ ︷︷ ︸
I

; 0; : : : ; 0)Dnb=Nnb(XI ); I = 1; 2; : : : ; Nb (39)

Consequently

(Nnb(XI )−Nb(XI )(Db)−1Dnb)= (0; 0; : : : ; 0); I =1; 2; : : : ; Nb (40)
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Based on the trapezoidal rule, or the Simpson rule, the following estimate can be reached imme-
diately:

∣∣∣∣
∫
�u
T i�uhi d�

∣∣∣∣6



sup
X∈[a; b]

{∣∣T i(X; t)∣∣} (b− a)h2
12

∣∣∣f(2)i (�)
∣∣∣ ; a¡�¡b

sup
X∈[a; b]

{∣∣T i(X; t)∣∣} (b− a)h4
180

∣∣∣f(4)i (�)
∣∣∣ ; a¡�¡b

(41)

This is because we deliberately choose the sample points of the trapezoidal rule, or the Simpson
rule as those points at which the essential boundary condition is enforced. Thus at every sampling
point, XI ; I =1; 2; : : : ; Nb; fi(XI )= 0, and therefore the discrete summation

∑
I fIwI =0; here wI

are the integration weight. Note that h := (b− a)=Nb. This estimate can be further improved, pro-
vided that the window function is ‘very smooth’. In other words, Equation (41) suggests that
if the window function is su�ciently smooth, the error coming from the approximated essential
boundary condition (33) can be made the same, or even less than the interpolation error; this
proves our claim.
Substitute the modi�ed reproducing kernel interpolant,

uhi (X; t)=
NP∑
I = 1

NI (X)diI (t) (42)

as both trial and weighting functions into the weak formulation. The discrete equations of motion
can be put into the standard form,

M �d + f int = fext (43)

where M is the mass matrix, and

fextI =
∫
�TX

T 0i (X; t)NI (X)ei d� +
∫

X
Bi(X; t)NI (X)ei d
 (44)

f intI =
∫

X
PJi
@NI
@XJ

ei d
 (45)

In computation, an elasto-visco-plasticity material is used as constitutive model, which is
described in the appendix. A forward gradient time integration scheme—the rate tangent mod-
ulus method by Peirce et al. [24] is adapted as the time integrator for constitutive update, and the
conventional predictor–corrector scheme is used to update the deformation. The only di�erence
between the mesh-free explicit scheme and the conventional FEM explicit scheme is that in each
time iteration one has to enforce, or to update the essential boundary conditions:

dbi (t) = (D
b)−1(gi(t)−Dnbdnbi (t)) (46)

ḋ
b
i (t) = (D

b)−1(ġi(t)−Dnbḋ
nb
i (t)) (47)

The essential boundary condition enforcement is accurate, only if there are enough particles dis-
tributed along the essential boundary.

Copyright ? 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 48:1285–1309
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Figure 1. Piecewise essential boundaries.

Remark 2.2. (1) The ability of reproducing kernel shape functions to avoid locking in a
displacement-based formulation is due to the following reasons:

(i) It is a higher-order polynomial interpolation. In Example 2, the embedded window function
is a 2-D cubic spline box function, and the kernel function is constructed by multiplying an
additional bilinear polynomial basis;

(ii) The use of sub-reduced integration scheme. All the calculations in this paper have been done,
unless speci�ed otherwise, by using 2× 2 Gauss quadrature integration in 2-D, and 2× 2× 2
Gauss quadrature integration in 3-D; they are still reduced integration schemes in principle;
however, it appears that neither hour-glass mode, nor zero-energy mode occurs under such
sub-reduced integration scheme.

(2) Equations (46) and (47) are a local essential boundary enforcement. In this setting, no global
transformation is needed as proposed by Chen et al. [25]. One can enforce the essential boundary
conditions piece by piece to avoid inverting large algebraic matrix, as illustrated in Figure 1.

3. MESH-ALIGNMENT SENSITIVITY

3.1. Model problems

The model problems considered in this paper are tension and compression tests of elasto-viscoplastic
specimens under either plane strain, or three-dimensional loading conditions. For plane strain prob-
lem, the prescribed displacement=velocity boundary condition is imposed at both ends of the spec-
imens as shown in Figure 2. Numerical results obtained from tension test and compression test
under the plane strain condition are displayed in Plates 2 and 3.

3.2. Mesh-alignment sensitivity

In fact, mesh-alignment sensitivity would be the �rst di�culty to encounter, if anyone wishes to
use FEM to simulate shear-band formations. In the early study [2], Tvergaard et al. used the
classic quadrilateral element (CST4), which consists of four diagonally crossed constant strain
triangle elements, to simulate shear-band formations under plane strain condition. CST4 element
was originally designed by Nagategal et al. [26] to be used in a displacement-based formulation to
avoid locking for computations in elasto-plastic materials. In their work [2], Tvergaard et al. made

Copyright ? 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 48:1285–1309
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Plate 1. Two-dimensional meshfree hierarchical partition of unity generated by the bilinear polynomial basis, 
P = (1, x1, x2, x1x2) : (1) α = (0, 0), (2) α = (1, 0), (3) α = (0, 1), (4) α = (1, 1)



Plate 2. The contours of the effective viscoplastic strain in the tensile bar. 

Plate 3. The contours of the effective viscoplastic strain in a slab under the compression test (r0 = 0.1 mm).

Copyright © 2000 John Wiley & Sons, Ltd.   Int. J. Numer. Meth. Engng. 2000; 48



Plate 4. Comparison between FEM and RKPM with different aspect ratios in mesh/particle distribution.

Copyright © 2000 John Wiley & Sons, Ltd.   Int. J. Numer. Meth. Engng. 2000; 48

Plate 5. The comparison between the results based on normal lumped mass and special lumped mass techniques.

(a) 20 x 20

(b) 30 x 20

(c) 40 x 20

(d) 50 x 20
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Plate 6. The high resolution shear-band solution obtained by special lumping technique.

Plate 7. The contours of the effective viscoplastic strain in the tensile bar (only a quartern specimen shown): 
(a) without any adaptivity; (b) the first level adaptive solution; and (c) the second level adaptive solution.
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Plate 8. The contours of the effective viscoplastic strain in the tensile bar: (a) without wavelet adaptivity; 
(b) with wavelet adaptivity (α = (1, 0), (0, 1)); and (c) with wavelet adaptivity (α = (1, 0), (0, 1), (1, 1)).

Plate 9. The shear-band in the tensile bar represented by particle formation: (a) without wavelet adaptivity;
(b) with wavelet adaptivity; and (c) the adaptivity pattern in undeformed configuration.



Plate 10. Multiple shear-bands in elasto-viscoplastic materials with different magnitude of imperfections: 
(a) r0 = 0.0041 mm; and (b) r0 = 0.003 mm.
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Plate 11. The contours of effective viscoplastic strain on three-dimensional tension specimens with different aspect ratios 
between width and thickness: (a) t/W = 1/10; (b) t/W = 1/5; (c) t/W = 1/4; (d) t/W = 1/2; (e) t/W = 3/4; (f) t/W = 1/1.

Copyright © 2000 John Wiley & Sons, Ltd.   Int. J. Numer. Meth. Engng. 2000; 48



NUMERICAL SIMULATIONS OF STRAIN LOCALIZATION 1295

Figure 2. Model Problem: tension test (v(t)¿0); compression test (v(t)¡0).

an optimal arrangement of the aspect ratio of CST4 element, such that the shear-band formations
are aligned with the boundary of �nite elements, and sharp shear-bands are accurately captured
in the computation. Few years later, following the same philosophy, Tvergaard [27] invented a
box-shaped super-element (BST24) consisting of 24 tetrahedral element to compute the shear-band
formation in three-dimensional (3-D) space. Both CST4 and BST24 elements show strong mesh-
alignment sensitivity, which means that when shear-band orientation is oblique to the diagonal
line or plane of the quadrilateral=hexahedral element, the computational results deteriorate. Thus,
special mesh design is needed to align the �nite element boundary properly along the shear-band
orientation a priori.
To overcome the limitations of CST4=BST24 element, special elements have been considered and

designed to relieve locking and o�set the undesirable mesh-alignment sensitivity, though sometimes
it is di�cult to achieve both ends at the same time. These special elements usually fall into the
following categories:

(i) QR4-element: That is, the four nodes quadrilateral with 1-pt integration=hour-glass control,
which was �rst used in shear-band calculation by Nemat-Nasser et al. [22]. The 3-D coun-
terpart of QR4-element is the brick element (BR8) with 1-pt=hour-glass control, which was
�rst used by Zbib et al. [28] in 3-D shear-band calculation.

(ii) QLOC-element [29] QLOC-element and its derivatives, such as QS [30], and the regularized
discontinuous element [31].

In practical computations, all these elements have pros and cons. The QR4=BR8 class element has
the best overall performance, but it is di�cult to make any h-type re�nement, because any valid
h-adaptivity will destroy the simple structure of QR4=BR8 elements. Moreover, unlike some other
numerical computations, the strain localization modes often contain hour-glass modes; in other
words, hour-glass modes are not independent of strain localization modes; usually the choice of
arti�cial damping force is completely based on either empirical experiences, or plausible argument,
which is at the expense of sacri�ce any hope for an accurate prediction on the shear-band formation
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in post-bifurcation region. The QLOC-type elements are specially designed to eliminate mesh
alignment sensitivity for arbitrary mesh arrangement, and they are theoretically sound and suitable
for mixed formulations; but they are complicated to implement, apart from the fact that usually
they are required to locate the incipient shear-band position, or the strong=weak discontinuous
line=surfaces a priori. In general, it is di�cult to use them if the singular line=surface has non-
zero curvature, or if one deals with complicate shear-band patterns, such as the micro-shear-band
and macro-shear-band interaction in crystal plasticity. Therefore, the available remedies for mesh-
alignment sensitivity, in our opinion, are either too complex to use, or too ad hoc and severely
limited for a user in general purposes.
In principle, one may think that the mesh structure constraint is a numerical artifact that is

coerced subjectively onto the deformed continuum, which might be more than necessary as the
physically required compatibility condition of the solid. On the contrary, mesh-free methods, which
do not have any de�nite mesh structure, may be free from such mesh-alignment constraints. Based
on this intuitive notion, numerical experiments have been conducted to test this hypothesis. In a
comparison study, a velocity boundary conditions is prescribed on both top=bottom surface of a
slab, and an imperfection is planted as the reduction of yield stress at the lower left corner the
specimen. The computations have been carried out using both CST4-element, and RKPM shape
function at the same specimen with di�erent aspect ratios of element size or size of background
cell. The FEM and RKPM results are juxtaposed in Plate 4. One can �nd that comparing with
the results obtained using CST4-element, the shear-band results obtained by using RKPM shape
function always have the same, and correct orientation regardless of the aspect ratio of background
cells.

4. NEW TECHNIQUES

4.1. A mesh-free hour-glass control strategy

As mentioned above, QR4-element is the only viable option in explicit codes for shear-band
computations, and it appears to be the most popular choice used in practice (e.g. [32; 22; 28]),
because of its simplicity. One of the shortcomings of the scheme is how to choose a suitable
hour-glass control scheme to suppress the hour-glass modes, while retaining the correct shear-band
mode, because shear-band mode may consist of certain of hour-glass modes as well [22]. In fact,
it has been pointed out in [22] that constitutive model itself may stimulate spurious deformation
and the values of the hour-glass control parameters begin to a�ect the numerical results, once the
deformation becomes unstable. It would be interesting to compare the mesh-free wavelet modes
presented in Section 2 and hour-glass modes due to under integration. The mesh-free wavelet
modes in Example 2 can be expressed as

∑
I∈�

K[10]
I (xI − x)= 0 (48)

∑
I∈�
(x1I − x1)K[10]

I (xI − x)= 1 (49)

∑
I∈�
(x2I − x2)K[10]

I (xI − x)= 0 (50)
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∑
I∈�
(x1I − x1)(x2I − x2)K[10]

I (xI − x)= 0 (51)

∑
I∈�

K[01]
I (xI − x)= 0 (52)

∑
I∈�
(x1I − x1)K[01]

I (xI − x)= 0 (53)

∑
I∈�
(x2I − x2)K[01]

I (xI − x)= 1 (54)

∑
I∈�
(x1I − x1)(x2I − x2)K[01]

I (xI − x)= 0 (55)

∑
I∈�

K[11]
I (xI − x)= 0 (56)

∑
I∈�
(x1I − x1)K[11]

I (xI − x)= 0 (57)

∑
I∈�
(x2I − x2)K[11]

I (xI − x)= 0 (58)

∑
I∈�
(x1I − x1)(x2I − x2)K[01]

I (xI − x)= 1 (59)

whereas hour-glass mode in a four-node quadrilateral element can be represented by the mode
shape function, HI (x) (see [33]), which satis�es the following conditions:

∑
I∈�e

HI (xI − x)= 0 (60)

∑
I∈�e

(x1I − x1)HI (xI − x)= 0 (61)

∑
I∈�e

(x2I − x2)HI (xI − x)= 0 (62)

∑
I∈�e

H 2I (xI − x)= 4 (63)

where �e is the nodal index set in an element. It is clear that the hour-glass mode is also a
partition of nullity, and it can be viewed as a special wavelet function as well, provided that
the hour-glass modes are also compact supported. It, then, suggests that not all hour-glass modes
are hazardous, and, as we speculate, non-zero energy modes may only furnish a ‘complete’ basis
in the discrete functional space for elliptic type of partial di�erential equations (PDEs), but not
for hyperbolic, parabolic as well as mixed type PDEs; in other words, the non-trivial zero-energy
modes may carry some useful information for non-elliptic PDEs. Thus, the use of viscous force to
suppress all the hour-glass modes without discretion can lead to potential errors in numerical sim-
ulations. In contrast to FEM, the 1-pt integration technique can still be used in reproducing kernel
particle method without invoking arti�cial damping, or arti�cial sti�ness. Precisely speaking, the
undesirable hour-glass modes may be removed, or suppressed by properly adjusting the support
size of the shape function, or dilation parameters of the window function, instead of imposing
external viscous forces or modifying sti�ness matrix. By doing so, one may be able to preserve
the accuracy of the post-bifurcated shear band solutions without the pollution caused by the arti-
�cial hour-glass control. In Figure 3, a series of shear-band formations is displayed in a quarter
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Figure 3. The mesh-free hour-glass control scheme: adjustment of dilation parameters ax, ay:
(a) ax = ay =0:53; (b) ax = ay =0:70; (c) ax = ay =0:85; (d) ax = ay =1:0; (e) ax = ay =1:12;

and (f) ax = ay =1:2.
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specimen of a compressed slab. The computations have been carried out using 1-pt integration for
regular RKPM shape functions with di�erent support sizes, which is characterized by the dilation
parameter, ax; ay. One may �nd that as the normalized dilation parameters, ax and ay, increase
from 0:53 to 1:2, the undesirable hour-glass modes vanish in the process.

4.2. Special lumping technique

In explicit calculation, the row summation technique is often adopted to avoid the inversion of
a large size consistent mass matrix, which not only o�ers computational convenience, but also
provides reasonable frequency contents. In this study, we have found that di�erent lumping tech-
niques will produce di�erent outcomes. In numerical experiments, two types of lumped mass are
used in this study: (i) the conventional row-sum technique (see [21])

mij =




∫


�0Ni d
; i= j

0 i 6= j
(64)

(ii) the ‘special lumping technique’ [34]:

mij =



�
∫


�0N 2i d
; i= j

0 i 6= j
(65)

where

�=

∫


�0 d


∑NP
I=1

∫


�0N 2I d


(66)

The justi�cation of Hinton’s special lumping technique is that it retains the diagonal part of the
consistent mass matrix, and assumes that the diagonal part of the consistent mass matrix covers the
correct frequency range of the dynamic response, whereas the non-diagonal part of the consistent
mass matrix is not essential for the �nal results, or at least not in quasi-static cases. This technique
ensures the positive de�niteness of the mass matrix, and eliminates the singular mode. A possible
setback could be that it cuts o� the connection, or interaction between the neighbouring material
particles. However, this setback may be compensated by the non-local nature of mesh-free methods,
because each material point in mesh-free methods is covered by more than one shape function;
therefore the interaction between the adjacent particles is always present. As a matter of fact,
in our 2-D calculation, as many as 16 to more than 100 particles share their inuences on the
movement of a single particle; in the 3-D case, as many as more than 300 particles could be
within the domain of inuence of a single particle.
In numerical experiments, we simulate the tension test with both the row-sum lumping technique

and the special lumping technique. In the particular test shown in Plate 5, two types of imperfection
are planted in the tensile bar: (1) geometric imperfection: a reduction of the width of the tensile
bar with the maximum reduction, 5 per cent at the middle cross-section; the tension specimen; (2)
yield stress reduction, a distributed reduction of yield stress centred at the middle of the specimen.
In this case, two sets of shear bands will be triggered by di�erent sources of imperfections. The
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outcome of the numerical computation is dictated by the competition between these two sets of
shear bands. From Plate 5, one may see that the row-sum lumped mass solution predicts the shear
band formation due to the reduction of yield stress well, and only leave a hardly noticed trace of
another set of shear bands, which is due to geometric imperfection, in the background whereas
for the numerical results obtained from special lumping technique, the two sets of shear bands are
equally emphasized, and a great deal of detailed resolution is captured in the numerical solution.
Apparently, combining the reproducing kernel interpolation with special lumping technique can
provide high-quality, detailed resolution shear-band solution in numerical simulations. A high-
resolution shear-band in a slab under compression is shown in Plate 6; it is interesting to note
that the detailed pattern of the e�ective plastic strain contour seems to resemble the ‘patchy slip’
pattern in crystals [35].

5. ADAPTIVE PROCEDURES

In this section, some adaptive procedures, which are used to seek the re�nement of the numerical
solutions, are discussed. The attention here is focused on the two di�erent types of adaptive
procedures: h-adaptive re�nement and a spectral-adaptive (wavelet) re�nement.

5.1. h-adaptive procedure

The h-type re�nement procedure has been used to capture shear-band formation for quite a while,
notably, by Ortiz et al. [36], Belytschko et al. [37] and Zienkiewicz et al. [38] . However, technical
di�culties have remained in the context of explicit �nite element method. The commonly used
Delaunay triangulation will certainly destroy the much needed quadrilateral (or hexahedral) pattern,
and consequently the re�ned mesh is not suitable for explicit calculation anymore, though there
is a recent attempt to store the triangle (or tetrahedra) element in explicit computation (see [39]);
nevertheless, triangle element mesh is highly mesh-alignment-sensitive to the shear-band formation.
On the other hand, mesh-free methods enjoy an amazing simplicity in the h-adaptive procedure.
For the most part, one can just insert particles into the strain localization zone, and the subsequent
numerical solutions will be automatically improved.
Since strain localization is a bifurcation problem in nature, elliptic adaptive indicators break

down, a primitive or intuitive adaptive criterion is adopted here to determine where the adap-
tive region should be. We compare the e�ective plastic strain of every particle with that of its
neighbouring particles, and choose those regions where particles with higher percentage of relative
e�ective plastic strain to re�ne the numerical solution. This primitive adaptive index is fairly easy
to implement and for the problems that we computed it works e�ciently. It should be mentioned
that a systematic study of mesh-free h-adaptive re�nement in shear-band computation has been
conducted by Jun and Im [40]. Some convergence issues have been addressed there, and we refer
the readers to this recent study. To illustrate the h-adaptive procedure, a two-level, successive
h-adaptive solution of a tension test is presented in Plate 7 and Figure 4. In the tension test shown
in Plate 7 and Figure 4, the computation is carried out only in a quarter specimen by enforcing
the symmetry conditions. In the zero-level run, 231 particles are used forming a uniform parti-
cle distribution in the specimen, which contains 200 background cells. In each cell, the 2 × 2
Gauss quadrature integration scheme is used. Based on relative e�ective plastic strain criterion,
an automatic adaptive re�nement procedure is implemented: at the �rst-level re�nement, all the
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Figure 4. The shear-band formation in the tensile bar (only a quarter specimen is shown): (a) without any
adaptivity; (b) the �rst-level adaptive solution; and (c) the second-level adaptive solution.

regions that have 25 per cent or more of relative e�ective strain are being re�ned, and the total
number of particles increases to 429, with the corresponding 377 integration cells, which bring the
quadrature points to 1508; at the second-level re�nement, all the region that have 12 per cent or
more of relative e�ective strain are re�ned, and the total particle number increases to 1264, and
total quadrature points increase to 4664 respectively.
In order to explain why �nite element approximation has di�culties in accommodating

h-adaptive re�nement in an explicit code, a simple illustration is demonstrated in Figure 5. If
the above mesh-free discretization has a one-to-one correspondence with a quadrilateral mesh, one
can set the �ctitious connectivity map for each integration cell, as if they were individual elements.
After a �rst-level re�nement, we plot the deformed mesh in Figure 5; one can �nd immediately
the entanglement and extrusion between the �ctitious elements, which hints the break down of
FE computation. Of course, in real FE approximation, this can only happen, provided that one
can construct higher-order quadrilateral element along the boundary between coarse mesh and �ne
mesh.

5.2. Spectral (Wavelet)-adaptive procedure

Using spectral type of re�nement to capture the localization mode can be traced back to the spectral
overlay technique proposed by Belytschko et al. [41], which superposes a set of harmonic functions
over the original FE shape functions at the place where shear band is supposed to develop.
In contrast to the spectral overlay technique, the adaptive wavelet algorithm proposed here is

more general in nature. Instead of using analytical harmonic functions, we use the mesh-free hier-
archical partition of unity outlined in Section 2, in which the higher-order spectral kernel functions
are akin to the original RKPM shape functions. Intrinsically, the mesh-free hierarchical bases have
a distinct distribution of spectral contents of the interpolating object among the di�erent bases; in
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Figure 5. Why does FEM have troubles in h-adaptive re�nement?

other words, they consist of a multi-spectral wavepacket. As a matter of fact, as shown in Refer-
ence [14], the higher-order basis functions do �t into the de�nition of the pre-wavelet function.§

Furthermore, the orientation of the wavelet basis is isotropic in space, and the enhancement of the
numerical solution due to wavelet basis comes out naturally as the outcome of numerical com-
putation, though the adaptive regions are selected by a given criterion. Since the wavelet basis is
genetically connected with the primary interpolation basis, the successive alternating h-p re�nement
processes may become possible.
Since the wavelet basis constitutes a partition of nullity, it introduces redundant degrees of

freedom into the primary shape function basis. Consequently, the resulting sti�ness matrix, and
mass matrix will become ill-conditioned. In this study, we only use explicit integration scheme,
and hence the only problem that we face is a possible singular mass matrix. As a matter of
fact, the mass matrix will become singular, if the conventional row summation is used; and the
mass matrix will become extremely ill-conditioned when consistent mass matrix is employed. To
circumvent this di�culty, again we use the ‘special lumping technique’ to form the mass matrix.
Denote

{�‘(X )}= {{	[00]‘ (X )}; {	[10]‘ (X )}; {	[01]‘ (X )}; {	[11]‘ (X )}} (67)

By using the special lumping technique, one is always able to guarantee the positive de�niteness
of the mass matrix. The formula for mass matrix is given as follows:

msij =



!�ij

∫

X
�0�2j d
; i= j

0 i 6= j
(68)

§By ‘pre-wavelet’, we mean that the admissible conditions for the basic wavelet function is satis�ed.
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where

! :=

∫

X
�0 d
(∑NP

‘=1

∫

X
�0

(
	[00]‘

)2
d
 +

∑�
|�|=1

∑NAD
‘=1

∫

X
�0

(
	[�]‘

)2
d


) (69)

However, there is a setback for this particular proposal. As one may �nd out, using the special
lumping technique to avoid singular mass matrix will result in the increase of the total mass of a
mass conservative system, i.e. an arti�cial added mass will ow into the system during adaptive
procedure, since the added mass is proportional to the added degrees of freedom, or the wavelet
shape functions. This could undermine the accuracy of the numerical computations, because of
its non-conservative nature of mass. Nevertheless, based on our computational experiences, if the
added degrees of freedom is less than 20 per cent of the total degrees of freedom, there is no
obvious side-e�ect on numerical computations. Of course, a further evaluation may be necessary
for precise assessment. A numerical tension test is conducted, and the results are plotted in Plates
8 and 9. Only geometric imperfection is planted in the specimen, as the reduction of the width of
the tensile bar. The maximum reduction of the width of the tensile bar occurs at the middle cross-
section, 10 per cent; then, it linearly varies along the x2 direction back to the original width. From
Plates 8 and 9, one can �nd that there is a signi�cant improvement on the detailed resolution of the
numerical solutions due to the wavelet re�nement. Note that in Plate 9(c) the marked particles, i.e.
the dark region, are the particles where the higher-order wavelet kernels are turned on. A separate
account on wavelet-adaptive procedure on shear-band formation is presented in Reference [42].

6. SPECIAL TOPICS

6.1. Multiple shear-band=mode switching

As has been observed by Belytschko et al. [43], by changing the magnitude of induced imperfection
in an elasto-viscoplastic material, the shear-band solution may change its pattern, or switch its
mode, so to speak. This phenomenon may be attributed to the non-uniqueness of the non-linear
bifurcation problem. So far for multi-dimensional problems, to the best of the authors’ knowledge,
there are few theoretical analyses available, if there are any at all, in studying such phenomenon. In
reality and in computations, this is a typical bifurcation scenario where there are several di�erent
shear-band modes competing with each other; which shear-band mode will eventually dominate
in the process, depending on many di�erent factors, such as the strength of di�erent types of
imperfections, mesh or mesh-free discretization, or even the di�erences in mass lumping techniques,
which has been shown in the previous sections.
Because of the complex nature and the charming appearance of the multiple shear bands, it is

more often a pleasant experience of self-entertaining than the scienti�c curiosity to observe them
in numerical computations. Nevertheless, this phenomenon is often di�cult to be observed in �nite
element simulations, unless the �nite element mesh is �ne enough to have the adequate resolution.
In contrast to the �nite element method, the mesh-free RKPM interpolant is embedded in a highly
smooth window function, and thus it may serve as a high-quality �lter, which enable us to obtain
high-resolution solutions with relatively coarse particle distribution.
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In the previous computation done by Belytschko et al. [43], only a quarter of compression spec-
imen, 1:0× 1:0mm, is computed with a 128×128 �nite element grid. By changing the parameters
of the yield stress reduction formula

�Y(x; y)= ��Y[1:0−  exp{−[(x1 − x10)2 + (x2 − x20)2]=r20}] (70)

with parameter r0 = 0:1; 0:0039; 0:00195mm, three di�erent shear-band patterns are observed.
We repeated the same calculation for a full-size compression specimen, 2:4×2:0;mm, in a

121×101 particle distribution; three distinct shear-band patterns have been observed for three
di�erent values of r0 (Plates 3 and 10), i.e. r0 = 0:1; 0:0041; 0:003mm; the computations are done
with the row-sum lumped mass.
The employed RKPM shape functions is constructed by a cubic-spline window function, and

it can reproduce the polynomial basis P(X)= {1; x1; x2; x1x2} exactly. Compared to the �nite el-
ement calculation, the reproducing kernel particle method uses only one-fourth of the degrees of
freedom that the �nite element computation used, and obtains very sharp shear bands with distinct
structures.

6.2. Three-dimensional simulations

The numerical simulations of shear-band formation in 3-D space is not an easy task for �nite
element methods. There are only few documented results in literature on 3-D shear-band simulation
[27; 28; 44]. The main reason for this is the di�culty in special mesh design of a 3-D object. In
our opinion, the best 3-D shear-band simulation is the one using brick (hexahedral) element with
1-pt integration=hour-glass control scheme [28], which, as elaborated earlier, has di�culties for
h-adaptive re�nement, and how to choose proper hour-glass control parameter is also debatable.
Because of the lack of robust numerical interpolation scheme in 3-D case, high-quality shear-band
solutions are usually di�cult to obtain, which, to some extent, impairs the understanding of the
three-dimensional shear-band structures.
The computation has been done for tensile bars with rectangular cross-sections, which is il-

lustrated in Figure 6. The numerical experiment has been conducted for a set of specimens with
di�erent aspect ratios between the width of the specimen, W, and the thickness of the specimen,
t. As pointed out by both Zbib and Jubran [28] and Tvergaard [44], there are two distinct neck-
ing modes present in tension tests: the di�use necking mode and the localized necking mode
(shear-band), i.e. a narrow groove inclined to the cross-section of the tension specimen.
One of the features on 3-D shear-band structure obtained in previous study (e.g. [44]) is that

as the ratio t=W increases the necking mode in tensile bars with rectangular cross-section shifts
from the localized necking mode to di�used necking mode. The numerical simulations conducted
by using mesh-free interpolant also strongly support this claim, as one can observe the transition
process in Figure 7. Nevertheless, this process is not that simple. If one plots the contour of
e�ective plastic strain, one may �nd that the localized necking mode does not completely disappear
without trace as t=W exceeds 3=8, as reported in Reference [44]. In our numerical experiments,
there are strong traces of localized necking mode left after t=W approaches 1, as indicated in Plate
11. This result agrees, to certain degree, with the 3-D shear-band result presented in [28], though
we suspect that the visible localized shear-band modes at aspect ratio t=W =1; 3=2 in Reference
[28] may be due to the presence of the residual hour-glass modes.
The RKPM shape function used in the computations is constructed on a tri-linear poly-

nomial basis, P(X)= {1; x1; x2; x3; x1x2; x2x3; x3x1; x1x2x3}, and a three-dimensional cubic spline box
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Figure 6. The tensile bar with rectangular cross-section.

function is embedded within the shape function to serve as the window function. In actual com-
putations, a 2×2×2 Gauss quadrature integration is used in each integration cell. Again as in the
2-D computation, we have not experienced any volumetric locking in the computation, which is
based on a purely displacement-based explicit formulation.

7. CONCLUDING REMARKS

In this study, the reproducing kernel interpolants are used in a displacement-based explicit formu-
lation to simulate shear-band formation in an elasto-viscoplastic material. The computations show
that the mesh-free numerical algorithm developed here is viable, and robust in both 2-D and 3-D
shear-band simulations.
The main advantage of using meshless methods in simulating shear-band formation is its sim-

plicity. The best part of this approach is its ability to avoid volumetric locking while at the same
time upholding certain ‘mesh’ or particle distribution objectivity in a simple explicit formulation,
meaning that numerical results are independent of the particle distribution for a quasi-uniform par-
ticle distributions. Furthermore, the non-locality of mesh-free interpolation not only allows smooth
discontinuous strain �eld, but also allows us to use ‘the special lumping technique’ to produce
high-quality, detailed resolution shear bands. In addition, the results presented here show that mesh-
less discretization provides a favorable environment for h-adaptive re�nement and by using the
meshless hierarchical partition of unity proposed in Reference [18], a spectral (wavelet) adaptive
procedure has been successfully implemented to re�ne shear-band solutions.
In the end, the authors would like to caution readers that the ‘mesh alignment sensitivity’ has not

been completely eliminated in the mesh-free simulations, especially in the case of special lumping,
or in the case where the particle density is not quasi-uniform. Nonetheless, the situations have
been drastically improved compared with that of �nite element methods. A complete eliminating
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Figure 7. The shear-band formations in three-dimensional tension specimens with di�erent aspect ratios be-
tween the width and the thickness: (a)t=W =1=10; (b) t=W =1=5; (c) t=W =14; (d) t=W =1=2; (e) t=W =3=4;

and (f) t=W =1=1.

mesh-dependent sensitivities including mesh alignment sensitivity, as we speculated, would need
a special Galerkin formulation designed for strain localization problems.

APPENDIX. THE ELASTO-VISCOPLASTIC SOLID GOVERNED BY POWER LAW

In this Appendix, the elasto-viscoplastic solid used in the computations is outlined. The chosen
elasto-viscoplastic material is well regularized, at least in dynamic case, and the associated mathe-
matical problem is well-posed as well. The shear bands, in this case, are due to the imperfection,
or embedded inhomogeneities (see References [33; 37; 27]). The rate form constitutive equation
reads as follows:

∇b :=Celas(d − dvp) (A1)

where the Jaumann rate of Cauchy stress,
∇b, is de�ned as

∇b = ḃ − wb + bw (A2)
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and

d := dijei ⊗ ej; dij :=
1
2

(
@vi
@xj

+
@vj
@xi

)
(A3)

w :=wijei ⊗ ej; wij :=
1
2

(
@vi
@xj

− @vj
@xi

)
(A4)

A von-Mises-type viscoplastic solid is considered:

dvpij := ��( ��; ��)
@f
@�ij

(A5)

f(b; �) = �� − �=0 (A6)

��2 = 3
2 s : s; sij = �ij − 1

3 tr(b)@ij (A7)

�� :=
∫ t

0

√
2
3d
vp : dvp dt (A8)

The power law that governs the viscoplastic ow is described as

��= �̇0

[
��

g( ��)

]1=m
; g( ��)= �0

[1 + ��=�0]N

1 + (��=�1)2
(A9)

where m is the power index. This particular set of constitutive equations has been extensively used
in shear-band calculation (see [28]), serving as a bench-mark-type constitutive model.
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