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Abstract

The Reproducing Kernel Particle Method (RKPM), which utilizes the fundamental notions of the convolution

theorem, multiresolution analysis and meshfree properties, is reviewed. The multiple-scale RKPMs are then proposed

as an alternative to commonly used numerical methods such as the ®nite element method. The elimination of a mesh,

combined with the ®ltering properties of window functions, makes a particle method suitable for problems with large

deformations, high gradients, and localization problems. This class of methods has been applied to shear band

problems, and large deformation fracture and damage problems. Ó 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Recently, as an alternative and/or enhancement
to the ®nite element method, there is a strong in-
terest in the development of a new class of mesh-
free methods. The Smooth Particle
Hydrodynamics (SPH) method is a grid-free
computational method based on a Lagrangian
formulation [11,12,32]. The continuum is repre-
sented by a set of particles eliminating the need for
a mesh and consequently, alleviating mesh distor-
tion problems. Based on a completely di�erent
approach, the element-free Galerkin method
(EFG) developed by Belytschko et al. [3±5] applies
moving least square interpolants to solve the
problems of crack propagation and elasticity [2].

The recent developments, the Reproducing Kernel
Particle Method (RKPM), proposed by Liu [22]
and Liu et al. [28,29] included a boundary cor-
rection term to handle di�erent boundary condi-
tions, completeness conditions and error estimates.

The versatility of wavelets makes them very
attractive in the discretization of di�erential
equations. Glowinski et al. [13] explored the idea
of using wavelets instead of piecewise polynomial
trial functions in ®nite element methods (FEMs)
type of methods. However, the straight use of
wavelets as trial functions poses a number of dif-
®culties. Low order wavelets cannot be employed
due to the lack of regularity. The orthogonality of
wavelets, as required in signal processing, is not
important. Most signi®cantly, the boundary con-
ditions cannot be easily imposed in Dirichlet
problems.

The shortcomings of the standard FEMs can be
overcome through the application of particle-
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based methods, such as the RKPM. Wavelets ex-
hibit attractive features in handling problems with
various scales. These two ideas have been com-
bined into the multiresolution RKPMs where the
di�culties are alleviated by introducing a boun-
dary correction function. The resolution of scales
through multi-scale decomposition was introduced
by Liu et al. [25±28,30,31]. This concept was later
expanded into RKPM and has been applied in
various ®elds such as structural acoustics [24,41],
large deformation problems [20,26,7], computa-
tional ¯uid dynamics [14], micromechanics [37],
and recently, large deformation fracture and
damage problems [18] and shear bands [21].

The goal of this paper is to introduce the con-
cepts involved in the development and use of
RKPM, and show the e�ectiveness through several
numerical applications. In Section 2, the funda-
mental notions in the development of the RKPMs
such as the convolution theorem, multiresolution
analysis and window functions are introduced.
Section 3 is devoted to the mathematical formu-
lation of the correction function. The need for a
correction function is discussed, and the guidelines
on its construction are given along with com-
pleteness conditions. A micromechanics damage
model is discussed in Section 4. The formulation of
RKPM in large deformation applications is in-
troduced in Section 5. Several numerical examples
are presented in Section 6.

2. Overview of multiple scale meshfree methods

2.1. Review

Both wavelet and SPH methods can be shown
to belong to a class of reproducing kernel methods
where the `reproduced' function uR�x� is given by

uR�x� �
Z �1

ÿ1
u�y�/�xÿ y� dy: �2:1�

Eq. (2.1) can be viewed as a projection operator. In
Refs. [23,25,27,28,30], Liu and his coworkers
showed that with the proper construction of a
correction function to SPH, scaling functions, and
wavelets, not only can arti®cial boundaries be

eliminated, but the accuracy of discrete solutions
can also be enhanced throughout the entire do-
main. Hence, Eq. (2.1) can be rewritten for a
bounded domain as

uR�x� �
Z

X
u�y�C�x; xÿ y�/�xÿ y� dy; �2:2�

where C�x; xÿ y� is the correction function and X
is the computational domain. Using a ¯exible
time±frequency/space±wave number analysis, as
described in Section 3, we show how the correction
function

C�x; xÿ y� � b0�x� � b1�x��xÿ y�
� b2�x��xÿ y�2 � � � � �2:3�

not only compensates for the boundary-e�ect in
®nite domain function recovery, but also corrects
the amplitude error caused by the conventional
convolution theorem; in a discrete convolution,
phase error can also be corrected.

Multiple scale analysis has its origin in signal
analysis. Wavelet analysis is a contemporary sci-
ence in image processing [8,9,38]. However, one
major drawback in its application to computa-
tional mechanics is its inability to handle large
deformation and complex domains. With the help
of the correction function for the scaling functions
and wavelets and the introduction of a dilation
parameter a, we are able to perform multiresolu-
tion analysis of an arbitrary domain using only a
set of nodes (or particles). The incorporation of
this dilation parameter into the reproducing kernel
Eq (2.2) gives

uRa�x� �
Z

X
u�y�Ca�x; xÿ y�/a�xÿ y� dy

�
Z

X
u�y� �/a�xÿ y� dy: �2:4�

One can view �/a�x� as a window function, so that
the integral window transform of �/a�x� and u�x�,
equivalent to the convolution, �/a � u�x�, and de-
noted by uRa�x�, is a `reproduction' of the original
u�x� with resolution of �/a�x�. In other words, with
the proper design of �/a�x�, uRa�x� will conserve all
the resolutions and properties of the original so-
lution u�x� up to scale a. For this reason, we prefer
to label �/a�x� and a as the scaling function and the
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scaling (or re®nement) parameter, respectively. A
smaller a implies a ®ner scale solution of u�x�. In
particular, when a approaches zero, �/a�x� ap-
proaches the Dirac delta function so that
lima!0 uRa�x� ! u�x�.

3. Correction function

As indicated in Eq. (2.1), the solution to a dif-
ferential equation or a set of di�erential equations
can be expressed as

uR�x� �
Z �1

ÿ1
u�y�/�x; xÿ y� dy; �3:1�

where / is a kernel function which acts like a ®lter
or a reproducing kernel, and uR is the reproduced
solution of u�x�. In a ®nite domain, Eq. (3.1) can
be written as

uR�x� �
Z

X
u�y� �/�x; xÿ y� dy; �3:2�

where

�/�x; xÿ y� � C�x; xÿ y�/�xÿ y�: �3:3�
The correction function, C�x; xÿ y�, can be con-
structed in such a way to avoid the di�culties
mentioned above. Since the integral de®ned in Eq.
(3.2) is too complicated to be carried out analyti-
cally, it is generally discretized either by a set of
particles. The methods involving mesh-free La-
grangian particles concerned with the solution of
Eq. (3.2) are referred to as RKPMs. The con-
struction of an appropriate correction function to
compensate for the boundary e�ects and to mini-
mize the amplitude and phase errors is as follows:

�/�x; xÿ y� � C�x; xÿ y�/�xÿ y�

�
Xn

k�0

bk�x��xÿ y�k/�xÿ y�: �3:4�

The numerical moments of window function /�x�
are de®ned as

mk�x� �
Z

X
�xÿ y�k/�xÿ y� dy;

k � 0; 1; 2; . . . ; n: �3:5�

The unknown constants b's are determined by
imposing the reproducing conditions:

�ma�a; x� � da0; 06 jaj6 n: �3:6�
It is noted that multi-index notation is applied for a
to simplify the notation for multiple dimension.
Enforcing the reproducing conditions, Eq. (3.6),
on the modi®ed window function, �/, yields

Mb � P�0� or b �Mÿ1P�0�; �3:7�
where the components of the moment matrix M

are

Mi �
Z

X
�xÿ y�a/a�x; xÿ y�

� �xÿ y�b dy; 06 a� b � i6 n �3:8�
and P is the basis function de®ned as

P�xÿ y� � �1; �xÿ y�; . . . ; �xÿ y�n�T

and P�0� � �1; 0; � � � ; 0�T.

4. Damage models

In this section, we brie¯y discuss the material
model for void-containing ductile solids. Based on
the cell model concept suggested by Rice and
Tracey [35], Gurson [15] has derived the upper
bound solutions for cylindrical cells and spherical
cells with/without rigid inclusion:

UGTN � req

ry

� �2

� 2q1f cosh
3q2rm

2ry

� �
ÿ �1� q3f 2� � 0; �4:1�

where rm, req and ry are the hydrostatic stress, the
equivalent stress and the equivalent tensile ¯ow
stress representing the microscopic stress state in
the matrix material, respectively. The constants q1,
q2 and q3 are introduced [34,39] in an attempt to
make Gurson's equations agree with numerical
studies of materials containing periodically dis-
tributed circular cylindrical voids and f is the
current void volume fraction.

Another computational methodology of a mic-
romechanics cell model is proposed to establish the
constitutive law during material fracture which we
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labeled as the HLC model [18]. When a damaged
ductile material yields, UHLC � 0. That is

UHLC

req

ry
;
rm

ry
; f

� �
� req

ry

� �2

� 1

�
� 1

m20

�
fm1 exp

3rm

2ry

� �
ÿ 1

� 0; �4:2�

where m1 is a given material constant and the
model parameter function m20 can be obtained
based on computational cell modeling technique
and no additional undetermined constants are re-
quired.

Various of applications of Gurson model and
HLC model can be found in the ®elds of metal
forming, fracture toughness simulation, and
structure integrity analysis [18,6,36,16]. The HLC
model, in conjunction with Meshless method, is
very e�ective for simulating the large deformation
processes during metal forming, penetration and
ductile fracture.

5. RKPM formulations for large deformation

For large deformation problems, meshfree
methods such as RKPM may, similar to the ®nite
element method, be regarded as an updated La-
grangian method or a total Lagrangian method.
As stated in [7,20], the total Lagrangian formula-
tion requires more storage than the updated La-
grangian formulation in order to save the values of
the shape functions and their derivatives. In con-
trast, the updated Lagrangian formulation re-
quires the repeated searching and calculation of
shape functions at each time step which often ruins
computational e�ciency. Thus, for transient
problems with large deformations which will be
considered in this work, the total Lagrangian
formulation is desirable, since its computational
cost is anticipated to be several orders of magni-
tude less than an updated Lagrangian formulation.

Consider a body which occupies a region XX

with boundary CX at time t � 0 and is deformed to
occupy a region Xx with deformed boundary Cx at

time t. The motion of the continuum body is de-
®ned as

x � X� u�X; t�; �5:1�

where X, x, and u�X; t� are the material coordi-
nates, current spatial coordinates, and the dis-
placement, respectively. For the total Lagrangian
formulation, the governing equations may be
stated as:

1. Conservation of mass:

q0 � qJ ; �5:2�

where J is the determinant of the deformation
gradient F, i.e., J � jF j � jox=oXj:

2. Equation of motion:

q0�u � r � P� q0b or
oPji

oXj
� q0bi � q0�ui; �5:3�

where P is the ®rst Piola±Kirchho� stress tensor
and b is the vector of body force per volume.

3. Constitutive laws: For the modeling of hyper-
elastic materials, the second Piola±Kirchho� stress
S is calculated from the strain energy density
function W, i.e, Sij � oW =oEij where E is the
Green strain tensor.

4. Boundary conditions:

ui � �ui on Cu
X ; �5:4�

n0
j Pji � �t0

i on Ct
X ; �5:5�

where Cu
X [ Ct

X � CX and Cu
X \ Ct

X � ;:
With the RKPM interpolation functions and its

derivatives as

ui�X; t� �
XNP

I�1

NI�X�dIi�t�

and

ui;j�X; t� �
XNP

I�1

oNI�X�
oXj

dIi�t� �5:6�

the discretized weak form of the momentum
equation is obtained as

M�d � fext ÿ f int; �5:7�
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where M is the lumped mass matrix, f int is the in-
ternal force vector, and fext is the external force
vector, respectively. It is noted that for total La-
grangian formulations, all the integrations above
are performed over the material space XX or sur-
face CX which are ®xed during the time integration
procedure.

6. Numerical examples

In this section, several numerical studies are
presented including large deformation fracture,
compression of a hyperelastic block, tension test of
an elasto-viscoplastic tensile bar, and simulation of
the John±Shah notched concrete beam to demon-
strate the performance of RKPM.

6.1. Large deformation fracture

In this section, the deformation process and
shear bands in a notch-bend specimen are studied.
The setup of a plane-strain notch-bend specimen
is shown in Fig. 1a. The geometrical parameters
are a : W : L � 1 : 2 : 8 with a � 0:0762 (m).
The deformation processes are considered to be
quasi-static.

In the analysis, the visco-plastic strain harden-
ing law suggested in [34] has been applied with the

material constants are as follows: Young's modu-
lus E � 210 GPa, r0 � 470 MPa, Poisson's ratio m
� 0.3, the strain hardening exponent N � 0.001,
and the reference strain rate _�0 � 0.00218 with the
strain rate exponent m � 0.001. The initial void
volume fraction f0 � 0 and the volume fraction of
second material phase for void nucleation is 0:001.

In the numerical simulation, the specimen is
modeled by 5504 RKPM particles. The deforma-
tion sequence at di�erent time steps is shown in
Fig. 1b. Note that in the computation, only the
contact condition between the specimen and the
punch at the original con®guration has been taken
into account.

To demonstrate the localized deformation
around the crack tip and ligament clearly, a close-
up of the deformed RKPM particles at the crack
tip-ligament area of the specimen is shown in Fig.
1c. The comparison between particle (meshfree)
and mesh-based methods is also presented. As
shown in Fig. 1c, the mesh-based analysis will fail
at the ®nal deformation since it leads to a severe
mesh distortion. On the contrary, the RKPM
computation ran continuously until the right and
the left parts of the specimen overlap with each
other. This example demonstrates that particle-
based numerical methods such as RKPM are not
sensitive to mesh distortion.

Fig. 1. Large deformation of a notch-bend specimen with ductile tearing fracture at the crack tip.
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6.2. Compression of a hyperelastic block

In this section, a hyperelastic block under
compression in plane strain is studied. The prob-
lem statement is sketched in Fig. 2. The modi®ed
Moony±Rivlin constitutive model [10] has been
applied with the material constants:
q � 2:045� 10ÿ3 (kg/m3), C1 � 0:1265 (MPa),
C2 � 0:1012 (MPa), and k � 0:1012� 103 (GPa).
The domain is discretized into 51� 51 RKPM
particles and the bilinear base functions are used.
The constant time step increment is chosen as
Dt � 1� 10ÿ6 (s).

The deformed shapes at several time stages are
shown in Fig. 2. Finite element analysis is also
performed with the mesh of 50� 50, 4-node ele-
ments. The results are also shown in Fig. 2. The
FEM analysis failed due to severe mesh distortion
when the compression percentage reached 66%.
RKPM computation, however, reached 90%
compression with the help of the variable Dt. One
of the strategies to determine Dt is given as follows:

Dt �
Dt0 % of compression 6 50%
Dt0=2 50%6% of compression 6 75%
Dt0=4 % of compression P 75%

8<: ;

where Dt0 � 1� 10ÿ6 (s). Without mesh connec-
tivity, it is shown that around 20 particles had
been lift o� from the surface of the block in 90%
compression of RKPM computation.

6.3. Tension test of an elasto-viscoplastic tensile bar

In this example, the meshless hierarchical basis
is used to simulate shear-band in an elasto-visco-
plastic material. This problem has extensive engi-
neering applications [1,33,40]. In this work, the
wavelet adaptive algorithm is utilized to capture
the localization mode [21]. The orientation of the
wavelet basis is isotropic in space, and the en-
hancement of the numerical solutions due to
wavelet basis comes out naturally as the outcome
of numerical computation, though the adaptive
regions are selected by a given criterion.

The model problem considered is the following
tension test of an elasto-viscoplastic tensile bar, a
rectangular specimen under plane strain tension.
The prescribed displacement/velocity boundary
condition is imposed at the both ends of the tensile
bar as shown in Fig. 3. A power-law governed
elasto-viscoplatic material is used in numerical
computation, which is simular to those, e.g., [33].
In order to initiate shear bands the imperfectio is
implanted, as introduced in [33].

In the example, both geometric imperfection as
well as yield stress reduction are implanted and
3321 particles are used. An intuitive adaptive cri-
terion is adopted: we re®ne the regions, or the set
of particles, that have the highest accumulated
viscoplastic strain distribution. The wavelet basis
are added to 241 particles, which have the highest
values of viscoplastic strain; subsequently, 482, or

Fig. 2. Compression of a hyperelastic block.
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723, new degrees of freedom are adding into the
primary shape function basis.

As shown in Fig. 3, one can observe that the
width of the shear bands obtained from the
wavelet adaptive solutions become thinner than
the numerical solution without adaptivity.

6.4. Simulation of the John and Shah notched
concrete beam

This problem has been investigated by EFG
using linear elastic fracture mechanics. Based on
the methodology of meshfree analysis and the

Fig. 4. Simulation of the John±Shah notched concrete beam.

Fig. 3. The contours of the viscoplastic strain in the tensile bar: (a) without wavelet adaptivity; (b) with wavelet adaptivity; (c) the

adaptivity pattern in undeformed con®guration.
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visibility principle [3], the concept of `damage in-
duced cracking', the corresponding crack tip
smoothing technique, and the computational
meshfree algorithm have been developed [17]. As
an applicational example, a dynamic crack growth
process in a notched concrete bar has been ana-
lyzed using damage induced crack technique and
meshless method.

As shown in Fig. 4, the bar to be studied is
under dynamically three points bending, in which
there is a premanufactured notch located away
from the middle symmetric axis. Thus, the notch
tip locally is under mixed mode I and mode II
loading condition. This kind of specimen has been
investigated experimentally by John and Shah [19].
The modi®ed smooth cap model coupling damage
has been applied to describe the constitutive be-
havior in conjunction with damage evolution. The
simulated crack growth path and the support force
as well as the comparison to experimental result
are depicted in Fig. 4. The comparisons with linear
elastic fracture EFG and experimental results are
in good agreement.
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