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Summary. A micromechanics model is developed for the Reissner-Mindlin plate. A generalized eigen-- 
strain formulation, i.e., an eigencurvature/eigen-rotation formulation, is proposed, which is the analogue 
or counterpart of the eigenstrain formulation in linear elasticity. The micromechanics model of the Reiss-. 
ner-Mindlin plate is useful in the study of mechanical behavior of composite plates that contain randomly 
distributed inhomogeneities, whose sizes are close to the order of thickness of the plate; under those 
circumstances, the use of micromechanics of linear elasticity is not justified, and, moreover, it is inconsis-. 
tent with structural theories, such as the Reissner-Mindlin plate theory, that are actually used in engineer-. 
ing design. 
In this paper, the analytical solution of an elliptical inclusion embedded in an infinite thick plate is sought. 
In particular, the first order asymptotic (or approximated) solution of the elliptical inclusion problem is 
obtained in explicit form. Accordingly, the Eshelby tensors of the Reissner-Mindlin plate are derive& 
which relate eigencurvature and eigen-rotation to the induced curvature and shear deformation fields. 
Several variational inequalities of the Reissuer-Mindlin plate are discussed and derived, including the: 
comparison variational principles of Hashin-Shtrikman/Talbot-Willis type. As an application, variational 
bounds are derived to estimate the effective elastic stiffness of Reissner-Mindlin plates, specifically, the 
flexural rigidity and transverse shear modulus. The newly derived bounds are congruous with the Reiss- 
ner-Mindlin plate theory, and they provide an optimal estimation on effective rigidity as well as effective 
transverse shear modulus for unstructured composite thick plates. 

1 Introduction 

In this paper, we are concerned with a micromechanics model of  Reissner-Mindlin plates, 
which is an important  subject in engineering practices, and, to the author 's  knowledge, it has 

been neglected both in mechanics literature and engineering design. Part  of  the reason for 

such oblivion is that in the past the term, "composite plate", is only referred to the multiphase 

plates that have definite structures, such as laminar plates, or well structured lattice plates 
(e.g., Christensen [4], Mindlin [28], and Kaprielion et al. [20]). Today, many composite plates 

are made of  materials with randomly distributed heterogeneous constituents or unstructured 
composite materials, and therefore such "oblivion" becomes inexcusable. Recently, a micro- 

mechanics model of  the Love-Kirchhoff  plate is proposed by Li [26]. This study is a further 

development of  micromechanics in the framework of  structural mechanics, in an attempt to 
compound a systematic exposition of  structural micromechanics, which is in parallel with the 
micromechanics in linear elasticity. 

The micromechanics of  linear elasticity theory rests upon the notion of  representative 
volume element (RVE) (Hill [16], Hashin [15], Kr6ner  [22], [23], Willis [49], and Nemat-Nasser 

and Hori [32]), which is essentially a provision on the length scale of  the aggregates, within 
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Fig. 1. A representative area element 
of a Reissner-Mindlin plate made by 
unstructured composite materials 

which the micromechanics theory is valid in a statistical sense. For a composite plate, in 
which that characteristic size of the micro-element is only one order magnitude less than or at 
the same order of the thickness of the plate, the application of conventional micro-elasticity 
will become questionable. Furthermore~ since the conventional micro-elasticity theory does 
not carry any information about structural mechanics, if a structure's effective stiffness, such 
as flexural rigidity or transverse shear modulus, is evaluated by linear micro-elasticity, it is 
certainly not compatible with the theory of structure mechanics that is used in actual strength 
analysis. Strictly speaking, the constitutive equations of Reissner-Mindlin plates, i.e., the rela- 
tions between moment/resultant and curvature/rotation, are derived by taking into account 
additional internal constraints on the constitutive laws of linear elastic materials (e.g., Naghdi 
[30], [311). Thus, the constitutive relations at the structural level are fundamentally different 
from the constitutive relations at continuum level. For instance, a Reissner-Mindlin plate is 
intrinsically anisotropic in a mathematical sense, even if the matrix material of the plate is iso- 
tropic. It is, therefore, erroneous in principle to evaluate the effective stiffness of the Reissner- 
Mindlin plate based on the micromechanics of linear elasticity theory. 

From this standpoint, developing micromechanics models in structure mechanics can be 
instrumental in the engineering design analysis. To pursue such a novel scheme, the first logic- 
al step seems to be replacing the notion of the representative volume element by the notion of 
the representative area element (RAE): An representative area element defined for a material 
point in a two-dimensional (2-D) manifold is a material element which is a statistically repre- 
sentative of all the material points in a material neighborhood at a specified scale on the two- 
dimensional manifold. The continuum material point is called meso-area-element, whereas its 
micro-constituents are called micro-area-elements. An RAE must include a very large number 
of micro-area-elements, in order that the representative information is statistically stable. 
However, in three-dimensional (3-D) space, there is no physical object that is truly a 2-D 
mathematical manifold. An representative area element is actually a special representative 
volume element whose properties are homogeneous, in an average sense, in the direction that 
is perpendicular to the surface area of every micro-area-element. For a Reissner-Mindlin 
plate, it implies that the material concentration of every micro-area-element dominates statis- 
tically in the thickness direction. This is consistent with the Reissner-Mindlin plate theory, 
because the theory of Reissner-Mindlin plates is constructed through a special "homogeniza- 
tion" process (or averaging process) of 3-D elasticity theory in the thickness direction of the 
plate. Figure 1 illustrates an ideal model of such a representative area element. In reality, the 
inhomogeneous phases do not need to penetrate through the thickness of the plate, since it is 
only required that the concentrations of every species dominate statistically in the thickness 
direction. 

In Reissner-Mindlin plate theory, two rotational degrees of freedom are assigned at each 
material point on the plate's middle surface, and the rotation vector lies on the plane of the 
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middle surface, which makes the Reissner-Mindlin plate a prototype of a Cosserat surface in 
solid mechanics (Green and Naghdi [8]) 1. It is well known that the nature of  a Cosserat conti- 
nuum is fairly different from the nonpolar continuum, and it brings the "strain gradient" 
effect into the picture. Usually it may introduce an intrinsic length scale into the continuum 
theory (see [10]), which creates some intricacies in the mathematical treatment. For instance, 
in the elliptical inclusion solution, the prescribed constant eigen-curvature and eigen-rotation 
may not induce a constant curvature field as well as a constant rotation field inside the ellip- 
tical inclusion. To further complicate the situation, there is a interaction between the curva- 
ture field and the rotation field. Therefore, it is a non-trivial task to extend micromechanics to 

the Reissner-Mindlin plate. 
The paper is organized as follows: in Sect. 2, a detailed solution procedure of an elliptical 

inclusion problem is presented, and the Reissner-Mindlin plate version of Eshelby tensors, 
which relate the first-order asymptotic solution to the prescribed eigen-curvature/eigen-rota- 
tion field, is documented. Section 3 is devoted to a variational treatment of Reissner-Mindlin 
plates; in passing, the averaging properties of the Reissner-Mindlin plate are studied in detail. 
Subsequently, in Sect. 4, the new variational bounds on the effective stiffness for Reissner- 
Mindlin plates are derived explicitly, and several examples are discussed in connection to 

applications. 
It should be noted that the idea of seeking the effective elastic stiffness of thin plates as 

well as thick plates is not new 2. Qin et al. [34] appear to be the first ones to use the concept of 
generalized eigen-strain in classical plate theory. Prior to that, Caillerie [2] used homogeniza- 
tion techniques to anMyze both non-homogeneous thin and thick plates based on the linear 
elasticity theory; however, its engineering significance has yet to be explored. In fact, various 
theories of laminar plates are essentially discrete homogenizations in the thickness direction 
of the plate. To complement the laminar plate theories, it is an inevitable course to search for 

a micromechanics theory within a low-dimensional Cosserat continuum. 

2 Eigen-cun, ature and eigen-rotation formulation 

2.1 Preliminaries 

There are standard references on the theory of Reissner-Mindlin plates, such as the original 
papers by Reissner [35]-[37], Mindlin [27], and contemporary treatises, e.g., Constanda [5]. 
For easy reference, a brief list of formulas is given in the following. 

Assume that 22 is a simply connected, bounded region in 1R 2, which has a smooth bound- 
ary; subsequently, the normal vector, n, and tangential vector, s, on 0X2 are uniquely defined. 
The material space of the plate is defined as f2 x ~-h/2, h/2] C R a, (see Fig. 2), where h is the 
thickness of the plate that contains a composite material of multiple constituent phases. For 
convenience, we assume that the plate has n different phases, and each phase has distinct elas- 
tic moduli. 

1 There are also director theories proposed in fluid mechanics as well (e.g., Green and Naghdi [9], [11], 
[121). 
2 In this paper, the term "thick plate" is used strictly as the synonym ofa Reissner-Mindlin plate, whereas 
the term "thin plate" is used as the synonym of a Love-Kirchhoff plate. 
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As a priori condition, the following kinematic assumptions about the plate are assumed 

D(1 - 1/) (5o~r + 5c~69r ) + Dud~98r L~f~r = 2 

G~,f3 = D A28~;3 = Gn2h6,~Z = Gpe~a~, 

(1 + u) u 

where u is the Poisson ratio, D is the flexurat rigidity, D := 

E~2h 
and Gp is the transverse shear modulus, G~ := 2(1 + u) " 

E h  3 

(9) 

(lO) 

(11) 

(12) 

automatically fulfilled for the composite plate under consideration: 

(i) Tile plate median surface does not stretch or contract; 
(ii) There is no thickness stretch; 

(iii) The plate deforms due to flexure as welt as shear strain. 

The deflection of the plate is defined as 

w : S ) ~ R .  (1) 

The cross section of  the plate is still assumed as rind, but it can rotate independently from 
deflection. The rotation at each material point can be Characterized by a vector, qi = r 

q~: D-- ,  R x R .  (2) 

The flexural curvature of the plate, and the shear deformation of the plate are defined as 

1 

w = r + w ~ ,  (4) 

where (and in the rest of the paper) the Greek index always ranges from 1 to 2, In Fig. 3, a pic- 
torial illustration is given to describe the relationship between transverse shear deformation 
and the rotation of the cross section. 

For Reissner-Mindlin plates, the general constitutive relations involve the vertical external 
load (e.g., Vander Weeen [41]). Since we are only interested in the intrinsic micromechanics 
properties on a Cosserat surface, the external load, q, is always assumed to be zero in this 
paper. Thus, the constitutive equations on the Cosserate smTace are simplified as 

rn~.fi = L~-~TXev , (5) 

Q~ = a~%~ (6) 

or, inversely, 

x~f~ = ~,~r162 (7) 

where La/~(~ is the elastic stiffness tensor of the plate, and G~/~ are the transverse shear moduIi; 
correspondingly, N~/~r is the elastic compliance tensor, and He~ are the transverse shear com- 
pliances. For an isotropic plate, the elastic stiffness and elastic compliance take the forms 
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F i g .  2. The configuration of a Reissner- 
Mindlin plate 

Remark 2.1 For  a Reissner plate, A = v /~ /h ;  for a Mindlin plate, A = v /~z /h .  In general 
the shear coefficient, z = x(u), is a function of  Poisson's ratio, and it can be determined by 
considering dynamics effects (Mindlin [27]). Mindlin showed that z z is a lmost  linearly depen- 
dent on Poisson's ratio, u. It  ranges f rom 0.76 for u = 0 to 0.91 for r, = 1/2. In this paper,  we 

adopt  Mindlin's interpretation. 
[]  

By taking all external loads as zero, the equilibrium equations of  Reissner-Mindlin plates are: 

~ , ~  - Q~ = 0, (13) 

Q~,~ = O. (14) 

On 0s = S~ U SF, two types of  boundary  conditions are posed: 

- Deformat ion  prescribed boundary  conditions on S,,, 

~ := ~n~. = s  (15) 
^ 

~ := ~ . ~  = ~ ,  (16) 

~, = ~ .  (17) 

- Force prescribed boundary  conditions on SF, 

m~ := rn~n~n~ = ~fn, (18) 

Ms := m~pnc~s~ = 2~Is, (19) 

Q~ := Q ~ o  = ~)~. (~o) 

Following the convention, we denote the rotat ion and deflection field, (r w), that  satisfies 
the prescribed deformation boundary  conditions (15)-(17)  as the kinematically admissible 
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Fig. 3, An illustration of kinematic assumptions of the Reissner-Mindlin plate: a reference configuration; 
b deformed configuration 

deformation field, whereas we denote the moment  tensor and shear resultant field, ( m ~ ,  Q~), 
that  satisfies the prescribed force boundary  conditions (18)-(20)  and the equilibrium equa- 
tions (13) and (14) as the statically admissible resultant field. 

1 
Lemma 2.1. Suppose X ~  = ~ (r + CZ,~), 7~ = r + w~ and (r w) = 0, x E 0Y2. Then the 
condition 

f f('rrz~ + Qa~ dr2 = 0 (21)  
f2 

implies that  V x c Y2 : 

0 m~z, z _ Q O = 0, (22) 

Q0 = 0 (23) 
OZ~(X �9 

Pro@ Integrat ion by parts yields 

f 0 = (mo, gngr + Q~~ dS, 
n o n  

r CS(mO Q d )  o - - 0~ + % , ~ , }  ~ n  J J t  eft,/? 
f2 

f C{fmO = _ _ Qo ~ } ~ n � 9  
~7 

Then, (22) and (23) follow immediately. 

Lemma 2.2�9 Let X~Z c C2(f2), 7~ E Cl(g?), m~Z, Q~ E C01(g2), and 
'rr~,~9,;3 .- Q~ = 0, Q~,~ = 0. Then the condition 

f f ( ' , ~ x ~  + Q ~ )  dn  = O, 
/2 

[]  

(24) 

implies that  

1 (ss) 

Note  that  s~fl is the 2-D permutat ion symbol, 

{ 1; o~ > fl 
s,~ 9 = O; a = fl�9 

-1 ;  a < fl 
(26) 
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F 

Fig. 4. An inclusion inside a matrix 

Proof." Since m~Z,Z - Q~ = 0 and Q~,~ = 0 V x ~ int {s the Reissner-Mindlin plate admits 
the following stress function representation: 

1 (27) 

1 

where ~ c C02(~?). Then, by the Gauss theorem and integration by parts, 

/ /  
f2 ~? 

On 

1 

f2 

2 say X~,~ + "/v,e/3 + sovXg~,~ dr2 : O. 
[2 

Eq. (25) follows by considering -~,7~,~/~7 = e~,%,~ZCZ. Equation (25) can be referred to a,; 
the compatibility condition of the Reissner-Mindlin plate, E ~ 

Lemma 2.3. Assume that s is a single connected region with boundary F, and there is a smaI][ 
single connected region, l?e, inside ~q (see Fig. 4). For the function f (x)  (f,  f~  c LI(~Q)), thai: 
is discontinuous across the inclusion's boundary PC, the following equation holds: 

f f f,e d~? = - fl If]ha dS + f fna dS, (29) 
D P~ P 

where [f] := flxer,+ - flxcr,- = f+ - f - "  

Proof" By the Gauss theorem, it is straightforward that 

f f f ,~df2= f f f,~df2 + f f f,,~d;2, 

= f f - ~  d S -  f f §  dS + f f~,~ dS 
F~ F~ F 

= - :f [f]nc~ dS + ffnc~ dS. 
l~e F 

(30) 
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2.2 Solution o f  the elliptical inclusion problem 

Consider the Green's function of  the Reissner-Mindlin plate, which is the solution of  the 
following partial differential equations: 

raG(k) ~,~ _ Q G(~) + ~A:6(x, x' )  = 0 ,  (31.1)  

Q~,~) + 63~(x, x') = 0, (32,2) 

where k = 2, 2~ 3 and a,/3 = 1, 2. For  the linear isotropic plate, Eqs. (31.1, 2) can be rewritten 
in terms of  deflection and rotations, 

L~l, 11 + - 5 -  r  + - 7 -  ~%1~ j - c~(r ~(~) + ~,1 ~ + ~ ( x ,  ~') : 0, 

m ~ 1 2  + ~ ~2,~ - ~'2,~2 ] - G~(r G(k) + w~ (k)) + %k~(x, x') = 0, (32) 

~a(k) + V~wC(k)] + 53k6(x, x') = 0,  

where r := Ix' - x I : V/@~ - xl) 2 + (x2' - x2) 2, and the derivatives in Eqs. (31) and (32) are 
taken with respect to the variable x'. 

Let 

UG(~) : :  (ulC(~)u2G(k) u3a(~)) : (r C(k)r (33) 

The system of  Eqs. (32) can be cast into compact form: 

L#(Ox') uj G(~) + 6i~f(x~ x') : 0,  (34) 

where 

1 - ;  Ox ' (3~) 

Z~(0x' )  := - Z ~ ( ~ x ' )  : - D  ~ o 
2 O x j  ' (36) 

L33(0x') := D ~ - ~  ~ v~,,~ (37) 

The solution of  Eq. (34), i.e., the Green% function of  Reissner-Mindlin plates, is given by 
Vander Wee~n [41] as follows: 

2~rD ~ - u  [B(z)6r - A(z)r,~r,r - ~ 6~ l n z -  - ~ r,ar,g , (38) 

wO(~) : - r  ~(3) = 1 8~rD (21nz - 1) rr,u, (39) 

1 1 [ 2 ]nz_l z~(inz_l)] ' (40) 
'wC4~)-- 2zrDA ~ 1 u 
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where z = )`r, and 
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Z 
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and Ko(z ) ,K l ( z )  are the zero-th order and first-order Macdonald ' s  functions (the second 
kind modified Bessel functions), respectively. 

Considering 

Or 
r ~  : =  OxJ = cos  (~, x J  - x ~ ) ,  x~'  - x ~  = ~r ,~ ,  

one may  derive that  

)` { (B '  (z) (6r + ~C~r'~) - 2A' (z) r ~r3r r m a~ ~) = 

A(z)  

(1 2z- u) 6cflr~ r g  } (5;~r,z + + 6 ~ r  c - 2r,~r,zr,;) - u z 5 ~  , (43) 

o(3)_  ( 1 - . )  r in - 1 ]  6 a ~ + 2 r ~ r ~ }  , (44) m ~  ~ t z L 2 .  ~, , , 

Q e(0 )2 
= G [ B ( z )  5r - A(z) ~S,J, (45) 

1 ~'~ (46) 
Q j ( 3 ) _  27r r 

ma(0  t~ 0(r n a(3) ~ a(3). It  is found that  ~Z , w~ , , ~  --+ 0 as r ~ oo. However,  this is not true for ,,o~Z , 
nonetheless, 

ma(a) _ 1 ~fi'* 47rr {(1 + u) G~r~ + (1 - u) (Gzr,~ + 8~r.~ - 2r,~r,~r~)},  (47) 

_c(a) 
which indicates that  .,n~,~, --+ 0 as r --+ oo. 

Now turn to the corresponding inclusion problem. Consider an infinite plate with no 
external loads, in which there is an elliptical inclusion embedded at the center o f  the plate (see 
Fig. 5). An eigen-curvature/eigen-rotation field is prescribed inside the elliptical inclusion: 

* { * X x~( ) Vxc& 
x ~  = _ o v x ~ W& (48)  

{ ~*(:() Vx~& 
~* = v , ,  c o / &  (49)  

The equilibrium state of  the plate is controlled by the residual moments  and residual shear 
forces that  are caused by the misfit 

"~e ,e  - 0 o  = - G  = - ( ' ~ ; e , e  - G * ) ,  (50) 

O~,~ = - &  = - O ; , ~ ,  (51) 

(42) 

(41) 
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X2 

unit circle 

X1 

Fig. 5. The integration scheme inside an 
elliptical inclusion 

where m ~ ,  Q~* are the eigen-moment and eigen-resultant, 

m ,  : = _ D ( 1 - v )  ( , , 2u , ) 
2 r + r + ~ 6 ~ , J ~  , (52) 

Q~* := -Gp(r + w ; ) .  (53) 

From Betti's reciprocal theorem, the boundary integral equation for the Reissner-Mindlin 
plate reads 3 (Vander Wee~n [41], Karam and Telles [21]): 

~c(~/(• x') ng(x') ~(x' )  dS' + f C~c(~) (x, • ~(x ' )  ~(x')  dS' 

= f . ~ ( x ' )  ~(x' )  ~G(~/(x, x') dS' + f Q~(x') ~(x ' )  ~o(~)(x, x') aS', 
F~ F~ 

-- f [mc~z] (x') nz (x') u~ a(k) (x, x') dS' - I [Q~] (x') n~ (x') ua G(k) (x, x') dS' 
0s Os~ 

+ f f  f~(x') r x') an '  + f f  F~(x') ~a(~/(x, x') dn ' .  (54) 
g? ~2 

It is reasonable to assume that the induced resultant disturbances vanish at infinity (not the 
induced displacement field in general), i.e., 

m~,  Q~ --+ 0, r --. oc, (55) 

and at the matrix/inclusion interface, 

['~91 + [~29] = 0, V ,,' e OS?~, (56) 

[Q~I + [cs = o, v x' ~ a s L .  (57) 

it  can then be readily shown that 

�9 * T / ~ *  r = J~( (~ ,~  - Q~*) (x') r x') dS~ + f [ ~1 (x') OJ(~)(x, x') n~(x') dS', 
S2 00~ 

+ f f  Q;,~(x')w~ x ') dS~' + f [@~*] ~vc(~)(x, x ') n~(x') d5' 
s2 OS?~ 

�9 X; = - ~ ~ , , +Q~*(x ' )~ (~ / ( , , , x ' ) )  dS?' (58) 

3 For smooth boundary and zero vertical external load only. 
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and 

'r ?T~* ~(~)  = / f (  o~,~ - Qj )  (x') r • dS?' + ~ [ ~] (• r x') ~(x')  dS' 
l~ 09~ 

+ f f  Q;,. (x') wa(a) (x, x') d~?' + J: [OJ] (x') wa(s) (x, x') n~ (x') dS' 
I2 012~ 

- f .{~(~)(x, • ..~(x') ~(~1) dS' 
N~ 

= - f f  (mLz(x') X~% (3)(x, x') + qJ (x ' )%a(Z) (x ,  x')) dS?' 
sL 

- f m ~  ix, x )  
F~ 

(59) 

Note that Lemma (2.3) is used throughout  the manipulation. 
Since 

Ox.~ 
Poo F~o 

the difference between (59) and the expression 

, x r - G(3)r x x/"~ w(x) -- - f f  (ro,=~( )x~9 ~ , J + Q J ( x ' ) % c ( a ) ( x , x ' ) )  d H  (61) 

is a constant. This also implies that although the displacement may be unbounded for an infi- 
nite domain, the associated flexural curvature field and shear deformation field are still finite. 

It would be expedient to decompose the induced deformation field into two parts: 

r = r  + r  (62) 

w(x) = WM(X) + we (x ) ,  (63) 

where the superscript, M, denotes the deformation field caused by the eigenmoment, and the 
superscript, Q, denotes the deformation field induced by the eigen-shear-resultant. Utitizin8 
(52)-(53),  one can write 

. ~v,~.G(0(x, x) dg2' f f  ~ , c(O , := - = X/,,3(x ) rn,~Z (x - x) d J  (64) 
~ s?~ 

r162 := - f f  Q J ( x ' )  %G<o(x, _ x) d r / =  f f  % * ( s  Q G(0(x, _ x) dO',  (65) 

win(x) := - f f  rrzc~Zl* "x" ')  ac~Ze(3)/'/~ _ x) d/2' = f f  "~z~ * (x'aj a(3),,o~z (x' - x) d~2', (66) 

~q(~) = - ff Q~*(~') %c(3)(x' - ~) dO' = ff %*(x') Q~G(3)(x' - x) d~', (67) 

wn~re'~ c(O,,o~ , c(3),%~ , -~ G(4) and Qa G(3) are given in Eqs. (43)-(46). 
To proceed further, one may need the following expressions: 

M �89 ~, 1 f f  ~, r162 _ x ) -  c(O,x, x)) dS?,, (6S) := + ~ ,~( '0 )  - ~ * 0 ~ , ~  
g2, 

X~ (x) : :  ~ ( r  + r  : - ~  %*(x')  (Q2,~V)(x ' - x)4-_ Oa(O(x'-~a,~ , - x)) dl2',  (69) 
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"YcM(x) ::= Corns(x) + w,~<(x) = If X~,~t ) tmoo tx - x) - x)) d~, . "~af l ,e2 t~  
& 

:= , , OG(a)(x' _ ~ Q ( x )  r + ~(~(x) = f , f  ~~ (QW(<)(x' - x) - ~o,~ , x)) d n ' .  

(70) 

(n) 

Note that the derivatives in the integrands of (68)-(7 l) are all made with respect to x'. 
If the prescribed eigen-curvature and eigen-rotation are uniform inside the elliptical inclu- 

sion, Eqs, (68)-(71) can be cast into succinct forms, 

x ~ ( x )  : M x * 

@~(x)  " * = ~?~,(x) x ~ ,  

(72) 

(73) 

(74) 

(75) 

where 

f f  M 

a% 
(76) 

Oe 
(77) 

:%A :~) : If - %e,r (78) 

T~(x) = ff (Q<,C(r - x) - ~a,r - x)) dn' (79) 

are the generalized Eshelby tensors in Reissner-Mindlin plate theory. 
M Q M and T~  not constant tensors, even In general, for elliptical inclusions, Sr Sr T~,~ are 

if x e ~2~; consequently they depend on the size of the inclusion. Nevertheless, when the size 
of the inclusion is sufficiently small, the constant part and the linear parts of the Eshelby ten- 
sors should dominate. In what follows, by using asymptotic expansion, we calculate the 

�9 M ~Q M apprommated value of S~aS, SO~, T~;{ and 7 ~  for x E sg~ under the restrictions 

z = Ar < 1, where A := V~z(z,)  h (so) 

When lzl < 1, from Watson [47] 

1 ~ (-1)k(n - k - 1)! -z-:~k-,~ 

K~(z) = ~ ~= 0 k, (~)  

2 ~=o k!(k 4, n)! 2 
(81) 

1 1 
where ga(m + 1) = -O' + 1 + ~ + . . . . . .  + - -  and ~y = 0.577 215 66 �9 .. is Euler's constant. 

fg~ 
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Considering the first order approximation, we take 

1 (21og ~ 2~(1)) + O(z2), (82) K0(z) = - ~  ~ -  

K I ( z ) = ;  [21og~-(Ib(1)§ + -I-o(za). (83) 

Subsequently, 

A(z)  = - 2  [~(1) + ~(2)] + 0 ( 2 )  = - 2  + O(z2) '  (84) 

1 1 [3r - ~)(2)] + O(z 2) (85 I) 

Substituting the expressions (84) and (85) into (43) and (44) yields 

m~O _ 1 47rr {(1 - u) (6~r ;~ + {~#<r = -- ~Sa,~r ( ) + 2(1 + u) r ar,#rg} (8621 

and 

Q C(r _ A22 
: }. 

Now, we are in a position to derive the approximated Eshelby tensors for Reissner-Mindlin 
plates. 

2.2.1 FM S07~# 

Assume that the eigen-curvature field, X*#, inside the elliptical inclusion is uniform. By adopt- 
ing the integration scheme shown in Fig. 5 and choosing the polar coordinate system 
d ~  = r dr dO, Eq. (64) takes the form: 

27r ~, 

e ? 2 x )  = _x;~/J[(1 - ~)(eoce~ + ~r - ~o~ec) + 2(1 + . )e~e~ed a ,  a0 
47r 

0 0 

(88) 

where g~ := rr = (x~' - xc) /r ,  and ~ = L}(.&, x,)  is the root of the quadratic equation 

(X 1 Jr- L0gl) 2 -b (x2 -}- ~0~2)2 

a l  2 a22 
- -1 .  (89) 

Solving Eq. (89), we obtain 

~(e~,  x , , )  = - -f ~: + - ,  
g g 

where 

f : =  ~X,a:I:#, 

A t . -  f_~ 

(90) 

(91) 

(92) 
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gl 2 g22 
g := a-7~12 4- a2~, 

( z l  2 x~ '~  

(ga) 

(94) 

Because : kx / f2 /92  + e /9  is an even function of ~(gl, g2), subsequently, 

27r 

= 4?r J { (1 - u)[5~r z 4- @r - (5~/3gr 4- 2(1 4- u) gogSr } dO, 

0 

and furthermore 

(95) 

27r 2~ 

o o 

(96) 

where gr := (1 - ~,)[5~r + d~g~ - 6~Sr ] + 2(1 + u) g~g.ggr 

Symmetrizing the integral representation (96), we have 

2~r 

] {~M M )(.;/3 f (~rlg(at5-I-'~Cgrlo#3) dO. 

o 

Define tensor S FM r a s  

2Ir 

0 

We then obtain the desired result, 

(9r) 

(gs) 

= S T M  * (99) 

R e m a r k  2.2.1. The first superscript letter, F,  stands for the first-order approximation. Unlike 
M the tensor S~v~O, its first-order approximation ~r is a constant tensor, and independent 

from the size of  the inclusion. In Appendix A, a detailed list is given for every component of  
Sr 2. The existence of  integrals (68), and (71) can be shown in a similar fashion as done by 
Kellog [24], and Torquato  [40]. []  

FQ 2.2.2 S r  

Imposing a uniform eigen-shear-deformation, %*, inside the elliptical inclusion, one may 
obtain the induced rotation field by virtue of  (65) and (87), 

A 2 , 1 + 27] 
(loo) 

After simple manipulation, one can find that 

2w 

X@ - 4*r (6r # - 2r r #)  dO, 

o 
(lol) 



On the micromechanics theory of Reissner-Mindlin plates 

and Eq. (101) becomes 

x Q  -~. oFQ ~, *X 

where 

27c 

0 

Remark 2.3. For a circular inclusion, one may find that 

~Q X 2 
s~, ,~,  = ~ ( 6 r  - ~ c J , ~  - & & , )  . 

Thus, 

A2 

Obviously, 

1// 
Q > =  xQds 

< XO1 ~e 

because f f  z~ dX? = 0 for elliptical inclusions, 

61 

(lO2) 

(to3) 

(lo4) 

(lO5) 

(106) 

[] 

2.2.3 T FM r 

By virtue of (70), (43), and (44), one may find that 

27r 

"- i = 4~v [(i - u) (5~r + 5~r + 5~;jgr + 2(1 + u) gagScJ 
0 

- [(1 + u) 5~Sr + (1 - u) (5ar + 5~r - 2g~g~gr } dO 

2~- ) - 4 .  ? ~  [(1 - . )  (5<zz + +szr - (3 - . )  ~ z e ;  + 4e.eze;J a0. 
0 

Let 

271 

TF M := 1 / { ( a ~ ) [ ( 1 - u ) ( 5 ~ r 1 6 3 1 6 2 1 6 2 1 6 2  }dO 

0 

Then, Eq. (107) becomes 

(lo7) 

(lO8) 

7r M T T M  * (109) = r 
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For a circular inclusion, it is not difficult to find that 

T v  M (2 - v) 

and therefore 

@~ _ ( 2  - .) 
* X 4 X*r + X*~(x v -- X ~  r 

which also leads to 

< 7 ( M >  := E 7(MdD = 0. 

Y/, 

S. Li 

(110) 

(111) 

( 1 1 2 )  

2.2.4 Ts 

Substituting (87) into the first term in the right-hand side of (71) yields 

2'z 

_ ~'o~* _<a<~)}z=AodO, 
o 

O(z "2) (113) 

where ~ _< diam{D,} <_ A -]-. Thus, as the first-order approximation, the first term in the 
right-hand side of (7t) can be neglected. In consequence, 

2~ 2~r 

% 0 = _  7Z (4n,~ d~  = 2v: J 2~r J %2---~ 
D~ 0 0 

Let 

2~T 

Tyg = ~ a~2~ " 

o 
(115) 

We have the result 

% Q =  T~QT~ * . (116) 

3 Variational inequalities for Reissner-Mindlin plates 

3.1 Some averaging properties of thick plates 

To facilitate the presentation, a few definitions are in order. Denote the overall average of any 
function, f E LI(~?), as 

1 
fc := < f > :=- ~ / /  f &Q (117) 
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and Sym ~ as the space of symmetric second-order tensors in ]R ~ in which all the elements hold 
constant values. 

For convenience, we define the following function spaces: 

1. for w ~ C~(S?) and r ~ C~(S?), 

) 4 ; ~ ( s ? ) : = { w l w = e ,  V x e S u } ,  (118) 

"VV~(S?) := w w=<%>xc~--~<X~/3>x~:@, Vx~.S~ , (119) 

@~(S?) := {r162 = q~n & r = q~s, Vx ~_ Su}, (120) 

(121) ~2(s?) := {r 1r = <x~ ;>  x~, Vx e s~}, 

and 

~,(s?) 

z~s 

~3(s~) 

2. for 

E0(s?) 

E~(S?) 

&(s?) 

Es 

3. for 

So(S?) 

$1(9) := 

= {(r162 c ~s  w e w:(s~)} ,  

= {{~d = ( r  = 0 ,  (r c Z~,(s?)}. 

x~,z, % c C ~(s?), 

{ , } 

mo~, Q~ e C ~(s?), 

{(m~, Q~) l ~,~9,9 + Q~ = o, Qo,~ = o; 

~fns=~Sns, M~=ivI~,  Q n = Q n ,  V x e S F } ,  

(122) 

(123) 

(124) 

(125) 

(126) 

(127) 

(12s) 

(129) 

(~30) 

5r 0 

~ x ~ + ~ = < Q c > ~ o x ~  a .d  Q ~ = < Q o > ,  V x ~ S F } .  (131) 

A basic task of micromechanics is to establish the relationships between macroscopic vari- 
ables (at the level of meso-area-element), or averaging variables, because in general the rela- 
tionships between microscopic variables do not carry through into the mesoscopic level, 
unless certain provisions are mandated. On the other hand, due to the unique mathematical 
structure of its governing equations, the Reissner-Mindlin plate posts specific restrictions on 
boundary conditions such that the relationships between micro-variables can be extended to 
mesoscopic variables. 

Lemma3.t. Suppose 0,~ = X~~ x~ Vx C OS?. Then, 

o (132) < X~;~ > = X a p  �9 
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Proof" By definition, it is s t ra ightforward that  

~ff~ < x~z > :: 7 / i  2 (r + r d n ,  
x? 

= 21hi ( r  + r  dS 
o~ 1/ 
Of 2 

1 f /  o~ o o 
- -  X ~  . 

t? 

Corollary 3.1. If  r = 0,  

<X~5>  --= 0. 

The p roof  is trivial. 

V x C Og? then 

Lemma 3.2. Suppose w = (%0 _ < O~ >) x~ V x  E 092. Then, 

<~a  > = "/c~ 0 . 

Proof." F r o m  the definit ion 

'lfJ !f2 
f2 

op~ 

f2 

Lemma 3.3. (i) Suppose Q~,~ = 0 and Q~ = Q 0  = const. V x  ~ 027. Then, 

< Q~ > = Q 0 .  

(ii) Suppose Q~ = m~5, p and m~z = m~ ~Z = const. V x E OIL Then, 

< Q ~ >  = 0. 

Pro@ (i) Since Q~,~ = 0, then Q~ = (Q~x~),~, and therefore 

< Q~ > = )~-f Q~ dX? = (Qgxo),~ a n  

on on 

= Q~o f j .  ~o~ an = eoo lnl 
D 

D (133) 

(134) 

(135) 

[] (136) 

(137) 

(138) 

(139) 
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(ii) Since Q~ = m~Z,~, 

#2 oQ 

0~2 OD 

~ 0 .  [] (140) 

Lemma 3.4. Suppose m~,o,Z - Q~ = O, Q~.,~ = O. The following equality holds: 

S2 O.(2 

(141) 

Proof" First, one may verify the following identity: 

O(m~z~) O(m,~x~) 1 1 02(m~.~x~x~) 
m ~  Oxr t- Ox~ + 2 mr 2 Ox~Ox~ 

(m) 

Second, 

m @ , , - Q ~ = 0  and Q ~ , ~ = 0 ~ m ~ , @ = 0 ,  

hence 

Oxr Oxv 2 Oxr 
[] (143) 

Eq. (I41) follows immediateIy by the Gauss theorem. 
There are some immediate consequences of  Lemma (3.4): 

Corollary 3.2.: 1. If m~z = m ~ = const. V x E 0[2, then 

l f f  o 21 f21 (m~,,,z 9 + m&,,x~) d/2 = m ~  - < m ~  > . 
D 

(144) 

2. I fm~- - -m~z~  =cons t .  and Q ~ = 0 ,  V x E 0 / 2 ,  then 

< mar > = m~ (145) 

Proof.." 

t. By F~q. (141), 

1 
< m ~ z >  = 2 in l  - -  / {m~c~Xflnr + mv~xan v - m~v,vxaxzn~} dS 

Of 2 

1 ( f  0 �9 0 
= 2tD---~ y {rn~drfln ~ + m,flxan, - m@,~Txaxzni} dS 

o~ 

f2 

(146) 

2. Consider Q~ = m ~ ,  9 and Q~ = 0, Vx E 0/2. Equation (145) follows immediately. []  
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3.2 Elementary variational inequalities and elementary bounds 

In what follows, we list some elementary variational inequalities that are based on the prim 
ciple of minimum potential energy and the principle of minimum complementary energy of 
the Reissner-Mindlin plate. 

The density of the elastic energy of the Reissner-Mindlin plate, U(Z, 7), is a quadratic 
form 

1 1 
u(z, 7) : ~ L ~ 9 r  + ~ G~7~7~ �9 (147) 

For a linear isotropic Reissner-Mindlin plate, it can be explicitly expressed as 

D Gp 
U(Z, 7) : ~- [(1 - , )  X~ZXa~ + "X~XZ~] + ~ -  % % -  (148) 

It is evident that the potential energy density function is convex, lower semi-continuous, and 
proper. The moment tensor, m : m~e~  | ez, and the shear force vector, Q : Q~e~, can 
then be obtained from the constitutive relations 

Ou(z, r) 
- , or m e OzU(z,?), (149)  marl OX~ 

Q~ : oU(z, :,) 
0~'~ , or  Q c OrU(z,?), (150)  

where OX and 07 are the notations of sub-differential in convex analysis (Ekeland and Temam 
[7]). 

By the Fenchel-Legendre transformation, one may express the density of complementary 
energy as 

U*(m, Q) = sup {rn: Z + Q" ? - U(Z, ?)}.  (151) 
(z,r) 

For linear isotropic thick plates, it is 

1 1 
U*(m, Q) - 2D(1 - u 2) ((1 + u)m~zm~ ~ - um~.mzz } + ~-G-p QaQ~ , (152) 

and the constitutive relations inverse to (149) and (150) are 

ou*(~, Q) 
X~fl  - -  O'rna~ , or  X E 0 m U * ( m , q ) ,  (153) 

ou*(~, Q) 
7c~ -- OQ,~ , or ? e 0QU*(m,Q). (154) 

Consider the first-type boundary condition S~ = 0S2; SF = 0. V (XaZ, %) C $1(~), the plate's 
potential energy is denoted as 

1// 
//(Z, ?) := ~ (L,~9r @ + G~Z'ya~Z) dY2. (155) 

D 
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If (X~,%) E $3(g?) C 81(g?), we denote 

e l f  E(Z,7) :=~  (La.zr ZVa%<~) dg?, (X~fi,%) e ga(g?). (156) 
s 

The principle of minimum potential energy states that 

E(Z, r) = inf r~(Z, r)- (157) 
(z,r)e~(s 

Under the same type of boundary conditions, the complementary energy of the plate is 

1 / /  / 
F(m, Q) = ~ (N~r + H~zQ~Qz )dD - (m~zn~r ~ + Qc~nc~w ~ dS, (158 I) 

s 0s 

where (m~r E S0(g?) and (r ~ D~(g?). By the principle of virtual work, it can be 
readily shown that 

e l f  f /  0 0 = - (m~sx~z + Q~% ) dg?. (159) F(m, Q) ~ (Nc~m~/~mes + Ha3Q~Q~) dD 
s s 

The principle of minimum complementary energy states that 

-E(z ,  7) = sup F(m, Q) 
(m,q)E8o (~0) 

(t6o) 

o r  

Ev, r) = i.f ,f / f  + Qo  ~ 

2 (N~r162 + He~Q~Q~) &Q , (161) 
S2 

where o o $1 (g?)- 
Consider the second-type boundary conditions (S~ ---- 0, SF = 0g?). The overall comple- 

mentary energy is 

l f f  F(m, Q) = ~ (Nc~3r162 + Ha~Q,~Q~) dD, V (m~3, Q~) E S1 (g?)- (162) 
(2 

The principle of minimum complementary energy states that 

E*(m, Q) = inf F(m, Q) 
(m,Q) ~8t (s 

where the minimizer (re, Q)E St(g?) ensures that X~#=Sr3~m~7, 

X~a3 = ~ (q~,f~ + r % = r + w~ and [r ~ 7)3(g?). 

Accordingly, the potential energy in this case is 

1 

s 0s 

=l f f (L 3 "X 3XOT Sf (164) 
s s 

where (X~3,7~) E g0(g?) and (rn~ Q o) E SI(D). 

(163) 

% = H~Q~ and 
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The principle of  minimum potential energy states that I7~ ,  y) attains its minimum, when 
r 0 X ~  = ?~;~r and % = H~Q/~ ~ at the value 

H(X, ~') : - r ( m ,  Q) : - E * ( m ,  q ) .  

In other words 

, L } 
(165) 

The above elementary variational inequalities have the exact same structures as their counter- 

parts in linear elasticity (see Hill [17]). 

Now, we are in a position to discuss the associated elementary bounds. Consider a pre- 

scribed rotation/deflection boundary condition such that 

r = <X~9> xz Vx E 022, (166) 

1 
w(x) = < % > xa - ~ < X~.~ > xc~x~ V x E 022. (167) 

In other words, (r w) r :D2(22) N 7?3(22) =: Dd(22). V (r w) E Dd(22), we make the follow- 
ing decomposition: 

C J •  = <X~Z> x~ + ~ J x )  V x e  22, (168) 

1 
w(x) = < % > x~ - ~ < X~9 > xo, xZ + v(x) Vx e 22. (169) 

It is obvious that 

~ ( x )  = 0 Vx e 022, (170) 

'jJ  I221 ~'~'~ + ~'~''~) d O  = 0, (171) 
D 

v(x) -------- 0 Vx e 022, (172) 

122-[, (~'~ + v,~) d22 = O. (7.73) 

One may note that from 

2122 1 (~,9 + L),~,~) d22 -- ( ~ n ~  + ~),zna) dS = 0 ~ Q~ = 0,  Vx E/)22. (174) 
L) &(~ 

Let X~f~ = 1/2(Q~,,~ + ~/~,e) and %' = (c)a + v,a). One may define a null space of  L2(o(2) as 

{ 1 } E n ( D ) =  ( X c ~ , Z , % ) E E o ( 2 2 ) ~ - ~ / / X c ~ z d 2 2 = O  and ~ / f % d 2 2 = 0  (175) 

= ~ ~ En(22). Following Willis [50], such that 7~;~ = 2~;~ + X'~9 and % % + % '  and (X~, % ) E 
by denoting U(Z, y) = U(Z,L; Y,Y'), the overall potential energy can then be defined as 

/-~r~, ~) = inf 1 i f  2 , , , )  d .  (176) 
(z',7')ef,,(.~) ~-~] 

o 
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For  linear elastic plates, one can identify/7(Z, P) immediately, 

In--] (2,z; 7-1hi (L~zcv(2~/~ + X2/3) (2r + Xr 
S7 

1 / S  (L~ncv(2~n2r + X~Xr ' + G~n(~,~Tn-, + ,v,4',,m"')) ds 
- 21- 1 

~Q 

1 L - - >_ ~ j f  f ( o,:+<,Xo~Xr + ao,9%5;,~)dD. (3_77) 

In  fact, if m~z, 9 = Q~ and Q~,~ = 0 Vx E s one can show the following: 

Lemma 3.5. For  the prescribed displacement boundary  condition, if 

1 
u, = < % > x~ - ~ < Xx, > z x x , ,  V x e 0s (1781) 

~a = <X~9> xz,  Yx  e 0s (179 I) 

then 

< m  : Z >  + < Q ' ~ ' > = < m > : < Z >  + < Q >  " < y > ,  (180) 

Proof: 

< m  : Z >  + < Q "  ~'> = m~zxa ~ + Q~%) ds 
[7 

= 2 l n i  
0S7 g? 

:-1 1 mc~p(<;g~, > x~lnp+ <X/~7> Qc~wno~dS 
Is 

0(2 0f2 

= i--~l . i i  ((maz,z - Qa) < X~> z~, + ma/~ < X~z > + Qa < Ta >) ds 

= < m > : < Z > + < Q > . < y >  . rn (t81) 

On the other hand,  it is still an open problem to find prescribed force boundary  conditions 
under  which Eq. (180) holds. The following result holds, with an additional restriction. 

Lemma 3.6. For  the prescribed resultant boundary  conditions, if 

f f  me/jz 7 d~(2 = 0 (182) 
$2 

and mo:~ = < m~z > + < m ~ ,  7 > xT, Q~ = < Q~ >,  V x E 0s Then, Eq. (I 80) holds. 
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Proof." 

yl 0~ 1/ 
1 

o~ 

= < m ~ >  <Xe~> + <Qc~> < % >  

g? 

In the last step, we assume that 3)~,~, such that 

0 
< m ~ ,  7 > = N~90~X@, v , 

then 

~2 s? 

In general, for Reissner-Mindlin plates, we have the following results: 

Proposition 3.1. Suppose ra~Z, 9 - Q~ = 0 and Q~ ~ = 0. The following identities hold: 

of 1 

+]-~ (Q~n~- <Q~ > n~) (~, - <~L,<> zd dS 
0[2 

= < m  : Z >  + < Q ' 7 >  - < m > : < Z >  - < Q >  �9 < 7 >  �9 

(183) 

(184) 

[] 

(185) 

. 
1/ 

(magn9 - < map > n g )  (r - < X~z > xz)  dS  

0s~ , /  
+-If2-[ Q a n a ( w  - < 7 i >  z~ + ~  < x x , >  x) ,x , )  dS  

oy2 

= < m : z > + < Q . y > -  < m > : < Z > - < Q > - < 7 > .  (186) 

The proof  of  the proposition is a direct use of the Gauss theorem and the integration by 
parts. [D 

Then, the overall potential energy under the prescribed deflection boundary condition is 

1 
L/(2,2) = ~  ( < m > : < Z >  + < Q > "  < y > ) .  (187) 
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Obviously, 

o ~ ( 2 , ? )  or m �9 Oz~(2, ?), rh~9 -- 02~9 ' 

Q~ _ oB(g ,  ?) 
0 %  , or I~ �9 O?/I(~,  ? ) .  

(188:) 

(189) 

The inequality (157) can then be modified as 

7~ 

/7(~,9) = inf H(Z,Z';~,g') _< H(~, ~) = E c i H i ( ~ , ~ ' ) ,  
(Z',r')eE~(O) i=1 

(190} 

where ci = hl&l/hlr21 = I&l/Ix21, and H i ( ~ , y ) : =  f f  U(Z,Y')d$?. Equation (190)is the well-. 
known Voigt bound. & 

For the second-type boundary problem, the prescribed force boundary conditions 
Q~ = Q~, M~ = ~I,~, and M~ = ~/~ are chosen such that they are compatible with the special 
boundary value of the moments and resultants, 

Q~(x) = < O~ > V x �9 0 0 ,  

(191) 

(192) 

with 

Cr~ + a~ = < Qr > x~x~ r (193) 

For (rn~8, Q~) r 31(~2) n $2(O), we make the decomposition 

O~ = < Q ~ >  +~-~. 

(194) 

(195) 

By virtue of Eqs. (141) and (140), it can be readily shown that 

1// 
c~o o = < ~ >  x~x z V x  c Og? ~ 

$2 

r ~ = 0  V x c 0 / 2  ~ ~ rodr  

D 

(196) 

(197) 

Thus, (q~9, r~) r Sn, where 

&(o) :={(~,~o)1~o~,~-~=<0~>, ~,~=0, 

' is '/s } IOl ~ ~ndX'2=0,  and [~[ r~dX2=0 . 
r 

Accordingly, one can define the overall complementary energy potential as 

/~(ff,, Q) := inf F(ffa, a; Q, r) .  
(,~,r)e&(o) 

(198) 

(199) 
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Again, for a linear elastic plate, we can identify/~(rh, Q) as 

1// 
a2 

s? 

(200) 

Hence, 

o?(a~, 0)  
~c, =-  oQa , or ? E OQ/a(ri%0), (202) 

and by the transformation 

(2,r) sup { m : g  + Q 5, ~(m,Q)} (203) 

one will have 

o~*(2,5,) or m ~ 02~(2,5,) ,  (204) 

~ _ a~*(2, 5,) a ~  , or Q ~ a5,~*(2,?), (205) 

The variational inequality (199) furnishes the estimate 

n 

/~(ria, Q) = inf r ( m , ~ ; Q , r ) < r ( m , Q ) : ~ c ~ r ~ ( ~ a , Q ) ,  
(~,,)~&(n) i:s 

(206) 

where I~i (ril, Q) = f f  U* (rh, Q) dO. Equation (206) is the well-known Reuss bound. For the 
a2{ 

second-type boundary condition, let 

/}(2, 7) = sup (m:  X + Q" 5,) dO U (m, Q) dr? 
(rn,q)eSKn) ]-~ x? 

(207) 

The inequality (206) implies 

0(2,5,) k I't**(2,5,) >_ sup inf { (ri~,)~) + (m',z') 
(m'q')sE~*(~) (z'~/)s~-,(~) 

, - -  r i l l  - + ( Q , ? ) + ( q ' , ~ , ' ) - ~  (m, ;q ,q ' ) }  (20s) 

which is similar to the variational inequality shown by Willis [50] in a general duality frame- 
work, The inequality of the minimum potential energy (165) renders the corresponding upper 
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bound 

~(,~, Q) = 
(z',r')es~*(r~) ,r~ 

- ~ ((z + z ' ) :  L: (2 +Z') + (~ + r ' )  G .  (~ + r')) dS? . 
12 

(209 : !  

3.3 Hashin-Shtrikman/ Talbot- Willis type principles 

In the following, two comparison variational principles of Hashin-Shtrikman type (Hashin 
and Shtrikman [13], Hill [17]) are presented for the Reissner-Mindlin plate. For the sake of 
updated documentation, the style and notations of the presentation follow largely from Tal- 
bot and Willis [38], which, in the author's opinion, represent the contemporary standard in 
the treatment of the comparison variational principles. In the contex of a nonlinear conti- 
nuum, they are often referred to as Talbot-Willis variational principles in the literature. 

Consider the first type (prescribed deflection/rotation) boundary-value problem. Let 
(Co.,W) E ~ ( f2 )  be a special kinematically admissible deflection field, which is the super- 
position 

~ ( x )  = ~.~ + ~ ( ~ ) ,  (210) 

~(x)  = ~,~ + ~.~(x), (211) 

such that (qSa ~ w ~ is a solution under the first-type boundary-value problem in the compari- 
son plate, which has the elastic stiffness L ~ G O " and (r E C0z(o(2). Accord- 
ingly, 

o ~ (2]2) 

~/~ = 7~ ~ + ,7~ 1 , (213) 

where 1 1 1 1 {Zoe~, ~/~ } := { 1 / 2 ( ~ #  "J- ~ . a ) '  ((~&l _}_ .Uda)} ~ ~ ,  a closed subspace of [L2(Y2)] 3 
x [L2(oQ)] 2. 'In addition, that (~b~ ~ w ~ is kinematically admissible, for the comparison plate, 
we have 

rr~o/~ 0 ,0 0 0 = Lc~/3<~X~. Q O = G~#7# , (214) 

m0 _ Q0 0. (215) 

We are looking for the solution of the following optimization problem: 

(The primal problem) 7 ) : inf H(Z 1, y~), (216) 
(zl,r~)e/~ 

where 

f2 
1 L 0 1 = - j r / {  ~ ( X ~ #  + X~#) (xo + X~) + Oo~(~:o + "~2) ('/9 + ~r  d~.  (217) 
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For (m*~ Q*) ~ B*, the dual space of B, define the dual potential fl*(m*, Q*), 

H*(m*,Q*)= sup {(m*,z 1 ) + ( Q * y l ) - / / ( Z 1  yl)}. 

We say (m*, Q*) E B ~ the set of annihilators of B, if 

* 1 (m, Z1) + ( Q .  ~ 1 )  = ff(r%r + Qe*% 1) d~? = O, 
s 

which posts additional constraints on (In*, Q*) (see Lemma (2.1)). 
Subsequently, 

H(ZI,y~) + H*(m*,Q*) > 0 Vm*,Q* E B~ 

it then implies 

-~(~n*, Q*) <_ 

S. Li 

(21s) 

(219) 

(220) 

inf 7 ) ~ / / ( Z l , y l ) .  (221) 
(zLr~ )eB 

This suggests a dual problem: 

(The dual problem) P*: sup {-H*(m*, Q*)}. (222) 
(m*,Q*)~B ~ 

For practical purposes, instead of optimizing the dual potential in a prescribed displacement 
boundary-value problem, it is convenient to consider a different boundary value problem: 
optimize the complementary potential energy under the prescribed force boundary-value 
problem. Define 

iF(m1 Q1) = / / U , ( m  0 + ml;Q0 + Q1) dr2 

s 

l f /  o = ~ { ~ ( ' ~  + .~o,~) (-~ + -~)  
s 

(223) 

where m = m ~ + in I and Q = QO + Q1 are a special statically admissible resultant field in 
which (m ~ Q0) is the solution of the second-type boundary problem in the comparison plate, 
and (rn 1, Q1) is the perturbation, such that (ml, Q1) ~ H(s C [L0~(s a x [L02(X?)] 2. 

Consider the optimization problem 

7)a: inf C(m 1, q l ) .  (224) 
(m 1,QI)c~(s 

(225) 

It has a duality approach too, i.e. V (Z*, Y*) E H ~ the annihilator set of H, i.e., 

H0 := {(Z,,y,)  1 1 , } f f(m~r + Q 1 7 , )  d~ = o, v (m 1, Q1) e H . 
s 

The restriction on (X~/3, 7~*) is stated in the Lemma (2.2). 
Subsequently, we have 

-F*(Z*,y*) _< inf 7~d < f(ml, QI), (226) 
(ml,Q1)EH(s 
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where 

F*(Z*,Y*) := sup { ( m l , z * ) + ( Q 1 , 7  * ) - F ( m ~ , q ~ ) } .  (227) 
(ml,Q1)~f/" 

Remark 3.1. The conditions that  define the annihilator sets of  B and H,  Eqs. (219) and (225), 
have impor tant  physical interpretations. Equat ion (219) is related to the principle of  virtual 

work, 

~ * + * - = (228" f f  (m~Bx~z + Q~*'~a) dX? = f f  [m~z(X~B - x~ Q~ (% %0)] df2 O, 
S? [2 

and Eq. (225) is related to the virtual complementary work  

* ~9~ 1 * m m 0 f f  (X,~B ,~B + ~',~*Q'~I) dD = f f  [x~z( ~B - ~B) + ~'~*(Q~ - Q o)] &Q = o,  [] (229) 
~Q s 

Now, we are in the position to describe the Hashin-Shtrikman/Talbot-Will is  principle. Intro-  
duce two comparison functionals 

ZZo(zi,r ~) (or •176 =~ Uo(z~176 
s 

l f f o o 
[2 

+ G  O , o ~BtT~ + ~:~) ('~B ~ + ~'~)} d~e (230) 

if L~B@ 0 ~,~r < 0, and G~ 9 - G O - L~O~ > 0, and G~ B - GO B > 0, or L~Br n - L ~ ~B < 0. 
The associated potential  differences are defined as 

~(z~, ? )  := ~(zl, r 1) - ~0(zL r b ,  
_ 0 ~L~Bcv := LaBr L,~Br > 0, AG~;~ := G~B - G~ > 0, 

ff(z~, rb  := rs(z~, r ~) -/10(zl, r~), 
0 AL,Br ~ := L~/~r - L~B @ < 0, AGc~B : =  G~B - GoB < 0. 

(231) 

(232) 

Introduce the moment  polarization tensor, cra B, and the shear force polarization vector, 7"a, 

such that  

o (233) m,~ B = L,~Br162 + cr~, or cr~ = (L~N ~ - L~ XC~/, 

Q a  o 0 = G~B~, B + 7-~, or -r~ (G~ B 

By the transformation,  

r2*(a, r) = sup {(~,,z 1) + (3, r 1) - f ( z  1, r~)} ,  (235) 
(Z',r')eB 

U ( a , r )  = i~f {( ,~,z 1) + (r ,r ' )  - f f ( z l , r l ) } .  
(z',r')r 

(236) 

Note that  the supremum in Eq. (235) and the infimum in Eq. (236) are attained when 
Eqs. (233) and (234) hold. I t  can be readily shown that  the primal problem can be realized by 



76 S. Li 

the following comparison strategy: 

inf {(o',z ~) + (r, 7 ~) +//0(Z~,7~)} - _F~(o',r) 
(x ~ ,7 ~ ) ~=B 

inf T ~ _< 

i n f  {(a,Z ~) + ( r , y  ~) + H~ - U-;(a,r) .  

(237) 

Substituting X I~ = AL-~r - X~~ and 73 ~ = AG2~-~ %0 into Eqs. (235) and (236), we 
have 

F*(a,r) (or F;(a,r)) / 7 " {  ,1 I AL ~ 

1 A L  o o _ L o 1 L o 

1 1 

- Ga~%~ ~ + G~162 ~ } dr2 

=1//(AL~:~c'~176176176176 , (238) 

f2 

Compute 

_ t : :  inf { (a , z  1) + (r, 7 l) + H0(Z1 ,7 ' ) } -  F2(a,v , 
(Z~,~,~)~B 

: :  inf {(a,X ~ ) + ( T , r  ~ ) + ~ 0 ( z l , r l ) } - ~ ( ~ , r ) .  
(ZkA)EB 

The infima are attained when (recall and compare with Remark 3.1) 

f f  0 1 1 0 1 {(L~<~X<~f + ~9) x,~ + (c~p~,,9 + ~-~) % b  d n =  0 

(239) 

(240) 

(24t) 

or the following subsidiary conditions are met, if the functions involved are sufficiently 
smooth: 

< ,L o 1 o 1 
- ( a ~ 9  ~)  o, (242) + c%9),,~ + = 

0 1 (Co~2~ + To,),c~ : O. (243) 

One will find that 

f / {  1 A -1 1 o / (or I) : Uo(Z ~ 7 ~ - ~ ( LQ~@cr~;~Gr -- ~;~Xcm - 2G~Xo,~) 

f? 

1 ( A a 2 ~  - ,-~%~ - 2 ~ %  ~ } dn (244) 2 
We just showed that Eq. (237) has exactly the same structure as the Hashin-Shtrikman-Hill 
type inequality: 

~j /"  < (u(x, r) - Uo~ ~ r~ d~ >2 
f~ 

/ f  -1 1 2 o - ~ (AL~(~cr~gcr<~  - c r ~ X ~  ~ - a ~ Z X ~  ) 

1 + ~ - ~-~%~ dr?. 
) 

(245) 
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The direction of the inequality depends on the positive definiteness or negative definiteness of 
-1 and AG-~.  Note that for simplicity only two special cases are considered: the tensors AL, zr 

(i) the tensors AL~r and A G ~  are simultaneously positive definite or simultaneously 
negative definite; (ii) either the moment polarization tensor, o-~,~, vanishes, or the shear force 
polarization vector, ~-~, vanishes. 

Similarly, consider the second-type boundary-value problem and introduce two compari- 
son functionals, 

1 [ [sNo lm  o • ml r0(mL q~) (or r~ q~)) = ~ j j ~ ~ ,  ~ ~ ~ (m~ + m~) 

H o (~ o + ~/3,'~a + Qc~ 1) (Qfio + Q/l)} &Q, (246) 

if N~Zr - N o ~ZCn > 0 and H~Z - H~ > 0; or N~Z~v - N o ~ZCv < 0 and Hc~z - I t ~  < O. 
Subsequently, one can form another pair of potential differences: 

G(m ~, Q1) := F(m ~, Q1) _ r0 (m  L, Q~), (247) 

U(m ~, q t )  := F ( m  ~, qJ.) _ F0(m ~, q l ) .  (248) 

Recall that (m ~ Q0) is the solution of the prescribed force boundary-value problem, and 
(m 1, Qx) belongs to a closed subspace of [L~(~2)] s x [L~(~2)] ~. By defining "polarization cur- 
vature" and "polarization rotation" as 

o m r/e,~ := (Xa~r - N~fiCn) mr or X,~fi = N~fi~ ~ @ + ~/~, (249) 

the dual potential differences can be realized as 

G*(,ro) ~ p  {(~,m~) + (0,@) ~ = -- G(m ~,Q )}, (251) 
(ml,q!)~H 

(7--7(//, 0) = inf ((//, m 1) 4- (0, Qi) _ ~(rn  1, Q~)), (252) 
(ml,ql)~H 

which ensures the following estimate of optimization problem (224): 

inf {(q,m 1) (q, Q1) + F0(ml, Q1)} - G*(~/,0) 
(mZ,QI)CE r 

inf Tad < (253) 
inf {(//, m 1) + (0, QL) + F 0 ( m l  Q1)} _ G-;-(m 1, Q1). 

(ml,ql)EH 

Substituting m~z = AN:Ar162 - m~ ~Z and Q 1  = A H ~ 0 9  _ Q O into Eqs. (251) and (252), 
the supremum and infimum will be attained, and it yields 

G*(//,0) (or C--~(/L0)) ff {~A -1 0 = N~r162 - r l ~ m ~  

Compute 

J := inf {(r/, m 1) + (8, Q1) + Fo(m 1, Q 1 ) }  _ G*(~, 0), 
(ml,QI)EH 

7 := inf {(r], m 1) + (0, Q1) + FO(ml  Q,)} _ ~- ( r  L 0). 
(mt,Q1)r 

(255) 

(256) 
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Again recall Remark  3.1; the infima can be reached if the principle of  virtual complementary 
work is applied, 

f f -CIN~ rn 1 +~c~p) r n ~ §  ~ t~l +0c~)Q 1}d~?=O,  (257) 

which is equivalent to the following subsidiary conditions if the functions involved are suffi- 
ciently smooth: 

rn 1 Q1 0 (258) ~ , ~ - Q  1 = 0  . . . .  = , 

e ~ f c = 0, (259) 

c = N O _~1 H 0 ,~ 1 where X ~  ~9r + ~ and %c = ~ z ~  + 0~. 
It  is not difficult to find that 

//{ 1 
J (or J )  = U , ( m  o, QO) 2 (AN~r162 7 m 1 _ - _ r/~ 9 ~ - 2r/~gm~ 

1 (AH2~O~O/~ _ O~Q~' - 20~Q~~ dS2. 
2 

Consequently, the following variational inequalities hold: 

(260) 

f/(U *(m, Q) - U0*(m~ Q~ dX? -< _> 
/? 

1 f /" 

- r ? ~  ~9  - ~ 7 ' ~ 9 m , ~ )  

+ - - (261) 

Again, the direction of  the inequality is determined by the positiveness or negativeness of  the 
tensors AN2~r and A H ~ .  

4 V a r i a t i o n  o n  a t h e m e  

To make good use of  the comparison variational principles derived above, one needs to know 
the relationship between the induced deformation field, Of 1, yl) ,  and the resultant polariza- 
tions, (tT, r),  which is usually in connection with the Eshelby tensor in a circular inclusion pro- 
blem, if the composite plate is assumed to be macroscopically isotropic. As shown in Sect. 2, 
for Reissner-Mindlin plates, the deformation field inside an elliptical inclusion is not uniform 
under the uniform eigen-curvature/eigen-rotation, and the associated Eshelby's tensors have 
complicate expressions involved with modified Bessel functions, but it turns out that  some 
simple and useful relations between the average induced deformation field and the average 
polarization field can be obtained for macroscopically isotropic plates under mild restrictions. 
As a variation on the subject, the following analysis complements the asymptotic  results pre- 
sented in Sect. 2. 

4.1 Translation-invariance 

We begin with showing that the relationship between the induced deformation field and 
polarization field is translation-invariant. Consider the auxiliary system (31)-(32)  and the 
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subsidiary system, 

0 1 0 1 (262) 

o I (263) (G~7~ + ~-~),~ = 0, 

with the boundary conditions 

wl (x )  = 0  ((~l , 'w!a)  : 0  ~ 7a l  = ( ~ c t l ~ - w  1 : 0 ,  V x e  0~- ) (264) 

Multiplying the subsidiary equations (262), (263) with the Green's functions, ( r  (k), wG(k)), 
to form an equation of weighted residual, and by the Gauss theorem one will end with the 
integration equations 

6ikui(x) = -- f f  [~Zix ) XaZ ix, x ) + ~-~(x') %a(r x')] dr2' 
22 

a(k). 
- f [ .~Z ~x, x').~9(x') r  + O~a(k)(x,x ') n~(x')~.~(x')) dS' 

0/2 
- t - f  0 1 t [La~r162 ) + ~;3(x')] n~(x') e a(kl (x, X') dS' 

0s2 

+ f G ~ ~ [ ~,~2%9 (x)  + ~-~ (x')] n~ (x') w G(k) (x, x') dS', (265) 
0t? 

which can be modified as the following two coupled integration equations: 

, G(c)~,, x' ~ > )  %a(~(x,x')]  d~' Co(x) = - f f  [ ( ~ z ( x ' ) -  <c~z>)x~z ~ , ) +  (~-~(x')- < 
X? 

L 0 1 t + f [ ~ (x~ , ( , ,  ) -  < ~ > )  + (~.~(x')- < ~ > ) ]  ~r 
0s2 

+ ~ [~(x') - < ~ >] n~(x') ~a(~)(~, x') dS', (266) 
0D 

w(x) = - f f  [(o'~Z(x' ) - < c~z > )  X~z(3)(x, x ') + (~-~(x')- <~'~ > )  %a(a)(x,x')]  dS?' 
g2 

L 0 ~ + ~ [ ~z~(~,(x ) - < ~ z  >) + (~z - < ~oz >)] n~(,,') ~(~)  (,,,,r dS' 
8D 

+ ~ [~(x')  - < ~ >] ~(x ')  ~(~) (x, ,,') dS', (26~) 
Os2 

if the boundary conditions in (264) are taken into consideration. One may note that by 
Lemma 3.1 and its Corollary 3.1 

i r  V x ' ~ 0 f 2  ~ < X ~ > = 0 .  (268) 

Thus, it is plausible that all the boundary terms are oscillating around zero, because the 
source terms of the transformed moment and transformed resultant oscillate around their 
means. Based on these arguments, the effects of all the boundary integrals are limited within a 
boundary layer at the vicinity of the plate's boundary. In other words, for the interior points 
far away from the boundary, 0~, all the terms in the integrands of (266) and (267) can be 
neglected. 

4.2 Average Eshetby compliance tensors 

Being different from both linear elasticity as well as from the Love-Kirchhoff plate, the Reiss- 
ner-Mindlin plate has two types of polarizations: the moment polarization a ~  and the shear 
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force polarization 7-~. As can be deduced from (266) and (267), the induced flexural curvature 
field and the induced shear strain field are coupled in general, i.e., 

Z1 : __~cr 0. -- ~T[, (269) 

yl  = _ A ~  a _ A r v  , (270) 

where 

x~a : f/x(~)~(~ ' - x) (~- <~>) (~') d~', 

x~r = If x(~)~(x' - x)(~,- <~>)(x')dS?', 
s2 

A ~ , ~  : f f  a (~)~176  ' - x)(~- <~>)(x')dS?', 
S2 

a~r  = ffA(~)+(x'- x) ( r -  <~>)(x') d~', 
S2 

(271) 

(272) 

(273) 

(274) 

and 

L,(~)cr 1 (70(r c(~), : = - - ~  a,~ t7~,r ) ,  

A(~)~ , a(r , a(3) 

A(~)oo % 0 ( 0  ~,a(3) 

(275) 

(276) 

(277) 

(278) 

where 

"~9 2~rD(1-  u) ' ' ' 

A(z )  ] 
z (6r + 6r + 26a:3r & - 4r,ar,~r<) 

(1 - ~) } 
2z (6r ~ -[- 6c~r,~ + 6 ~ r  ~ - 2r ~r ~r r , 

1 
%c(0  = 7vD(1 - u) [B(z) 6r - A ( z )  r,r 

~9 87rD 

% c ( 3 ) =  A27rD(1-p)  r '  

(279) 

(280) 

(281) 

(282) 

and r~  = (x~' - x ~ ) / r ,  r = Ix' - x I. 
Introduce the following average Eshelby compliance tensors: 

P S  := f f  Z(~)~(x)dS?, 
(2R 

PRf := f f  Z(~)~(x)doQ, 
S2R 

(283) 

(284) 
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RR ~ := f f  A(~>(x) dO, (288) 

R S  : :  f /A(r)~176 dO, (286) 
~R 

which play a key role on ensuing a variational estimate of effective stiffness of the plates. 
Note that in this paper we always assume that the distribution of inhomogeneities is macro- 
scopically isotropic and statistically homogeneous. Consequently, the subscript /g in Eqs. 
(283)-(286) indicates that the above average Eshelby compliance tensors are evaluated in a 
circular inclusion, aOR, with a radius R. Next, we evaluate the average Eshelby compliance 
tensors explicitly. 

Remark 4.1. In elastostatics, the tensor P has a nice closed form expression, which can be 
interpreted as the integral of a product of Radon transforms of the Green's function and 
stress polarization on a unit sphere, if the stress polarization is uniform (see details in Willis 
[49], and Walpole [45], [46]). [] 

4.2.1 P~ 

~R 

1 . /  ~ o(O~x~n._(x) -+ ~ V x ~ z v  J . . .  x ~ z  Jn~(x)_) do e 
ODa 

2r~ 

ZR 

- z• 2zR / 
o 

q- 6r q- (Sr~gflg( + ~5,Tflgc~g() - 2 (2A:;R) q- ~ )  (Saflg.,Sgn 

+ 2 ( ~ 4 ~  + ( l - u )  zR 2Al(zR))g~gS4gv} dO 

= -  1 (f(u, eR) (er + 6r + 9(u, eR) 6~fier 
8D 

(287) 

R 
where G := x~/r, aR := (h/v/~) , zR = I~(-)e~l and 

2K1 (zR) z~ 
f(u, en) = 1 + 

(1 - ~) ' 

g ( - ,  ~R) = 1 ~ (1 - . )  ~ (1 - . )  
2K~ fiR) zR - 1  

( 1  - u) 

(288) 

(289) 

Remark 4.2.1. There is a universal identity: 

f ( ' , ~ R ) + g ( ' , ~ R )  = 2. (290) 

2. Unlike the inclusion problem of Love-Kirchhoff plates (Li [26]), the average Eshelby com- 
pliance tensor of the Reissner-Mindlin plate depends on the size of the inclusion, the radius of 
the inclusion, R, to be exact. It is also true that for the ellipsoidal inclusion problem of linear 
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elasticity the Eshelby tensors are independent of  the inclusion size (Mura [29]), which leads to 
the well known Tanaka-Mor i  I_emma (Tanaka and Mori [39]). Apparently,  tbr  Reissner- 
Mindlin plates, the Eshelby tensors lose their virtue of  being independent on the size of  the 
inclusion. On the other hand, this is hardly a vice; such size-dependence automatically brings 
an intrinsic length sclae into the picture, which oversees the sclae range of  the representative- 
area-element, and in some cases, such as elasto-plastic materials with softening, it can regular- 
ize the cont inuum's  governing equations (e.g., Fleck and Hutchinson [10]). 4 

3. The result obtained in (287) has two limits: 

(i) eR --+ 0 as R -+ 0, in this case 

3 - - r '  
f (u ,O)  = i - v ' 

t + u  
9(u, 0) -- 1 -  u" 

(291) 

(292) 

Moreover,  when eR << 1, it can be found by simple inspection that  

f ( u ,  en)  = f ( u ,  O) + 0(eI~2) , 

g(~', ~R) = g(,,, o) + o(~R2) . 

(ii) eR -+ oo as h ~ 0, in this case, zR K I ( zR)  -+ O, we find that  

f(u,  oc) = 1, 

g(u, co) = 1. 

Therefore, Eq. (287) recovers the result in Love-Kirchhoff  plate (see Li [26]). 

(293) 

(294) 

(295) 

(296) 

[] 

4.2.2 P~ R Cr~c~ 

DR S'2~ 

= _ 2 (%a(r + %e(%/r dS  

2~r 

z. f 
0 

+ ( B ( z ~ ) & ~  - A(zR)g ,g~)  g~} dO = O. (297) 

R e m a r k  4.3. The main reason that Eq. (297) holds is that  the expression in the right-hand 
side is an odd function ofg. Furthermore,  it is true that  for any smooth function co(txl) = co(r) 

~ v a  w(r)  d~? = 0. (298) 
s?R 

4 In fact, Eshelby tensors are size-dependent in a 3-D Cosserat medium as well (see Cheng and He [3]). 
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This, too, follows by the fact that the integrand is an odd function o f f ,  

1 

l i  '+<'+ 
~a S2n 

1 f 7 a(%~).,(R) = -- -2 (',/aO(r + dS 
&% 

7" 2~r 

0 0 

[] (299) 

4.2.3 R ~  

By definition, 

s?R OR 

a(3) ] 
= i [ ~ ( r 1 6 2 1 6 2  n c j d S  

Of 2R 

2~r 
R 

0 

4 (6~r + 5ZCg<~ ) (21nzR -- 1) + ~ - -  (21nzR -- 1) dO = O. (300) 

Remark 4.4 The same statement made in Remark 4.3 is also valid for tensor R~r The 
results (297) and (300) show that the overall couplings between the induced curvature field 
and shear force polarization, and between the induced rotation field and moment  polarization 
are zero if the composite plate is macroscopically isotropic. [ ]  

4.2.4 R)r 

Based on (286), 

= - r~,~ j dS) 

~f?n ~2R 

-- k27rD(1 - u),  [B(z) 6~ - A(z) r,r dO + 
~n 

1 i g~gr dS 
A2rrD(1 - u) a 

00 

5r [1 -- zRK1 (ZR)] + ~5r _ ~r 
-- A2D(1 - u) A2D(1 - u) - G~- j (u '  aR), 

zRKI(zR) 
where j(u, en) := 1 

2 

Remark 4.5. Function j(v, on), too, has two limits: 

(i) R - - + 0 : j ( v ,  0 ) = I  as an- -+0 ;  

(3ol) 
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(ii) h --+ 0 : j(z~, oo) = 1 as ~:e -+. oo, which leads to 

Gp - @ - -  G;  + O ; *  " (302) 

This suggests that  Gp* = 0 when e~ --4 oc, which means that  there is no addi t ional  trans- 

formed transverse shear deformat ion,  and the plate behaves as if  it were a thin plate. In  

other words,  e~ --+ oo characterizes the thin plate limit. [ ]  

5 Estimate of overall elastic stiffness 

To this end, we are ready to estimate the effective stiffness of  composite  Reissner-Mindlin 

plates. Review the isotropic elastic stiffness tensor 

D(1 - ~') 
L~9r - 2 (6c<6~, + 6~63r + D~,6~,~SU7 = D(1 - ~,) [~3(,~ + 2 D u J ~ 0 7 ,  (303) 

where 

1 
I ~  = ~ ( 6 < ~  + 5~,6~C), (305) 

1 
J~/3r = ~ 5~36r (306) 

EoZ = 6aZ. (307) 

Let 

K~oc,, = 5' (e<ee, + e~,eer - e~o6r . (30s) 

Thus, I = a + K and 

a . a = a ,  J . K = K - J = 0 ,  K . K = K ,  E - E = E .  

The elastic stiffness tensor and elastic compliance tensor can then be put  into the canonical  

forms: 

L~<~ = 2~p&~ + 2 ~ p K ~ ,  (3O9) 

1 1 
5~r = ~ &~,~ + - -  K~9~, (310) 

' 2#; 

ac~  = c ~ E ~ ,  (311) 

where 

D(1 + z,) Eh a 
~ : =  2 -24(1-~) '  (33) 

D(1 - . )  E h  3 
#;  " -  2 --  24(1 + . )  ' (314) 

Gp = a~2h (315) 
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o r  

D p  = Np  -]- # p ,  

~p - #p 
1.7 - -  - -  

~p + #p ' 

(316) 

(317) 

(1 - ~,) .x2. (318) Gp = Dp 2 

Similarly, the average Eshelby compliance tensors, P S  and RR r defined by Eqs. (287) and 
(301), can be also put into the canonical forms: 

1 1 
P S -  - -  a-~ K ,  (3191) 

2~p 0 + 2~p* 2#p 0 + 2#p* 

1 
RR ~ -- E (3201) @0 + @ ,  , 

where 

~Zp* = #p0, (3211) 

, 1 (2zp ~ + g(u, oR) #po) (3221) 
#P - f (u ,  cR) 

G p * = ( ~ c R  ) 1) Gp 0" (3231) 

5.1 Hashin-Shtr ikman type upper/lower bounds 

The interesting part  of the present formulation is that both polarization quantities, 0- and v, 
can excite flexural curvature as well as shear strain. It has been shown in the last section that 

z 1 = - ~ 0 -  - z~3  = - f f  z (~)~(x '  - x) [0-- <0->](x ' )  d e '  
s2 

- f f _ r ( ~ > ( x '  - x ) [ 3 -  < r > ]  (x ' )dS?' ,  
f~ 

(32411 

~,1 = _ Ao 0- _ A r v  = _ f f  A(~)~(x ,  _ x) [0- - <0->](x ' )  &Q' 
(2 

- f f a ( r > ( x  ' - x) [ 3 -  < 3 > ]  (,,') dO' .  (325) 

Hence, the variational inequality (245) takes the form: 

< 
2(H0 - H) ~ (o',z~L lo') + (l',z~G-13) -]- (0-,~,.,Y7~ -~- (0-,•rv) 

+ (r,a~0-) + ( r , A ~ r )  - 2 ( 0 - , Z  ~ - 2 ( r ,  r ~  (326) 

Following Willis [48], [49], choosing the moment  polarization, a,  and shear force polarization, 
r, as piecewise constant distributions and denoting a r and V as the values of  the polarization. 
fields in r th  phase (r = 1, 2 , . . . , . . . ,  n), one may convert Eq. (326) to an inequality of  the: 
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ensemble average, 

< 
~.~(L~ - L o ) %  ~ + ~ ~ ( G ~  - ao) ~ 

i=1 i=1 

+ ~ ~ a ~ f f_ r (~>(x ) [~ (x )  - c~ejl aJdg2 
i=1 j ~ l  J'2 

n 

+ E E a~ ff-Y(~)~(x) [~jtx) - cicj] rJ dX) 
i--1 j = l  F2 

n 

+ E E v~ ffA(~)~(x) [co~y(x) - c~cj] aJd$2 
i=1 j ~ l  f2 

+ ~ ~ v i ffA(~->(x)[coij(x) - eicj] vYdf2 
i--1 j = l  

k k 
i=1 j = l  

(327) 

Here cots(x) is a special form of  the two point correlation function in probability theory, 
which is chosen as (see Willis [49, p. 35]) 

coij(x) := Pij(Y,Y + X)ly=0, (a2s) 

where 

1/f Pij(y,y + x) : = ~  fi(Y)fj(y + x)df2y, 
;? 

(329) 

and f (x )  is the indicator function. 
Note that there is a subtle difference between (327) and Eq. (3.4) in Willis [48], and 

Eq. (327) follows because (see Willis [49, p. 35]) 

Ig~l dx/~(x) (rf~)(x) 
s 

~2 a?' 

f2 O" 

i=1 s7' 

and the assumption that Pij is insensitive to the translation. 
For  macroscopically isotropic plates, wrs is assumed to be isotropic, i.e., co(x) = co(Ixl). 

Thereby, as Remark 4.3 suggests, 

(a, ZTv) = 0 and (v,A~ = 0. (330) 

As mentioned in the Introduction, we are primarily concerned with a composite in which the 
inhomogeneities have the size scale close to the order of  the thickness of  the plate. It is, there- 
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fore, brutal, but plausible to assume that 

f c~j, Ixl > R~ 
wij(lxl) (331) 

Thus, 

f f  X(~)~(x) @~y([x[) - c~cj) dD = P ~  (c~ -cicy),  (332) 
s 

ffA(~)~(x) (.,~j(Ixl) - e~ j )  d;2 = a~=(~i  - c~cj). (333) 
~2 

Then, by a standard procedure (again we refer to Willis [48], [49] or Walpole [44], [45]), the.. 
following result holds: 

2(L - L )2  + 2(G - (~) 2 ~ 0, (334) 

where 

L = ~ eiLiAi cjAj , 
i=1 j = l  

(335) 

Ai = [I + P(Li - L0)] 1 (336) 

(2 = ~ ~G~U~ ~ ejU~ , (337) 
i=l j=l 

Ui = [I + R(Gi  - Go)] 1, (338) 

where the subscript 0 denotes the properties of the comparison plate. 
For a macroscopically isotropic plate, 

p-1 = L0 + L*, (339) 

R -1 = Go + G*, (340) 

and 

L* = 2zp*J + 2#p 'K,  (341) 

G* = Gp*E. (342) 

In this paper, only a circular inclusion is considered; and we further assume that the inclusions 
in different phases are in the same length scale. Thus, in the sequel, we simply denote the ten- 
sors P~Rc and R ~  as P and R, if there is no risk of confusion. 

Remark 5.1. 1. A reasonable choice of the critical size of the inclusion would be 

h 
Rc - ~ / i~ '  (343) 

and subsequently 

p~ 1 
~ r  = ~ (f(~, 1) (5r + 5 J , ~ )  + g(,,  1) 5o~5r (344) 

RRo Ca = C-~ j ( ' '  1). (345) 
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The two extreme cases R~ = 0 and R~ --~ oc can also be justified under different interpreta- 
tions: the case R~ = 0 is a good approximation for ':R~ << 1 and the case Re ---, oo is a good 
approximation for aR~ >> 1. 

2. By using the variational inequalities (261), one can also derive that 

< 
m ( N  - 1';4) Ih + Q ( H  - H) (~ ~ 0, (346) 

where 

E / -~ 1KI = ~ c4N~Bi ejBj , (347) 
i=i \j:1 / 

Bi = [I + O(Ni  - N o ) ]  -1 , (348) 

I 2 I = ~ c i  i V i ~ , ~ c ~ V j /  , (349) 

Vi = [I + S(Hi - Ho)] -1 , (350) 

with O = No + N*, N* -- 1 j 1 K and S Ho + H * ,  H* = 1 - 2~p-----; H- 2#p----- ~ : ~ E .  

Let 

[]  

zg := max {up (i)} 
l<i<n 

#~ := max {#p(i)} 
l~ i<n  

ag :=  max {Gp (i) } 
l<i<n 

~g* =: # g  

1 ~* - (2u~ + g(~,  ~ )  #~) 
g f(ug, eR~) 

G~*= (.g~c~) 1 Gg, 

(351) 

(352) 

where ug = (ug - t~g)/(Ug + #g), and 

ue :=  rain {up (i) } 
l~ i<n 

#~ := min {#p(i)} 
l< i~n  

G~ := rain {GB (~)} 
l<i<n 1 

(353) 

ug* = #g 

1 

(31 ) 
GF= (~.~Ro) 1 ae, 

(354) 

where u~, :=  (ue - m)/(ue + p,e). 
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Fig. 6. Congruous bounds on a Reissner-Mindlin plate's rigidity with different Re: (i) eR~ = oc (the thin 
plate limit); (it) Hashin-Shtrikman bound; (iii) eR~ = 1; (iv) s~% = 0 

Since (see Walpole [44] for a similar expression) 

i = 1  \ j=l  / 

we obtain the following estimation on the overall in-plane bulk moduli and shear moduli (on 
the Cosserat surface): 

[i=~ I +~p(i) ] [~-~1 +~(~) ] ci(ze* )-1 -1 (35611 - ~e* _< xp _< c~(~ 2 ) ~ * ,  
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ci(#F + #p(i))-I _ #z* _< #p _< ci(#3* + #(i))-1 _ #.g, (357) 
i = t  .'= 

which have the exact same structure or formalism as the classical results of linear elasticity 
(Hashin and Shtrikman [14], Walpole [44]), but with different physical contents. By adding 
Eqs. (356) and (357) and utilizing Eq. (316), an explicit estimate for the Reissner-Mindlin 
plate's rigidity is obtained, 

c/(ze* + zp(i)) -1 + Q(pe* + #p(~))-i 2De 
= Li=l f(ug, en~) ' 

< Dp _< (358) 

f%,cRo) " 

Similarly, by considering 

G = ~ c~GiUi cjUj = ci[G~ + Go*] -I - Go*, (359) 
i=1 j = l  = 

the following estimation on the transverse shear modulus can be obtained: 

ci(G~* + Gp(~)) -1 - Ge* <_ Gp < ci(Gg § G;(i)) -1 - Gg*. (360) 
Li=I 

Following Hill [18], [19], we define 

zp (361) O~RM "-- Up + UpS* ' 

~ (362) ,2~w . - -#p + #p* , 

G; 
~nM -- G; + Gp* ' (363) 

One may verify that 

l + u  
~RM = 2 ' (364) 

~RM f(-,cRo) (i -.) i 
: 4 = ~ [ 0  - . )  + 2[~RIK~(~R)], (365) 

~mv_r : j(u,  sR~) : 1 z_aK1 (z[t) (366) 
2 

By comparing with their counterparts in both linear elasticity theory (subscript LE)  and a 
Love-Kirchhoff plate theory (subscript L K )  (for -1  < u < 1/2) 

l + u  
0 < OLLE < 1 ,  (367) aL~ -- 3 (1 - v) ' 

~(4 - 5.) 
fiLE : 15(1 - u) ' 2/5 </~LE < 3/5, (368) 

l + u  
O~LK : 2 ' 0 <:: O{L K <' 3/4, (369) 

] - - v  

/~L.~-- 4 ' 1 / 8 _ ~ L ~ < 1 / 9  (370) 
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Fig. 7. The congruous bounds on the transverse shear modulus with different Re: (i) Hashin-Shtrikman 
bound; (ii) e ~  = 0, (iii) e ~  = 1.0; (iv) e ~  --+ o~ 

the fol lowing observations are made: 

1. a R ~  --- aLK Veto, which implies that the variational bounds o f  a Reissner-Mindlin plate 

give exact the same estimate on the in-plane bulk modulus  as the variational bound of  Love- 

Kirchhoff  plate does. 

2. As eR ---' oc, the variational bounds o f  the Reissner-Mindlin plate recover the results in a 
Love-Kirchhoffplate ,  in other words, in this case, ,2•M =/3LK. 
3. The variational bounds of  the Reissner-Mindlin plates provide the optimal estimate on the 
transverse shear modulus,  which linear elasticity theory as well as Love-Kirchhoff  plate 
theory do not predict, at least not  in an optimal sense. 
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4. ForeR~=0, 

l+u 

2 

3-r, 
f l t tM - -  

4 

1 
~ R M  ~ -  -- �9 

2 

0 < ctR;vz _< 1, 

5/8 _< fl~qM < 1, 

(371) 

(372) 

(373) 

For the thick plates that are made of two phase composite materials, 
z;  (1) - z ;  (2) > 0, #;(1) _ pp(2) > 0, one will have 

CI(Zp(1) __ ){p(2)) < 24p < 24p (1) ~- 
~p(2) _f_ 1 "J- C20~p2(~p(1 ) /~p (2 )  - -  1) 1 -F ClOZpl ( ) {p(2) /24p (1) - -  i) ' 

C1 (#p(1) __ #p(2)) __ ,/~p(1) C2( 'P (2) --  ,U'P (1)) 
6p(2) ~ 1 + e2flp2(pp(1)/pp(2) - I) < #p < d ] Jr- Cl~pl(~p(2)/~p(] ) __ 1) ' 

C2(~4p(2) __ )~p(1)) 

They lead to the following estimate of a Reissner-Mindlin plate's rigidity: 

Cl (#p  (1) __ pp  (2)) 

I + c2fip2(pp(a)/pp(2) - 1) 

c2(# (2) _ #p(1)) 

1 ~ -  C 1 / ~ p i ( # p ( 2 ) / # p  (1) - -  1) ' 

Cl()~p(1) __ )gp(2)) 
Dp (2) d 1 + 5 2 0 ~ p 2 ( Z p ( 1 ) / ~ p  (2)  - 1) -4 

< D ;  < 

c2 (zp (2) - x; (1)) 
Dp (1) 4 1 + c1o@l(24p(2) /~4p (1) - 1) @ 

assuming 

(374) 

(375) 

(376) 

Suppose Gp (1) - Gp (2) > 0. The following estimation on the transverse shear moduli is valid: 

c] (Gp (1) - Gp (2)) Gp(1 ) 
GP(2) + 1 + c2~Op2(G;(1)/Gp(2) - 1) -< Gp <_ d 

c2 (@(2) _ @(i)) 

1 + Cl~p l (Gp(2 ) /Gp(1 )  - 1) " 
(377) 

Even though it may not be appropriate to use Hashin-Shtrikman bounds in 3-D elasticity in 
the evaluation of a thick plate's elastic stiffness if the inclusion size is comparable to the thick- 
ness of the plate, they, however, provide a set of bounds, at least mathematically. For  a two 
phase composite plate, this could be done by taking the thick plate as a 3-D isotropic elastic 
medium, and first evaluating the bulk and shear moduli via Hashin-Shtrikman bounds, 

/~eff = /~eff(/~l, /~2, C1, C2), 

Geff = Geff(G1, G2, cl, c~), 

(378) 

(379) 

and then deriving the effective Young's modulus and Poisson's ratio as 

Geff(3A~ff + 2Geff) 
Gff : , (380) 

A~ff + Geff 

/~eff 
"~ - 2(~ff + Ge~f) ' (381) 

and finally the effective flexural rigidity, 

Eeff  h 3 
Do~ - 1 2 ( ]  - . o~)  (382)  
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For the two phase composite materials ((a) E-glass fiber and epoxy matrix; and (b) Carborl 
fiber with epoxy matrix;), we compare the congruous bounds derived in this paper with the.. 
bounds according to Hashin-Shtrikman bounds in 3-D elasticity, and plot them in Figs. 6 
and 7. In Figs. 6 and 7, the Young's modulus of the E-glass fibers of the first example is 
70 GPa, and its Poisson's ratio is 0.25. The Young's modulus of the epoxy matrix in the 
same example is 2.8 GPa and its Poisson's ratio is 0.35. In the second example, the Young's 
modulus of the Graphite fibers is 230 GPa, and its Poisson's ratio is 0.26, whereas the 
Young's modulus of the epoxy matrix in the same example is 3.19 GPa and its Poisson's ratio 

is 0.35. 
From Fig. 6, one may observe that for the ftexurai rigidity the bounds derived from the 

Hashin-Shtrikman bounds fail in between the congruous bounds with eR~ = ec and eR~ = 1. 
In fact, they are very close to the congruous bounds with eR~ = ee, i.e., the thin plate limit. In 
general, as R~ decreases, the congruous bounds for the flexural rigidity decrease. This indi- 
cates that there is a possibility that the Hashin-Shtrikman bounds may overestimate the thick 
plate's elastic stiffness, if one uses the 3-D elasticity results without discretion. This over-shot 
tendency becomes obvious when one estimates the plate's transverse shear modulus. Figure 7 
presents the comparison between Hashin-Shtrikman bounds and all the congruous bounds. 
The Hashin-Shtrikman bounds are sitting on top of every other congruous bounds, though 
very close to the bounds at ezra, = 0. This makes sense, because when Rc -~ 0, the inclusion 
size is tiny, and the plate behaves like an isotropic 3-D continuum, at least macroscopically. 
Note that, in this case, the upper and lower congruous bounds at cR~ --+ ec merge together, 
lying on the bottom of the series; this happens because there is no transformed rotation at the 

thin plate limit. 

5.2 Self-consistent estimate 

The similarity between the mathematical structure of  the Reissner-Mindlin plate and that of  
linear elasticity suggests that the conventional self-consistent approximation (Budiansky [I], 
Hill [t81, [19]) for the linear elastic heterogeneous continuum might be valid in a composite 
Reissner-Mindlin plate as well. However, there are some differences, too. First, a Reissner- 
Mindlin plate is a Cosserat medium, in which the eigen-curvature not only induces a moment, 
but also induces a transverse shear force as well; so does the eigen-rotation. Therefore, in gen- 
eral, there are coupling terms between eigen-curvature and eigen-rotation in the overall elastic 
potential energy. In the following, all the inclusions are assumed to be circular in shape, and 
the sizes of the inclusions are at the same scale range. In this case, the coupling terms disap- 
pear. Second, aloofly speaking, the equivalent inclusion method, Mori-Tanaka method, and 
some other engineering approaches, etc., all belong to the category of self-consistent metho- 
dology in principle, if one disregards the trifled technicalities. In physical principle, they all 
rely on the fact that the Eshelby tensors are independent on the size of the inclusion, at least 
in the average sense. This is another place where the generalized eigen-deformation formula- 
tion in Reissner-Mindlin plates slightly differs from the classic formulation; consequently, 

extra care should be taken. 
As shown above, when Rc = 0 (which corresponds to the first order approximation), the 

Eshelby tensors, both pointwise and average, are independent of the inclusion size; thus, a self- 
consistent scheme is a straightforward analogy of the case in 3-D elasticity. A popular choice of  
the scheme (Hill [18], Budiansky [1]) is the one that assumes that there exist overall con- 
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straint stiffness, L* and G*, or compliances, N* and H*, such that in each phase of the plate 

2~ - z = N * ( m - ~ ) ,  

Q~ - Q = G*(?  - ?~), 

?~ - ? = H * ( Q  - q~) ,  

(383) 

(384) 

(385) 

(386) 

o r  

(L* + L~)2~ = (L* + L)2,  

(N* + i d  m~ = (N* + N) ,S~, 

(G* + a~) r~ = (G* + G) ?, 

(H* + Hi) Qi = (H* + H) Q; 

(387) 

(388) 

(389) 

(390) 

here the physical quantities are average moments ,  average shear resultant, average curvature, 
and the average rotation. Apparently,  the postulate makes sense in the generalized eigenstrain 
formulation. Substitution of  Eqs. (387) and (388) into the identities 

E c/(fia~ - ill) = 0, (391) 
i = l  

n 

E ~(2~ - z )  = o ,  (392) 
i=1  

n 

E c4(0~: - O) = O, (393) 
i = 1  

f/, 

c4(?~ - ?) = O, (394) 
i = 1  

yields 

i:1 l-,~ §  - L* + L = P ~ ci[(Li - L) -1 + p ] - i  = O, (395) 
i : 1  

i=l N~ + N N* + N = O ~ ci[(Ni - N)  -1 + O] -1 = 0, (396) 
i = 1  

n Ci 1 n 
i ~ l e ~ + G - G , + G = S  =* ~<(G~-G)-~+s]-~=o,~=~ (397) 

i=1 H~+ H H , + H = T  ~ a;[(Hi-H)-I+S]-~=O, (398) 
i = 1  

or in equivalent forms { }{ }_1 
L = ~ c~L~I~ + P(L~- L)1-1 ~ ~II + P(Lj- L)] -1 , 

i = 1  j = l  

N = {.~=~ ciNi[I § O(Ni - N)]-l } { ff~_l cj[I + O(Nj - N)]-l }-l , 

(399) 

(400) 
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Fig. 8. A piece of "Swiss cheese" - a 
thick plate with distributed cavities 

1 G = c/L/[I + R(G{ - G)] -1 cj[I + R ( G j  - G)] -1 , 
j= l  

H = c n [I + -1 c d I +  S ( H j  - n ) ]  , 
j= l  

(4o l )  

(402) 

To  entertain the thought  that  this self-consistent scheme for the Reissner-Mindlin plate is 
practically useful in what  follows, we calculate the elastic stiffness for a special two-phase 
composite plate - a sheet of  "Swiss cheese" (Fig. 8), in other words, one phase of  the compo-  
site (say phase 1) is taken as cavity, which implies that  L (1) = 0 or zp 0) = #p(1) = 0. 

For  the two phase composite plate, Eq. (395) take the form 

C1 52 
{- -- P ,  (403) 

L -  L2 L -  L1 

where (cr~ = 0) 

(~_@ ~ p )  l + u  3 - u  (404) p =  ap , tip and c~p-  2 ' t i P -  4 

Let Xp(1) = #p(~) = 0. We can solve zv in terms ofpp,  i.e., 

i2) 

)gp - -  C124p(27,, ~- # p  ' 
(405) 

and #p, Dp can be solved explicitly without further assumption on ~p(2)5, 

zp(2)/zg)(1 - 3cl) 
#p = 2c1#;(2) + c2~p(2) ' 

Dp(2)~v(2) #p(2) (1 - 3cl) 
Dp = (2c1#p(2) + c2zp(2))[(2c 2 _ 1) #p(2) + cizp(2)] ' 

(406) 

(407) 

Obviously, the volume of  the cavity should not  exceed one third of  the total volume of  the 
plate. It  is interesting to compare  this with the similar problems solved in the context of  3-D 
elasticity (see Willis [49]) and a thin plate. In  3-D elasticity, the total volume of  the cavity 

s The same problem in linear elasticity as well as in thin plate theory are treated under the assumption 
that the matrix is incompressible, i.e., zp(~) -+ ee. 
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should not exceed one half of the total volume of the medium, whereas in a thin plate (Li [26]) 
the total volume of the cavity should not exceed two third of the total volume of the plate. 

However, the interesting part has not ended yet. Let is consider the transverse shear 
modulus for eR~ = 0, which amend G / =  @. From the self-consistent scheme (397), one will 
have the equation 

Ct e2 C1 C2 
= (408)  

which yields 

1{ } 
Cp = ~ (Cl -- C2) (Cp (I) -- Gp (2)) n c i(C1 -- C2) 2 (Gp <I) - Cp(2)) 2 _a 4Cp(1)Cp(2) . (409) 

IfGp (2) = 0, we end up with 

C~ = (1 - 2cl) ap (2> . (410) 

Again, the total volume of the cavity should not exceed one half of the total volume of the 
composite plate, and this corresponds to the elasticity result. 

6 Concluding remarks 

Even though the methodology of micromechanics has been extensively used in the study of 
composite materials and has become an indispensable part of composite rnechanics, in current 
engineering practice the design criteria as well as the standards in the strength analysis of com- 
posite structures are still limited within the realm of conventional laminar plate theories or 
laminar shell theories. 

To address this inadequacy, this work presents a systematic study on the micromechanics 
that is congruous with the Reissner-Mindlin plate theory, which can be applied to the cases 
that thick plates are made by embedding short fibers, or functional cells, which provide the 
reinforcement to structures. The present formulation is attractive because, first, it preserves 
all the original assumptions of the Reissner-Mindlin plate theory and hence the validity and 
generality in applications, and second, it preserves the rigor of the micro-elasticity, hence the 
elegance and permanence in its theoretical value. 

The main contribution of this work is in the following three aspects: (i) analytical solutions 
on the elliptical inclusion problem of the Reissner-Mindlin plate, (ii) comparison variational 
principles for the Reissner-Mindlin plate, and (iii) the congruous bounds on the elastic stiff- 
ness of the plate. 

As an analogy of micromechanics in linear elasticity theory, the micromechanics of a 
Reissner-Mindlin plate may be further generalized to the general 2-D Cosserat-manifold, i.e. 
the elastic shells that are capable to sustain shear deformation. Because of the corfiplexity of 
the corresponding Green's function, one might expect to deal with them on a specific basis. In 
the end, we would like to note that even though the results given in this paper resemble the 
classic formalism in character, they obviously differ in quantities, and, most importantly, in 
the physical implications. Nevertheless, the applications may be subjected to certain 
restraints, such as the distribution patterns of the inhomogeneities, and the shape of the inclu- 
sions. 
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Appendix: 

Evaluation of tensor S T M  

Based on the formula (98), the components of  tensor S FM c~r are calculated as follows: 

(1 - u) (1 + u) a12 
S n n = - - I i + - -  I n ,  

41r 2:,r 

( 1 ) -  (1 + u) az 2 
$1122 - -  b '  f l  -1- I12, 

4~r 27r 

(1 - ~,) 
S1212 = S212i -- 8~r 

+(1 4-@ (a12+a22)I~2 ' - -  ( 1 i + h )  

(l+u) ( l + u ) a l  2 
$2211 -- - -  I2 d I21, 

4~ 2~ 

(1 - t,) (1 + . )  a2 2 
$2222 --  /2 -~ I22,  

4:r 27r 

$2212 : $2221 = 0 ~  

~1211 =$2111:0, 

S1222 = S212e = 0 ,  

where 

27r 

0 

# = 1,2,  

27r 

1 f g~ZgSz dO I~p . . . . . .  , 
a~Za,~ 2 9 

0 

a , / 3 =  1,2,  

which satisfy the following identities: 

11 + / 2  = 2rr, 

ai2/11 + (al 2 + a22)/12 + a22/22 = 27r, 

a lZ  f l l  -~ 2/12 1222 1 [1 Jr- 1 [2 
a22 + at 2 /22 : a2-- ~ at-- ~ - 

(A.1) 

(a.2) 

(A.3) 

(a.4) 

(a.5) 

(A.6) 

(A.r) 

(A.S) 

(A.9) 

(An0) 

(A.11) 

(A.12) 

(A.la) 

(a.l,1) 
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