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In this work, we proposed a Cauchy-Born rule (CBR) based multiscale model to study mechanical prop-
erties of amorphous materials. In this work, we combine a coarse-grained Parrinello-Rahman (CG-PR)
method and the Multiscale Cohesive Zone Model (MCZM) method to model the Lennard-Jones (L-J) bin-
ary glass and amorphous silicon (a-Si) solid. The proposed CG-PR method applies the CBR to a represen-
tative volume element of an amorphous material with representative microstructure pattern, whose side
dimension is about twice of the cutoff distance of interatomic interaction. Numerical simulations were
carried out, and it is found that CG-RP method can reproduce the stress-strain relations extrapolated from
large scale MD simulations for both L-J binary glass as well as amorphous silicon (a-Si).
The CG-PR method is then combined with MCZM method to simulate failure process of amorphous

materials. We found that (1) the CG-PR method can capture the history-dependent inelastic stress-
strain relation in amorphous materials, and (2) the CG-PR enhanced MCZM method can simulate both
brittle and ductile fracture in both a-Si solid and L-J binary glass. Moreover, the multiscale methodology
developed here may be extended to study mechanical properties of a variety of other non-crystalline
materials.

� 2017 Elsevier B.V. All rights reserved.
1. Introduction

The Cauchy-Born rule (CBR) is basically a kinematic assumption
on atoms motions in crystalline materials. Utilizing the CBR
assumption, one can develop multiscale methods to construct
macroscale constitutive models for crystalline materials, which
are informed by atomic or molecular information at microscale.
Historically, Cauchy assumed that the macroscale deformation
motion and the atomistic movement in multiplying scale factor.
This concept was further extended by Born who introduced macro-
scopic deformation gradient as a linear transformation of position
vectors in the reference configuration to describe atom arrange-
ments [1]. By assuming that both kinematic motions in macroscale
and microscale are affine deformation, many multiscale models
have been developed to establish constitutive models for various
crystalline solids by utilizing with interatomic interaction poten-
tials, e.g. [2–4] among others.

In specific, because that the Cauchy-Born rule assumes uniform
deformation in crystalline solids, we can estimate atom positions r
in deformed configuration simply as ri ¼ F � Ri, where F is the
deformation gradient, and Ri is referential coordinate of atom.
For example, the local form of the quasi-continuum (QC) method
[2,5] uses the interpolation field among the representative atoms
to describe a continuous atomistic displacement field, which pro-
vides an estimate for each atom’s displacement in the domain.
Multiscale Cohesive Zone Model (MCZM) [4,6] applies the same
technique to a MD unit cell consisting of multiple atoms, which
is assigned to each quadrature point inside an (finite) element.
Since the unit cell is embedded in each quadrature point of a finite
element, we can use it to evaluate both constitutive relation as well
as the cohesive law at that material point. This procedure provides
great advantage to evaluate stress-strain relation for crystalline
solids, especially for single crystals. This is because that in each ele-
ment one only needs to calculate stress at the locations of a few
quadrature points. As a result of such simplification, computational
cost is greatly reduced to simulate material behaviors at macro-
scale based on microscale information. For example, as the Bravais
lattice, both face-centered (FCC) and body-centered cubic (BCC)
crystals have only one atom in their Wigner-Seitz cells. When eval-
uating stress at one quadrature point, one only needs to calculate
atomistic interaction around that atom, which are only involved
with a few dozen neighboring atoms. For non-Bravie lattices, for
example the cubic diamond crystal, its lattice structure may be
considered as a pair of interpenetrating FCC lattices, thus it is also
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possible to apply CBR by adding additional degree of freedom that
represents the distance between two atoms inside its Wigner-Seitz
cell [6,7].

Based on this technique, a number of multiscale methods have
been developed for crystalline materials whose lattices resemble
the diamond crystal lattice such as silicon or other semiconductor
crystals e.g. [2,8,9]. On the other hand, the Cauchy Born rule has
been extended to include nonlinear deformation by considering
the contribution of higher order deformation gradients. For exam-
ples, Sunyk and Steinmann have applied the higher order Cauchy-
Born rule in crystalline solids with inhomogeneous deformation by
considering the second order deformation [10]. CBR has also been
applied to membrane sheets of graphenes, thin plates of mutilayer
graphenes, and nanowires by introducing the so-called exponential
CBR that takes into account the curvature effect in deformation
mapping [11,12]. In order to distinguish bulk crystal and crystal
surface region, Park et al. proposed the concept of the surface
CBR [13], and they also applied the method to study surface effect
on silicon [14]. Khoei et al. further extended the idea to take in
account of corner and edge effects on microscale silicon [15]. Li
et al. have applied up to fourth order CBR to describe different
types of crystal defects to study dislocation dynamics [16].

Contrary to single crystal materials, studies of multiscale mod-
eling for amorphous materials are relatively limited, despite of the
fact that there exist a large variety of amorphous materials, such as
glasses, ceramics, amorphous semiconductors and various polymer
materials, in engineering applications. This is largely due to the
complexity and difficulty in amorphous material modeling [17].
Most of amorphous material modelings are restricted at the
mesoscale level by using the homogenization methodology in
micromechanics [18], for example, using the approach of Eshelby’s
equivalent inclusion method [19], which assumes a homogeneous
material with equivalent eigenstrains corresponding to heteroge-
neous material. For instance, Liu and Sun employed the method
to estimate effective elastic stiffness and yield strength of amor-
phous nanocomposites [20].

However, recently, Albaret et al. attempted to connect
micromechanics approach with molecular dynamics approach by
combining the Eshelby inclusion method with molecular dynamics
(MD) simulations to study amorphous silicon material [21]. Vala-
vala et al. also tried to predict hyperelastic continuum constitutive
relation for Polyimide and Polycarbonate based on MD simulations
[22]. Other efforts have been made for multiscale modeling of
amorphous polymers. The Pseudo-Amorphous Cell (PAC) method
employs representative volume elements (RVE) to model amor-
phous materials, in which atom displacements are related to the
cell deformation without assuming continuous displacement field
by using so-called transformation matrix operator for small defor-
mation regions [23–25]. The RVE approach in micromechanics is
also applied to amorphous polymetric material by coupling molec-
ular dynamics calculations with the finite element calculations
[26]. Almost of all these studies adopt micromechanics homoge-
nization scheme to build a hierarchical modeling, but no CBR tech-
nique has ever been involved. To the best of the authors’
knowledge, the research on using CBR to non-crystal materials is
exiguous [17,27].

It is fair to say that so far there have been no systematic studies
on how to apply CBR based multiscale methods to model amor-
phous materials, in terms of extrapolating macroscale constitutive
relations based on atomistic information. Even though CBR may be
a limited approach to model amorphous materials, it might be still
useful to utilize its simplicity and low-cost to model amorphous
materials. Therefore in this study we hope to examine the possibil-
ity as well as limitation on how to use CBR modeling amorphous
materials, and compare it with other multiscale methods and the
molecular dynamics approach. In particular, based on CBR, we have
developed a coarse-grained Parrinello-Rahman (CG-PR) method
that is tailored for dealing with complex microstructure of amor-
phous materials. In this work, we shall mainly focus on how to
use the proposed CB-PR method and the multiscale cohesive zone
method to model amorphous silicon (a-Si) and Lennard-Jones (L-J)
binary glass. This is because that these two models are not only
simple enough for the fundamental study, but also are representa-
tives for amorphous materials. Moreover, a-Si is a typical brittle
material with prototypical amorphous structure though it may
be characterized as a monoatomic material. Furthermore, a-Si is
a material that has a great potential for solar cell [28], thin-film
transistor [29], flexible display, and many other applications. On
the other hand, L-J binary glass is an ideal model for glassy mate-
rials with ductility, such as metallic glasses [30,31] and polymer
network glasses [32].

The paper is organized in five sections. The simulation methods
of MD, coarse-grained Parrinello-Rahman (CG-PR) and MCZM are
described in Section 2. Numerical examples are presented in Sec-
tion 3, in which we compare the simulation results between MD
and CG-PR/MCZM for both a-Si solid and L-J binary glass. By ana-
lyzing the simulation results, we hope to find a general guideline
for application of CBR to amorphous materials. After these exami-
nations, we combined CG-PR method with multiscale cohesive
zone model to simulate fracture of amorphous materials, and the
simulation results are reported in Section 4. Finally in Section 5,
we conclude the study with a few remarks.

2. Simulation methods

In this section, we shall briefly discuss the simulation method-
ologies that are used in this study, which include: molecular
dynamics (MD), the Cauchy-Born based coarse-grained
Parrinello-Rahman (CG-PR) method, and the multiscale cohesive
zone model (MCZM).

2.1. Molecular dynamics simulation

All MD simulations were carried out by using LAMMPS [33].
Amorphous silicon (a-Si) is modeled by using three body Tersoff
potential [34,35] that can be expressed as follows,

VTS
ij ¼ f CðrijÞ½f RðrijÞ þ bijf AðrijÞ�: ð1Þ

In the Tersoff potential, the functions f R; f A are defined as,

f RðrijÞ ¼ A expð�kijrijÞ; ð2Þ
f AðrijÞ ¼ �B expð�lijrijÞ; ð3Þ
and the cutoff function f C is defined as,

f CðrijÞ ¼
1 rij 6 Rij

1
2 þ 1

2 cos pðrij�RijÞ
Sij�Rij

� �
Rij < rij < Sij

0 rij P Sij

8>><
>>: : ð4Þ

In order to take into account the three body interaction, the Tersoff
potential has a parameter bij (see Eq. (1)). It explicitly depends on
the location of the third atom k, which is expressed as follows,

bij ¼ ð1þ bnfnijÞ
�1
2n ð5Þ

fij ¼
X
k–i;j

f cðrikÞgðhijkÞ ð6Þ

gðhijkÞ ¼ 1þ c2

d2 �
c2

d2 þ ðh� cos hijkÞ2
: ð7Þ

For more information on the parameters of the Tersoff potential,
readers may consult [35]. In the rest of the paper, we may refer
the amorphous silicon as a-Si solid.



Fig. 1. Examples of the representative cell (r-cell) for amorphous materials: (a)
Amorphous Si: 64 atoms, and (b) 80/20 L-J binary glass: 250 atoms. The r-cell shape
tensor is defined as: (hð0Þ ¼ ½a;b; c�).
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We used the Lennard-Jones (L-J) potential to model the binary
glass, and the L-J potential can be expressed as follows,

VLJ ¼ 4eij
rij

rij

� �12

� rij

rij

� �6
( )

: ð8Þ

In the rest of the paper, we may refer it as L-J binary glass.
The binary system is composed of two different sizes of

particles, A and B, at the ratio of 80:20. In the multiscale
modeling and simulation, the parameters of the binary system
are chosen from the well studied parameter sets in the
literature e.g. [31,32,36]. In specific, we choose the following key
parameters in the simulation: for the energy depths, eAA ¼ 1:0e0;
eBB ¼ 1:5e0, and eAB ¼ 0:5e0; for the particle size parameters,
rAA ¼ 1:0r0;rBB ¼ 0:8r0 and rAB ¼ 0:88r0, respectively. The
potential is truncated at 2.245r0A. In order to connect the binary
system with real materials, we assume that the particle A is silicon
(see [37]), which means that e0 and r0 are 2.4503 [kJ/mol] and
3.385 [Å], respectively.

Initial configurations for both stretch and shear simulations
were prepared by first quenching the a-Si system from melted
state at high temperature; and we followed the procedure sug-
gested in [38], in which the effect of quenching rate has been stud-
ied in details. The recommended quench rate is less than 1012 [K/s]
in order to avoid inappropriate structural defects. In this study, we
firstly melted crystal silicon at 3500 [K] by using the canonical
ensemble MD (NVT). After equilibrating at 3500 [K], the system
was quenched to 300 [K] at quench rate 1012 [K/s]. In other words,
it took 3.2 [ns] to cool the system from 3500 [K] to 300 [K]. The sys-
tem was then equilibrated at 300 [K] by using isothermal-isobaric
ensemble (NPT) with stress free, and finally it is relaxed by using
conjugate gradient (CG) method [39] to eliminate residual stress.
Time interval of all simulations for silicon was 0.1 [fs], and temper-
ature was controlled with by the Nos�e-Hoover thermostat [40].

In the numerical simulation, the binary glass system modeled
by L-J potential was initially configured in a dilute gas state to
avoid particle overlap, and then the system was compressed by
applying high pressure. Following the equilibration at normalized
temperature (T ¼ 1:0), the system was quenched until T ¼ 0:02
with quenching rate 1:96� 10�4 in normalized L-J unit. After a
NPT simulation at T ¼ 0:02 with stress free condition, the system
was eventually optimized by using CG method. Time interval for
L-J binary glass was 1:0� 10�3 in L-J time unit.

2.2. A coarse-grained Parrinello-Rahman (CG-PR) method

In this section, we shall introduce a coarse-grained Parrinello-
Rahman (CG-PR) method, and use it to simulate mechanical
responses of amorphous materials under the uniaxial and shear
deformations under different strain rates in order to evaluate
stress-strain relations. To validate the proposed method, we shall
compare the CG-PR simulation results with that of molecular
dynamics.

In the multiscale finite element method for crystalline lattice
materials, the Cauchy-Born rule is applied to a unit cell of a crystal,
which is usually ‘‘embedded” in a quadrature point within an ele-
ment, and we can utilize this procedure to obtain macroscale stress
at that quadrature point. For amorphous materials, there is no peri-
odically distributed unit cells. In the proposed CG-PR method, we
employ a CBR procedure in applied in a representative cell (r-
cell) to extrapolate the stress-strain relation. For the L-J binary
glass, we prepared three r-cells with different sizes, which include
256, 1000 and 30,000 atoms, respectively. In the simulations of a-Si
solid, four different r-cells composed of 64, 216, 1000 and 32,768
atoms each were examined. The minimum size of the simulation
system is selected to satisfy a criteria that the box size is larger
than twice of the cutoff length of the interatomic interaction.

Since the amorphous material has no definite microstructure,
we cannot directly apply CBR to derive its macroscale constitutive
relation. In order to develop a viable CBR procedure in amorphous
materials, we have developed the following coarse-grained
Parrinello-Rahman method, which originates from the well-
known Parrinello-Rahman molecular dynamics [41,42].

We first select an r-cell of the amorphous material by identify-
ing its basic mesoscale structure and configuration as shown in
Fig. 1. The r-cell selected in multiscale simulation is the same unit
cell in the MD simulation, which has the same dimension with the
initial configurations generated for MD simulations. We may
define a r-cell shape tensor as

hð0Þ ¼ ½a;b; c�; ð9Þ
where a;b; c are three edge vectors of the unit cell at initial time, as
suggested by Parrinello and Rahman [41]. In order to capture the
characteristics of amorphous materials, we choose the side length
of the minimum r-cell, i.e. jaj; jbj, and jcj, about twice of the cutoff
distance of interatomic potential. Following [41], we may use the
cell shape tensor h to re-scales the initial positions of atoms, i.e.

Ri ¼ hð0ÞSi; i ¼ 1;2; . . . ;Nc; ð10Þ
where Si is the scaled atom positions (see [42] for discussions).

Considering the deformation mapping u : R ! r, one can define
the deformation gradient as

F ¼ @u
@R

:

Apply the Cauchy-Born rule to approximate the deformation map-
ping u, we can use the Cauchy-Born rule to write

ri ¼ FRi ¼ F � hð0Þ � Si ¼ hðtÞSi; ð11Þ
where hðtÞ ¼ F � hð0Þ as shown in Fig. 2.

In PR-MD [41], one solves the motion of SiðtÞ (or RiðtÞ) for each
atom i, as well as the evolution of cell shape hðtÞ (or FðtÞ) for each
unit cell, by using the following equations,

€Ri ¼ �
X
j:¼i

V 0ðrijÞ
mirij

� �
ðRi � RjÞ � C�1 � _C � _Ri ð12Þ

W€F ¼ �X0FðSvirial � SextÞ; ð13Þ
where Sext is the prescribed external second Piola-Kirchhoff stress;
X0 is the volume of MD cell in the referential configuration, and



Fig. 2. Illustration of kinematic mapping of the coarse gained Parinnello-Rahman (CG-PR) method.
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Svirial ¼ 1
X0

X
i

�mi
_Ri � _Ri þ

X
j:¼i

V 0ðrijÞ
rij

ðRj �RiÞ � ðRj �RiÞ
 !

¼ 1
X0

h0 �
X
i

�mi
_Si � _Si þ

X
j:¼i

V 0ðrijÞ
rij

ðSj � SiÞ � ðSj � SiÞ
 !

� hT
0;

ð14Þ
where VðrijÞ is the atomistic potential of the amorphous solid, and
rij ¼ jrj � rij. For the detailed discussions and applications of the lat-
est PR-MD, readers may consult [42–44].

In the coarse grained PR method (CG-PR), we do not solve each
Si explicitly. On the other hand, we use multiscale finite element
method to solve FðtnÞ for each element at time tn ¼ nDt. In CG-PR
computations, the atom configurations (rgiðtnÞ) in the current time
step N is guessed from previous configuration by using the Cauchy-
Born Rule (CBR),

rgiðtnÞ ¼ FðtnÞ � Riðtn�1Þ ¼ FðtnÞ � hð0Þ � Siðtn�1Þ; ð15Þ
where, hð0Þ is the initial r-cell shape tensor, Riðtn�1Þ is atom coordi-
nate in referential configuration at time step n� 1, and Siðtn�1Þ is
normalized coordinates of atoms in the r-cell. Once we have initial
guess of coordinate as rgiðtnÞ, the configuration is optimized to min-
imize energy by using CG-PR method with periodic boundary con-
dition in all direction.

roptiðtnÞ ¼ arg minVðriÞ; ð16Þ
with the starting configuration rgiðtnÞ.

Inversely, we can find that

SiðtnÞ ¼ ðFðtnÞ � hð0ÞÞ�1 � roptiðtnÞ: ð17Þ
Similar optimization algorithms have been reported in literature,
e.g. [39].

By using the optimized configuration roptðtnÞ, we can calculate
the first Piola-Kirchhoff stress tensor P as follows,

P ¼ 1
2X0

X
i2N

@V
@F

� �
¼ 1

2X0

X
i2N

@V
@ri

@ri
@F

� �����
ri¼ropti

; ð18Þ

where N is the number of atoms in a r-cell, and X0 is the initial vol-
ume of the r-cell. For simplicity, in the rest of the paper, we drop the
dependence on ropti.
For the Tersoff potential, we have

PTS ¼ 1
2X0

XN
i–j

@VTS
ij

@F

 !

¼ 1
2X0

XN
i–j

@VTS
ij

@rij

@rij
@F

þ
XN

k–i;k–j

@VTS
ij

@rik

@rik
@F

þ @VTS
ij

@ cos hijk
@ cos hijk

@F

 !" #
:

ð19Þ
While for the L-J potential, we have

PLJ ¼ 1
2X0

XN
i–j

@VLJ
ij

@rij

@rij
@F

: ð20Þ

In above two equations, the following relations are used,

@rij
@F

¼ @rij
@rij

@rij
@F

¼ rij � Rij

rij
; ð21Þ

@ cos hijk
@F

¼ 1
rik

� cos hijk
rij

� �
@rij
@F

þ 1
rij

� cos hijk
rik

� �
@rik
@F

� rjk
rijrik

� �
@rjk
@F

: ð22Þ

In passing we note that in literature, some defined the macroscale
first Piola-Kirchhoff stress as (e.g. [42])

P ¼ 1
2X0

X
i2Nc

@V
@h

� �
¼ 1

2X0

X
i2Nc

@V
@F

� �
h�1
0 ;

because of the Cauchy-Born rule of the tensorial quantity:
hðtÞ ¼ FðtÞ � hð0Þ.

2.3. Multiscale cohesive zone model

The above CG-PR method provides a CBR procedure to extrapo-
late macroscale constitutive relations from atomistic information,
provided that certain assumptions or approximations are granted.

To carry out macroscale continuum-level simulations, such
as failure analysis of a structure made by amorphous material,
we often employ multiscale finite element method to compute
macroscale deformation of structures and materials, and many
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of them are based on CBR procedures. There are several
CBR-based multiscale finite element methods e.g. the internal
virtual bond model [3], the local quasi-continuum model
[39], and the multiscale cohesive zone model [4]. However,
in most of these methods, the CBR is specified for crystalline
materials.

In this work, we apply the CBR procedure developed in
CG-PR method to the Multiscale Cohesive Zone Model (MCZM)
[4] to study fracture of amorphous materials. In MCZM, there
are two types of elements: bulk elements and cohesive
elements. MCZM is also a CBR-based multiscale method com-
bined with cohesive zone model (CZM) concept that has been
developed to capture fracture phenomena by inserting fracture
process zone between so-called bulk elements [45,46]. How-
ever, instead of having zero thickness cohesive zone elements,
MCZM adopts finite thin element, namely cohesive zone
element, between bulk elements to represent the process zone
as shown in Fig. 3.

In MCZM, the bulk element is modeled by the first order
Cauchy-Born rule, while the cohesive zone element may be
modeled by: (1) The higher order Cauchy-Born rule e.g.
[16,47,6]; (2) The first order Cauchy-Born rule with depletion
potential [4,48–50], or (3) The first order Cauchy-Born model
with bubble mode plus a biased sigmoidal function. In this
work, we shall adopt the third approach. The more details
can be presented in the following, and to be found in our pre-
vious work [6].

To formulate the computational algorithm, we first define total
Lagrangian of the continuum system as,

L ¼ K� W int þWextð Þ; ð23Þ

where Wext;W int and K are the external potential energy, the strain
energy of the continuum and total kinetic energy, respectively. In
Eq. (23),

K ¼
Z
X

1
2
q _u � _udV ð24Þ

W int ¼
Z
X
WðFÞdV ; ð25Þ

where W is the strain energy density functional of strain, q and _u
are the mass density and velocity field of the continuum,
respectively.

The Hamiltonian principle can then be derived in terms of dis-
placement variation,Z t1

t0

dK� ðdW int þ dWextÞð Þdt ¼ 0; ð26Þ
Fig. 3. Illustration of the concept and mesh discretiza
whereZ t2

t1

dKdt ¼
Z t2

t1

Z
X
q _u � d _udVdt ¼ �

Z t2

t1

Z
X
q€u � dudV dt; ð27Þ

dW int ¼
Z
X

@W
@F

: dF
� �

dV ¼
Z
X
P : dF½ �dV ; ð28Þ

dWext ¼ �
Z
X
b � dudV �

Z
dXt

�T � dudS: ð29Þ

In Eq. (29), b is the body force inside the bulk medium, and �T is the
traction vector on the surface dXt , respectively. Consequently, the
Galerkin weak formulation can be formulated in terms of element
summation as follows,

A
neB

e¼1

Z
Xe
B

q0€u
h � duþ P : dFh

� �
dV

( )
þ A

neC

e¼1

Z
Xe
C

P : dFhdV

( )

¼ A
neB

e¼1

Z
Xe
B

q0b � duhdV

( )
þ A

neC

e¼1

Z
Xe
C

q0b � duhdV

( )

þ A
neB

e¼1

Z
Ct

�T � duhdS
	 


; ð30Þ

where, Xe
B is the domain of bulk element e; Xe

C is the domain of CZ
element e; Ct is the traction boundary of the system; and ne

B and ne
C

are number of bulk and CZ elements, respectively. The superscript h
used in the above equation is the standard notation in computa-
tional mechanics to represent a discretized displacement field cor-
responding to FEM interpolation field.

Because specimens are discretized by using tetrahedral bulk
elements, CZ element is constructed as a triangular-shaped prism
element (wedge element) as seen in Fig. 3. In our recent work,
we have found that a bubble node additionally inserted to CZ ele-
ment can capture inhomogeneous deformation, which is related to
the inherent weakness of CZ, even if higher order CBR is not
employed [6]. Therefore, we adopt seven nodes wedge element
to CZ elements. The additional bubble node locates on the center
of wedge element, and its position in f direction is reflected to
the deformation gradient F by using a sigmoidal function.

fbubðtÞ ¼
2

1þ expf�PnlðjFðt � 1Þ � N j � 1Þg � 1; ð31Þ

where, N is the normal vector of the CZ element and Fðt � 1Þ is the
first order deformation gradient at previous time step, and thus
jF � N j represents degree of deformation in the direction of cohesive
zone element thickness. According to the normalized coordinate of
the bubble node, it is possible to calculate displacement vector dbub

of the bubble node, with assuming nbub;gbub ¼ 1=3.
tion of multiscale cohesive zone model (MCZM).



Fig. 4. Uniaxial stress-strain relation of Lennard-Jones binary glass obtained from MD simulation: (A) 1000 atoms system at _e ¼ 1:0� 10�5 to 1:0� 10�3. (B) 250, 1000 and
30,000 atoms systems with _e ¼ 1:0� 10�4.

Table 1
Mechanical properties of Lennard-Jones binary glass estimated by MD simulations.

No. of atom Strain rate ( _e) shear strain rate ( _c) rmax
33 [MPa] rmin

33 [MPa] Ey [GPa] rmax
13 [MPa] G [GPa]

250 1:0� 10�4 125 �146 3.06 97 1.28

1:0� 10�3 122 �187 2.12 88 1.05

1000 1:0� 10�4 98 �144 2.46 79 1.09

1:0� 10�5 96 �126 2.49 76 1.30

30,000 1:0� 10�4 86 �98 2.03 42 0.93

Fig. 5. Schematic illustration of boundary condition of shear simulation. Freedom of atoms within 10% range from top and bottom is frozen. The group of top region is moved
toward X direction, while the bottom region is fixed at the initial position. Periodic boundary conditions are assumed in X and Y directions but not in Z direction.

Fig. 6. MD simulation results of shear stress-strain relation of Lennard-Jones binary glass. (A) 1000 atoms system at _c ¼ 1:0�5 to 1:0�3. (B) 250, 1000 and 30,000 atoms
systems at _c ¼ 1:0�4.
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Fig. 7. Simple benchmark tests for CG-PR method based finite element model, in which polyatomic r-cells are embedded in each element.

Fig. 8. Comparison of CG-PR method for L-J binary glass with simple two element model (Fig. 7) and MD simulations. (A) Uniaxial stretch and compression, (B) Shear
deformation. 250 atoms r-cell is examined. Deformation rates are shown in legend.

Fig. 9. Cubic specimen composed of 100 bulk elements. Color shows stress
distribution of Cauchy stress in Z direction generated by random orientation of
the r-cell in each element. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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dbub ¼
X6
i¼1

Ni n ¼ 1
3
;g ¼ 1

3
; f ¼ fbubðtÞ

� �
di: ð32Þ

The shape function matrix N and a procedure to define bubble func-
tion and bubble node position can be found in [6].

Using FEM interpolation functions, we can approximate the dis-
placement field as follows,

uhðXÞ ¼
Xnnode
i¼1

NiðXÞdi; ð33Þ

where nnode is number of node in an element. According to Eqs. (30)
and (33), the discrete equations of motion for FEM node displace-
ments can be derived as,

M€dþ f intðdÞ � fcoheðdÞ ¼ fext; ð34Þ

where, M is the mass matrix, and f int; fcohe and fextare force vectors
from bulk elements, CZ elements and external force, respectively.
These quantities are defined as follows,

M ¼ A
neB

e¼1

Z
Xe
B

q0N
eTNedV ð35Þ
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neB

e¼1

Z
Xe
B

BeTPeðdÞdV ð36Þ
fext ¼ A
neB

e¼1

Z
Xe
B

NeTBedV þ
Z
@Ct

NeT�TedS

( )
ð37Þ

fcohe ¼ A
nCZ
elem

e¼1

Z
BeTPeðdÞdV ; ð38Þ

where, q0 is material density, Be is the element strain-displacement
matrix,



Fig. 10. Comparison of stress profile in uniaxial and shear deformations between MD (30,000 atoms) and CG-PR model with cubic specimen for Lennard-Jones binary glass.

Fig. 11. Relation between deformation rate and stress peak for Lennard-Jones
binary glass. MD model contains 30,000 atoms, and the CG-PR model is a cubic
specimen with 100 elements.
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The cohesive force vector fcohe is the internal force contribution
from the cohesive elements, or process zone elements. The cohesive
force is controlled by the force-displacement relation of the atomic
potential. Once the interactions among atoms inside the unit cell
pass through the peak of the force-displacement relation in micro-
scale, the cohesive force in the corresponding macroscale cohesive
element will be also over the top of macroscale cohesive law, which
is atomistically informed.
3. Numerical examples

3.1. Lennard-Jones binary glass

3.1.1. MD simulations
Firstly, we examined the effect of strain rate ( _e) on stress-strain

(S-S) relation for the L-J binary glass by using MD simulations. We
apply a suitable external stress to MD unit cell either elongating or
compressing the unit cell in one direction (Z) with constant strain
rate under periodic boundary conditions in any directions. The
temperature was maintained at 0.01 in L-J unit to avoid thermal
effect in attaining static yield stress.

Fig. 4A compares stress-strain curves of an 1000 atoms
system with varying _e from 1:0� 10�5 1/s to 1:0� 10�3 1/s.
Table 1 summaries the mechanical properties of the L-J binary
glass. Elastic behavior can be recognized from �0.04 to 0.04
strain range, and the system subsequently shows ductile but
not brittle fracture for all _e. Young’s modulus (Ey) estimated
from the slope at the small strain remains within 15% deviation.
On the other hand, both maximum and minimum stresses
(rmax

33 ;rmin
33 ) depend on _e, and a fast strain rate, say, 1:0� 10�3 1/s,

will causes larger stress in both stretch and compression. Since
the difference in strain rate between 1:0� 10�4 1/s and
1:0� 10�5 1/s is subtle, we deem that _e ¼ 1:0� 10�4 1/s is
sufficiently slow to obtain static stress profile. At this strain
rate, _e ¼ 1:0� 10�4 1/s, the overall stress-strain curve is analo-
gous to any size of MD simulations. However, only 30,000
atoms MD system provides smooth the stress-strain relation,
while smaller size MD systems always have oscillations in
stress-strain relations due to the lack of statistics. Consequently,



Fig. 12. Stress-strain hysteresis from both stretched and compressed conditions of Lennard-Jones binary glass with 250 atoms representative cell. Strain rate is
( _e ¼ 1:0� 10�2). Broken line is path from stretched shape and chain line is that from compressed shape.

Fig. 13. MD simulation results of stress-strain relation of amorphous silicon. (A) 216 atoms system at _e ¼ 1:0�3 to 1:0�5. (B) 64, 216 and 1000 atoms systems at _e ¼ 1:0�4,
while 32,768 system at _e ¼ 1:0�3.

Fig. 14. MD simulation results of shear stress-strain relation of amorphous silicon. (A) 256 atoms system at _c ¼ 1:0�3 to 1:0�5. (B) 64, 256 and 1000 atoms systems at
_c ¼ 1:0�4, while 32,768 system at _e ¼ 1:0�3.
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smaller MD systems always show larger (absolute) value for
both minimum and maximum stresses.

Next, shear stress (r13) was measured in the MD system that
is being applied with constant shear strain rate ( _c). In this simu-
lation, we divided the MD system into three domains. As seen in
the schematic drawing in Fig. 5, atoms within 10% range of unit
cell from both top and bottom are frozen. These two domains
are treated as two parallel atomistic walls, then the atoms in
upper wall slide to X direction at constant shear strain rate. Only
those atoms in the body (middle) domain are allowed to relax
according to the shear deformation generated by the confined
domain. Periodic boundary conditions were applied in X and Y
directions but not in Z direction, to which the three domains
are in layered formation.



Table 2
Mechanical properties of amorphous silicon estimated by MD simulations.

No. of atom Strain rate ( _e) shear rate ( _c) Ey [GPa] G [GPa]

64 1:0� 10�4 110 30.5

1:0� 10�3 103 39.3

256 1:0� 10�4 101 39.3

1:0� 10�5 103 39.4

1000 1:0� 10�4 107 38.5

32,768 1:0� 10�3 110 39.1

Fig. 16. Comparison of energy between CG-PR method and MD simulations by
using cubic specimen. Energy of CG-PR method is average value of 100 elements.
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We have investigated the dependency of maximum stress and
shear modulus (G) on shear strain rate for an 1000 atom MD sys-
tem by using molecular dynamics, and the results obtained from
the MD simulation is depicted in Fig. 6(A). At the range of 0.07–
0.08 shear strain, the system reaches to the maximum shear stress.
We found that the simulated shear modulus is insensitive to the
shear strain rate; and the dependence of the maximum stress peak
location (critical strain) on the shear strain rate is also relatively
small. Vernik et al. has demonstrated that maximum shear stress
of L-J binary glass highly depends on _c at T ¼ 0:2, while _c depen-
dency is less at lower temperature [36]. Therefore, the very low
temperature that we imposed in the MD simulation is the main
reason why the shear stress is insensitive to shear strain rate.

On the one hand, the size effect on shear stress profile is appar-
ent as shown in Fig. 6(B), and this is summarized in Table 1. Espe-
cially, the maximum stress is obviously higher at smaller system,
implying that atom configurations are constrained more than that
in the smaller unit cell.

3.1.2. Coarse-grained Parrinello-Rahman (CG-PR) method
To confirm the validity and reproducibility of CG-PR method,

calculation condition of CG-PR method was investigated by using
a simple FEM model composed of two bulk elements without CZ
element, in which an r-cell containing multiple atoms is embedded
in the center of the element (Fig. 7) or any quadrature points inside
the element. Fig. 8 summarizes comparison between MD and CG-
PR method for uniaxial and shear deformations with 250 atoms
r-cell. Owing to careful tuning of CG parameters, it was possible
to duplicate overall characteristics of S-S relations with even
higher strain rate _e; _c ¼ 1:0� 10�2 1/s, at which the MD simulation
result shows larger maximum and minimum stresses. This might
be due to the fact that CG-PR method can find local energy mini-
mum in relatively wide range, while MD is more related to the
time histories of atomic configuration and velocity. Note that atom
configurations considered in MD and CG-PR method have much
difference for shear deformation simulations, because the former
did not account the atoms in boundary wall regions while
Fig. 15. Comparison of the results obtained by CG-PR method and MD simulations by u
_e ¼ 1:0�4 and _c ¼ 1:0�4 for MD. _e ¼ 2:0�2 and _c ¼ 1:0�2 for CG-BR.
undergoing shear deformation whereas the latter takes account
all atoms in the r-cell.

After confirming that the CG-PR method works, we applied the
method to a larger size continuum body, which is a cubic specimen
composed of one hundred bulk elements without inserting CZ ele-
ments between the bulk elements. In this case, to make different
amorphous microstructure, the r-cell was randomly rotated in
each bulk element even though we only employ one generic
microstructure for the r-cell. Fig. 9 shows the initial stress distribu-
tion of the cubic specimen with the arbitrarily rotated r-cells in dif-
ferent elements.

Comparison between the results obtained from both CG-PR
method and MD are depicted in Fig. 10. In terms of uniaxial defor-
mation, CG-PR method shows lower peaks of stress in both stretch
and compression than MD simulations at the same strain rate. It
indicates that the CG-PR method cannot represent fast deforma-
tion of amorphous materials even for zero-temperature condition,
because CG-PR method finds more stable configurations than MD.
In contrast, even though it was very time-consuming to conduct
CG-PR simulation with strain rates ranging _e ¼ 1:0� 10�4 1/s, as
the result demonstrated in the relation between the strain rate
and peak stress shown in Fig. 11, we can conclude that CG-PR
method is able to reproduce the stress-strain relation of MD simu-
lations at the lower strain rate. Interestingly, there is no clear dif-
ferences among the stress-strain relations measured under the
strain rate _c ¼ 2:0� 10�2 1/s by increasing atoms in r-cell from
250 to 1000 atoms, even though the MD simulation result is size
dependent.
sing cubic specimen. (A) Uniaxial stretch and compression, (B) Shear deformation.
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For shear deformation, the simulation result of CG-PR method
again shows lower peaks of stress at the same shear rate _c than
that of MD simulation, even when the minimum r-cell is employed.
Although it was difficult to simulate at _c ¼ 1:0� 10�4 1/s because
of computation cost, one can expect that CG-PR method can repro-
duce the stress-strain relation at the strain rate reasonably, accord-
ing to the results at higher deformation rate. On the other hand,
there is no significant difference between them, even if we utilize
larger r-cell with more than 1000 atoms.

In summary, even though the MD simulation of L-J binary glass
shows system size dependency, especially for shear deformation,
CG-PR method with minimum r-cell composed of 250 atoms can
reasonably reproduce static stress-strain relation of the largest size
of the MD system, when strain rate is slow enough. Moreover, CG-
PR method may not have the unstable energy fluctuation phe-
nomenon caused by high strain rate in MD simulations. This is
because that CG-PR computation is more stable than that of MD
computation. This is due to the fact that the proposed CG-PR is still
a zero-temperature calculation, and it is a macroscale calculation
with much larger size.

In order to capture that plastic deformation in the multiscale
simulation, we applied the same strain rate ( _e ¼ 1:0� 10�2 1/s)
from tension to compression at the strain range 0.04–0.2 to the
cubic specimen. We recorded the loading-uploading stress-strain
relation in Fig. 12. As shown in Fig. 12, the measured stress-
strain relation shows hysteresis characteristics, indicating that
the proposed multiscale method is able to capture plastic deforma-
tion and history dependent behaviors based on the atomistic
mechanism and information. To the best of the authors’
knowledge, this is the first successful multiscale simulation or
realization of plastic deformation at mesoscale or macroscale
without using molecular dynamics or empirical plasticity theories.
The reason for such success is because that we optimized atom
configurations in the r-cell, and it makes the atom configuration
irreversible, which reflects and captures the irreversible nature of
plastic deformations.

3.2. Amorphous silicon (a-Si solid)

3.2.1. MD simulations
We first carried out a series of MD simulations of a-Si solid to

examine the effects of strain rate ( _e) and shear rate ( _c) on the
mechanical responses of a-Si solid to the deformation. The
Fig. 17. Benchmark MCZM simulation o
simulation procedure is almost the same with L-J binary glass
except for temperature, which was maintained at 10 [K] during
the simulations. As demonstrated in Fig. 13(A), in contrast to the
L-J binary glass, there is no clear difference in stress-strain curve
for uniaxial deformation among all system sizes from 64 to
32,768 atoms. In addition, the a-Si system is insensitive to _e in both
stretch and compression tests (see Fig. 13(B)). Therefore even the
smallest size system of 64 atoms can reproduce Ey with reasonable
accuracy. In terms of shear deformation, Fig. 14(A) shows that 64
atoms system slightly underestimates shear modulus, but 216
atoms system is almost identical to 1000 atoms representative cell.
For the 216 atoms r-cell, shear modulus is nearly unchanged with
the strain rate _c (Fig. 14(B)). Ey and G obtained in small deforma-
tion range are tabulated in Table 2. Both of these elastic constants
are 12–19% and 29–40% smaller than the experimental values
reported in the literature, e.g. Ey ¼ 125� 1 [GPa] [51] and
G ¼ 55:7 [GPa] [52,53], respectively.

It is noted that the yield stress obtained from MD simulations is
exceedingly higher than that obtained from experimental observa-
tions (e.g. 6:1� 0:8 [GPa] [54], 6.9 [GPa] [55] for single-crystal sil-
icon, and 4:94� 0:93 [GPa] for a-Si [53]). This is because the well
known drawback of classical three body potentials including the
Tersoff potential [56,57], one has to keep in mind that any MD
and CG-PR simulations with the Tersoff potential are only suitable
for elastic responses, but not for damage processes, such as dislo-
cation, bond breakage, cavity nucleation, and fracture.

3.2.2. CG-PR method
We have applied the CG-PR method to study mechanical prop-

erties of a-Si solid by using the cubic specimen that is the same as
that of the L-J binary glass. The CG-PR method referred here is a
multiscale finite element method, in which the constitutive
equations of amorphous materials are obtained from atomistic
potential. In CG-PR method, during constitutive update, we first
use the Cauchy-Born rule to guess the deformed configuration of
the amorphous solid, and then use static molecular mechanics,
i.e. CG-PR method to find the optimized configuration of the amor-
phous solid. Here, we only use CG-PR method to simulate elastic
properties of amorphous materials, and therefore we treat all the
finite elements as the regular bulk elements, meaning that there
is no cohesive elements involved. The plastic deformation and
material damage will be discussed later in the multiscale cohesive
zone model (MCZM).
f fracture in amorphous materials.



Fig. 18. Strain-stress relation and fracture stress of (A) amorphous silicon and (B)
Lennard-Jones binary glass.
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The simulation setting for CG-PR method, such as periodic
boundary condition and loading strain rates, are the same for
both a-Si solid and L-J binary glass. The smallest r-cell that
contains 64 atoms is used in the simulation, because we found
that there is no clear size dependence in MD simulations. As
shown in Fig. 15, the stress-strain relations obtained by using
CG-PR method are close enough to those obtained by MD simula-
tions with 1000 atoms for both uniaxial and shear deformations,
although deviation from MD result becomes larger as strain
increases in the case of uniaxial stretch. Fig. 16 compares energy
profiles for the case of uniaxial deformation, and we have found
that average energy over all elements in CG-PR method is lower
than the average energy in MD model when e > 0:15. This result
implies that CG-PR method can appropriately find local energy
minimum, and as a coarse-grain method CG-PR provides good
accuracy in prediction of average energy. Therefore, we conclude
that for a-Si solids it is possible to use small size of r-cell to
reproduce larger scale MD simulation results by using CG-PR
method in combination with CBR, even when strain rates are
relatively large. This is remarkably different from the case of L-J
binary glass. However, in both cases, we can use the minimum
or smallest r-cell to reasonably estimate mechanical properties
of the material by using CG-PR method with CBR under moderate
strain rate conditions.

4. MCZM simulations of fracture in amorphous materials

In this section, we discuss the implementation of CG-PR method
with the Multiscale Cohesive Zone Method (MCZM) to simulate
plastic deformation and fracture of the amorphous materials. The
main idea of the Multiscale Cohesive Zone Model (MCZM) is to
insert thin a CZ element between bulk elements such that one
can simulate fracture of amorphous materials automatically. The
specimen used in MCZM simulations is almost the same as shown
in Fig. 9, however, additional 158 CZ elements are inserted
between the bulk elements to represent fracture process zone.
Amorphous r-cells are also embedded into these CZ elements
(Fig. 17). The size of the minimum r-cells that are employed in
the simulation has 250 atoms for L-J binary glass and 64 atoms
for a-Si solid, respectively. This is because we have confirmed that
they can be reasonably applied to simulate mechanical properties
in comparison with large scale MD simulations. In the numerical
simulation, we applied uniaxial stretch in Z-direction and mea-
sured stress-strain relation. Fig. 18 displays the stress-strain curves
for both of L-J binary glass and a-Si solid.

In the case of a-Si solid, one can clearly observe brittle fracture
and sharp stress drop after yield stress. The yield stress is about 13
[GPa] if only linear deformation is considered in CZ element, and
the stress is decreased if we take inhomogeneous deformation into
account with parameter Pnl ¼ 12. As discussed in our previous
work, which has studied fracture of single-crystal silicon [6], here
we can again confirm that nonuniform deformation provokes
weakness of CZ element even for amorphous configuration. Note
that the estimated yield stress is somewhat larger than experiment
[53], even though experimental measurement data on the yield
stress of a-Si is very limited. Since our specimen would be too
rough to discuss quantitatively, we should utilize more precise
model to judge the accuracy.

On the other hand, a long plateau can be seen in the stress-
strain relation for L-J binary glass after the stress reaches to yield
stress. This occurs at relatively small deformation e ¼ 0:03. After
that, the specimen fractures at e ¼ 0:07. This result is reasonable,
because L-J binary glass with the parameter set that we adopted
is known to have ductile behavior [31,32,36]. To the best of
authors’ knowledge, this study might provide the first demonstra-
tion of ductile fracture by using CBR-based method combined with
CZ model. The multiscale method developed here may be also
applied to simulate fracture of metallic materials as well as other
types of ductile materials that are governed by ductile failure
mechanism, with the insight of atomistic modeling.

5. Conclusions

In this work, we have studied the possibility as well as applica-
bility to use the Cauchy-Born rule based multiscale methods to
model amorphous materials. In particular, we have applied two
CBR based multiscale methods, i.e. the coarse-grained Parrinello-
Rhman (CG-PR) method and the multiscale cohesive zone method
(MCZM) studying two amorphous materials, i.e. Lennard-Jones
binary glass and amorphous silicon (a-Si). By using r-cells with dif-
ferent sizes constructed by using MD, the results obtained by CG-
PR method are comparable with large scale MD simulations. The
results of the both molecular dynamics and multiscale simulation
show that the two amorphous materials have different behaviors.

In MD simulations, L-J binary glass demonstrates system size
dependence of stress-strain relations in uniaxial tension, compres-
sion and also shear deformation tests. Because strain rate signifi-
cantly affects peak value of the stress, sufficiently slow
deformation rate is necessary in order to estimate static stress-
strain relation during MD simulations. In contrast, CG-PR method
can reach to more stable condition even at high strain rates, the
peak stress is lower than that of MD at higher strain rates. There-
fore, the results obtained by using CG-PR method agrees with that
of MD simulation only when strain rate is small enough. Interest-
ingly, the results obtained by using the minimum r-cell with 250
atoms agrees with that of a larger scale MD with 30,000 atoms in
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stress peak value, while there is no sufficient improvement by
increasing atom number in the r-cell up to 1000 atoms.

Stress profile of a-Si was almost identical in any unit cell sizes
and also deformation rates. Therefore, it was possible to reproduce
S-S curves of uniaxial stretch, compression and shear deformation,
by using the minimum r-cell with only 64 atoms even with rela-
tively fast deformation rate.

According to these results, we can conclude that CBR is
applicable even for amorphous materials at quasi-static condition
with slow deformation, despite the fact that the rule basically
assumes uniform deformation. Although adequate number of
atoms in r-cell should be maintained for each material, two typical
amorphous materials studied in this work require only minimum
size of the r-cell whose side length is about twice of cutoff distance
of the interatomic potential.

After a preliminary study, we have simulated the fracture and
damage of cubic specimens of both L-J binary glass and a-Si solid
by using the Multiscale Cohesive Zone Model, in which we
employ an extremely thin element between bulk elements for
the fracture process zone. As a result, a-Si solid clearly showed
brittle fracture pattern, although the number of elements of the
model is not large enough to make an accuracy prediction or
quantitative prediction. It was also confirmed in our study that
the process zone elements in MCZM can produce incipient frac-
ture condition or crack formation if the higher order nonlinear
deformation in CZ element is imposed as discussed in our
previous work [6]. On the other hand, the simulation results on
L-J binary glass show features of ductile fracture, which in
consistent with MD simulations of the system e.g. [31,32,36]. It
indicates that we can simulate ductile fracture in amorphous
metals, polymers, adhesive materials and also grain boundaries
of polycrystalline metals by using CG-PR method with using
amorphous r-cells. In summary, we have shown in this work that
the CBR procedure is applicable for amorphous materials as a
first-order approximation to estimate constitutive relation based
on atom configurations in continuum domain. The special CBR
technique presented in this paper allows us to extend multiscale
modeling to a host of non-crystal amorphous materials.
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