
Available online at www.sciencedirect.com

ScienceDirect

Comput. Methods Appl. Mech. Engrg. 318 (2017) 349–381
www.elsevier.com/locate/cma

A Peridynamics-SPH modeling and simulation of blast
fragmentation of soil under buried explosive loads

Houfu Fana,b, Shaofan Li a,∗

a Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720, USA
b Livermore Software Technology Corporation, CA 94551, USA

Received 22 March 2016; received in revised form 10 January 2017; accepted 20 January 2017
Available online 6 February 2017

Highlights

• Novel state-based Peridynamics formulation for geo-material models.
• Successful large scale simulation of explosive fragmentation of soil up to five million particles.
• Predictive simulation of soil fragmentation.
• Simulation of soil jet bursting out the soil bubble becoming soil ejecta.
• Novel computational algorithm for coupling Peridynamics and SPH.

Abstract

In this work, we report a computational study on Peridynamics modeling and simulation of soil fragmentation under buried
explosive loads. We have implemented several geomaterial models of soil in the state-based Peridynamics formulation, which
can take into account of the effects of strain softening, viscoplasticity, and porosity of soil. Moreover, we adopted a particle
decohesion algorithm in the state-based Peridynamics for finite deformation to simulate soil fragmentation. A key technical
ingredient of the simulation is the coupling between soil and explosive modeling methods, which is accomplished by coupling
the state-based Peridynamics (soil) model with a modified smooth particle hydrodynamics (SPH) model (explosive). The modified
SPH formulation used here is a non-local consistent particle dynamics that is formulated in the current (spatial) configuration.

Numerical results of the simulations are compared with the measured experimental data. It has been found that there is a
general agreement between the simulation results and the experimental data, and the computational model developed here has
shown certain predictive capacity.
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1. Introduction

Understanding dynamic behaviors of soil under blast loads is very important in many engineering applications,
especially in some geotechnical engineering applications such as explosive protected constructions, earthquake
simulations, military vehicle design, performance, and operation, disaster mitigation, and mining and land extractions,
etc.

Dynamic behaviors of soil under buried explosive loading have been extensively studied in the past three decades,
e.g. [1–14], among many others. However, to date, many crucial aspects of the physical process are still not well
understood. Soil is a mixture of sand, rock, and clay with multiscale microstructure of different sizes and shapes, which
may be considered as a cohesive and porous assemblage of individual solid particles that form a three-dimensional
network of soil skeleton. In soil, water and air may also be filled inside the voids and pores of the soil skeleton, and
we often refer the soil medium that has water saturation as saturated soil.

From the modeling perspective, it would be more accurate to model the soil as a non-local medium rather than
a local continuum, because of the long range interaction among soil particles. During an underground explosion, a
rapid release of energy from the buried explosive will generate the shock wave that is characterized by a sudden rise
of pressure at the shock wave front, and it then propagates away from the explosion site. The interaction between the
shock wave and soil particle aggregates will create massive fragmentation of the soil skeleton.

It has been a long standing open problem to accurately predict dynamic soil behaviors under the blast loading.
To date, the best modeling and simulation of soil fragmentation under buried explosives is still based on empirical
formulas from field tests and experiments e.g. [13,15,16], which fail to provide consistent prediction capability
because of random data scattering. Moreover, since soil fragmentation is a typical nonlocal multiphase and multiscale
phenomenon, discrepancy between simulation prediction based on local continuum geophysics and experimental
measurement has been remarkably large.

Recently, efforts have been made to model the soil medium as nonlocal cohesive medium by using the state-based
Peridynamics [17,18]. The advantages of such approach are: (1) it provides a nonlocal formulation that captures a main
characterization of soil medium; (2) it offers an intrinsic numerical treatment for soil decohesion and fragmentation,
and (3) the strong form of the mathematical formulation facilitates fast computation.

In specific, we have developed a state-based Peridynamics and smooth particle hydrodynamics (SPH) coupling
method to simulate massive soil fragmentation due to buried explosives. Some preliminary results have been reported
in [17–19], in which, however, some technical details of the simulation are missing. Peridynamics is a nonlocal
reformulation of continuum mechanics [20,21], and it is particular suitable in modeling and simulation of granular
materials such as soil, concrete materials, and particulate materials in general. In this work, we focus on non-
local continuum modeling of soil, and present a systematical presentation on peridynamics/SPH simulation of soil
fragmentation due to the blast loading generated by buried explosive charges.

Different from the previous study, the following progresses that have been made in this work: (1) Besides the
uncapped Drucker–Prager model is used to model soil medium, in the present study, we add two other geomaterial
models: (a) the Drucker–Prager Cap (DPC) model [22,23], which can model the strain-softening behavior of soil when
plastic volume strain occurs on the cone, and (b) the Arenisca model [24–26], which is a semi-empirical geomaterial
model that can make empirical adjustments to soil’s bulk modulus to take into account liquid filled porous effects
under high strain rate loadings. Moreover it uses an overstress model to include viscoplasticity effect, and employs a
void disaggregation algorithm to account for the added volume when grains disaggregate under explosive loading; (2)
Focusing on simulation of soil fragmentation, we developed a modified Peridynamics soil particle decohesion criterion
to capture pressure-driven fragmentation process at the center of explosion site; (3) A main challenge of using the
state-based Peridynamics is to enforce the objectivity of the computational algorithm, because as a total Lagrangian
based particle method, the state-based Peridynamics is prone to violate the principle of material frame indifference.
We have implemented the Hughes–Winget algorithm to integrate Peridynamics equations of motion to ensure the
objectivity or frame-indifference of the Peridynamics constitutive models; (4) We have studied the irregular particle
distribution effect on the Peridynamics simulation, and (5) We have developed a parallel Peridynamics simulation tool
to conduct large scale simulations that is up to five million particles.

The paper is organized into six sections. In Section 2, we start the presentation by a brief review on the two particle
methods and their coupling scheme. In Section 3, three geomaterial material models are presented, and the Hughes–
Winget algorithm is rephrased in the framework of nonlocal state-based Peridynamics, in order to achieve the objective
requirement in time integration. In Section 4, several numerical examples are presented. First, a three-dimensional
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Fig. 1. Schematic illustration of the state-based Peridynamics: A nonlocal particle method with non-ordinary material bonds.

column is prescribed with uniaxial compression, to verify the Peridynamics model and the corresponding numerical
implementation. Second, two numerical tests are conducted to demonstrate the objectivity of the time integration
algorithm for the state-based Peridynamics soil models. Finally, by using the proposed PD-SPH coupling algorithm,
we present the simulation of soil fragmentation/ejection induced by the blastic loadings of buried explosive. The
comparison of the early soil deformations from an explosion experiment and the corresponding simulation results
demonstrate the validity of the Peridynamics soil models, as well as the capability of the Peridynamics/SPH coupling
scheme. We close our presentation with discussions in Section 5.

2. State-based Peridynamics, SPH, and their coupling

In this section, we first review the state-based Peridynamics method and the smoothed particle hydrodynamics
(SPH) method, and then we discuss the coupling algorithm of the two methods.

2.1. Basic formulations of state-based peridynamics

The state-based Peridynamics theory was first introduced by Silling et al. [21], which is a reformulation of nonlocal
continuum mechanics. Consider a continuum domain Ω0 that is discretized into a set of material particles XI with
associated volume V 0

I and mass density ρ0
I , where I = 1, 2, . . . , N as shown in Fig. 1. A material particle XI only

interacts with those particle XJ within a local region, called the horizon HI whose radius is δXI .
The relative position vector pointing from particle XI to XJ in the reference configuration is called a bond, which

shall be denoted as

XI J := XJ − XI . (1)

Subjected to certain motion or deformation φ, the continuum body deforms and the bond XI J in the reference
configuration becomes

xI J := xJ − xI = Y(XI J ) (2)

where Y is a nonlinear quantity called the deformation state, similar to a tensor in classical continuum mechanics.
Here, the deformation state Y maps the undeformed bond XI J to a deformed bond xI J .

In the Peridynamics theory, the balance of the linear momentum is read as (see [27]),

ρ0
I üI = −

∫
HXI

[
TJ I [XJ , t]⟨XI J ⟩ + TI J [XI , t]⟨XI J ⟩

]
dVJ + ρ0

I bI , (3)

where T is the force state, u is the displacement and b is the external body force. In computations, Eq. (8) is discretized
into the following algebraic equation,

ρ0
I üI = −

NI∑
J=1

[
TJ I [XJ , t]⟨XB A⟩ + TI J [XI , t]⟨XI J ⟩

]
V 0

J + ρ0
I bI , (4)

where V 0
J is the volume associated with the particle J.
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The force state can be expressed in terms of the first Piola–Kirchhoff (PK1) stress as

TJ I [XJ , t]⟨XJ I ⟩ = ω(|XJ I |)PJ K−1
J · XJ I , (5)

TI J [XI , t]⟨XI J ⟩ = ω(|XI J |)PI K−1
I · XI J , (6)

where PI and PJ are the first Piola–Kirchhoff stress of the particle I and J respectively; ω(|XI J |) is a positive scalar
influence function of |XI J |, and KI is the reference shape tensor that is defined as

KI :=

∫
HXI

ω(|XI J |)XI J ⊗ XI J dVI . (7)

If the horizon size of the particle I is the same as that of the particle J, for quasi-uniform particle distributions, we
have KI = KJ . We can then rewrite Eqs. (8) and (9) as follows,

ρ0
I üI =

∫
HXI

ω(|XI J |)(PJ − PI )K−1
I · XI J , dVJ + ρ0

I bI , (8)

ρ0
I üI =

NI∑
J=1

ω(|XI J |)(PJ − PI )K−1
I · XI J V 0

J + ρ0
I bI . (9)

To find the local stress at each material point, we need to find the nonlocal strain or deformation gradient first. To
do so, we first define a nonlocal two-point shape tensor NI on a local linear space of manifolds Ωt × Ω0 as,

NI :=

∫
HXI

ω(|XI J |)xI J ⊗ XI J dVJ . (10)

As a first order approximation, we may assume that

xI J = Y(XI J ) = FI · XI J , (11)

where FI is the deformation gradient at the particle I . Substituting Eq. (11) into (10), we then have,

NI = FI ·

⎡⎣ ∑
XJ ∈HXI

ω(|XI J |)XI J ⊗ XI J V 0
J

⎤⎦ = FI · KI . (12)

Now we obtain the nonlocal deformation gradient at the material point I in terms of its shape tensors,

FI = NI · K−1
I , (13)

without taking analytical derivatives at the local position.

Remark 1. 1. Eq. (8) is in fact different from the original (formal) state-based Peridynamics formulation derived
in [21]. From the perspective of computational formulation, Eq. (8) is similar to the collocation form of the wavelet
reproducing kernel particle method (RKPM) [28–30]. The derivation of Eq. (8) is based on [27];

2. From the perspective of physical modeling, the state-based Peridynamics may be viewed as a macroscale analog
of the soft sphere type of discrete element method (DEM) [31]. The major difference is that in the soft sphere DEM
the interaction between two particles behaves more like colloidal cohesive-frictional contact force, whereas in the
state-based Peridynamics it behaves more like “material bond force” (See Fig. 1), and

3. The type of the state-based Peridynamics that we are dealing with in this work is called the non-ordinary state-
based Peridynamics, because the interaction force between the two material particles is not along the direction of the
relative position vector, i.e. XI J . It contains both normal parallel component as well as perpendicular component (see
Fig. 1). This feature also is shared by some DEM formulations, e.g. [32].

2.2. Peridynamics particle decohesion algorithm

In the state-based Peridynamics, if the change of a material bond length exceeds a critical value, the bond will
break or it will be disabled in computations. This critical value is called the “critical bond stretch” s0 that is defined
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as,

s0 =
|xI J | − |XI J |

|XI J |
. (14)

In the linear elastic bond-based Peridynamics material model, the critical bond stretch s0 [20] is defined as

s0 =

√
5G0

9cδ
, (15)

where G0 is the energy release rate, c is the micro modulus, and δ is the radius of the horizon for the particle under
consideration. In the current work, the critical bond length is chosen as an empirical value, which is modified along
with a set of parameters to calibrate the experiment data.

For given the critical stretch s0, the damage at any material point is defined as

φ(X, t) = 1 −

∫
HXI

µ(x, t)dV∫
HXI

dV
, (16)

where

µ(x, t) =

{
1, if s < s0
0, otherwise. (17)

Note that the function µ is defined for each material bond, and the damage parameter φ(X, t) is defined for a given
material point, which usually will connect to many material bonds.

2.3. A consistent smoothed particle hydrodynamics (SPH) for explosive gas

The SPH method was initially developed for solving hydrodynamics problems. There are two key ingredients in
the formulation of the SPH methodology: kernel approximation and particle approximation [33].

In the SPH method, a continuous field f (x) and its gradient ∇ f (x) is approximated as

⟨ f (x)⟩ =

∫
Ω

f (y)w(|x − y|)dVy (18)

where ⟨⟩ is the kernel approximation operator [34], w is the so-called kernel function. Using the smoothing function,
the gradient of f (x) can be written as

⟨∇ f (x)⟩ =

∫
Ω

f (y)∇xw(|x − y|)dVy (19)

where the minus sign results from the integration by parts, which is standard in SPH [35]. The discretized forms of
Eqs. (18) and (19) are

⟨ f (xI )⟩ =

∑
xJ ∈SxI

f (xJ )w(|xI − xJ |)VJ (20)

and

⟨∇ f (xI )⟩ =

∑
xJ ∈SxI

f (xJ )∇xIw(|xI J |)VJ (21)

where SxI represents the supporting (influence) domain of particle xI , similar to the horizon HXI in the state-based
Peridynamics.

With these preparations, we can now cast the SPH equations of motion of the explosive as,

DρI

Dt
= −

∑
xJ ∈SxA

m J (vJ − vI ) · ∇xIw(|xI J |) (22)

DvI

Dt
= −

∑
xJ ∈SxI

m J

(
pI

ρ2
I

+
pJ

ρ2
J

+ ΠI J

)
∇xIw(|xI J |) (23)
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DeI

Dt
=

1
2

∑
xJ ∈SxI

m B

(
pI

ρ2
I

+
pJ

ρ2
J

+ ΠI J

)
(vJ − vI ) · ∇xIw(|xI J |) (24)

DxI

Dt
= vI (25)

where ρ, v, e, p are the density, velocity, internal energy and pressure at the corresponding particle. D( )
dt represents

the time derivative of the quantity in the bracket. ΠI J is the standard Monaghan viscosity [36], which can be written
as (e.g. [37]),

Π I J
=

⎧⎨⎩
−αc̄I JµI J + βµ2

I J

ρ̄I J
, vI J · xI J < 0;

0, vI J · xI J > 0;

(26)

with

µI J =
h̄ I J vI J · xI J

(xI J )2 + η2h̄2
I J

, (27)

where α ∼ 1 and β ∼ 2 are artificial constants; ρ̄ is the average density, c̄I J is the average particle speed; η ∼ 0.1,
and h I J are the average smoothing length (radius of the support), i.e.

c̄I J =
1
2

(cI + cJ ), ρ̄I J =
1
2

(ρI + ρJ ), and h̄ I J =
1
2

(h I + h J ). (28)

The original SPH method has an intrinsic flaw, i.e. it is not a partition of unity after the discretization. Consequently,
the derivative of its window function w(|xJ − xI |) does not form a partition of nullity after the discretization, which
causes issues in both interpolation consistency and numerical stability. This is because the governing equations of
SPH, i.e. Eqs. (23)–(25), depend on the local derivatives or the local spatial gradient of the window function.

In this work, we construct a consistent modified SPH derivative field by introducing the following nonlocal
gradient. Consider a vector (or tensor) field f(x) in the current configuration. We can define a nonlocal spatial gradient
field of the vector field f(x) as (see [27] for details),

∇x ⊗ [f(x)] :=

{∫
Sx

w(|y − x|) [f(y) − f(x)] ⊗ (y − x) dv
}

M−1
x , (29)

where the shape tensor in the current configuration is defined as

Mx :=

∫
Sx

w(|y − x|) (y − x)⊗ (y − x) dv, (30)

in which w(|y − x|) is the SPH window function that depends on the relative distance of two particles x and y in the
current configuration. Eq. (29) can then be converted into discrete form as follows,

∇x ⊗ [f(xI )] :=

⎧⎨⎩ ∑
xJ ∈SxI

1
ρJ
w(|xI J |) [fJ − fI ] ⊗ (xI J )m J

⎫⎬⎭ M−1
I . (31)

Notice that the divergence of a vector or tensor field can be also constructed with the same strategy by replacing “⊗”
with “·” in the respective equations, i.e. we can define a nonlocal divergence operation as,

∇x · [f(x)] :=

{∫
Sx

w(|y − x|) [f(y) − f(x)] ·

(
(y − x)M−1

x

)
dv

}
, (32)

whose discrete form is expressed as

∇x · [f(xI )] :=

⎧⎨⎩ ∑
xJ ∈SxI

1
ρJ
w(|xI J |) [fJ − fI ] ·

(
(xI J )M−1

I

)
m J

⎫⎬⎭ . (33)

We call these gradient and divergence operators of a vector or tensorial field (defined on a finite number of material
points) as discrete differential operators. With these discrete differential operators, we can replace the corresponding
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Table 1
EOS material parameters of the C4 charge (m kg s units).

ρ A B R1 R2 ω E

1601 5.98 × 1011 1.38 × 109 4.5 1.5 0.32 8.70 × 109

SPH governing equations of the conservation laws (mass, momentum, energy) with the following consistent hydro-
dynamics equations,

DρI

Dt
= −

∑
xJ ∈SxI

m J (vJ − vI ) · w(|xI J |)xI J M−1
I , (34)

DvI

Dt
= −

∑
xJ ∈SxI

m J

( pI

ρ2
I

+
pJ

ρ2
J

+ ΠI J

)
w(|xI J |)xI J M−1

I , (35)

DeI

Dt
=

1
2

∑
xJ ∈SxA

m J

( pI

ρ2
I

+
pJ

ρ2
J

+ ΠI J

)
· w(|xI J |)(vJ − vI ) · xI J M−1

I , (36)

DxI

Dt
= vI . (37)

Thus the dependence of the kernel function is successfully eliminated, and the modified SPH formula becomes
consistent with that of the state-based Peridynamics.

In this work, the pressure of the explosive is obtained from the equation of state. The Jones–Wilkins–Lee (JWL)
equation of state is used for the C4 explosive charge, which is defined as,

p = A
(

1 −
ω

R1d F

)
e−R1d F

+ B
(

1 −
ω

R2d F

)
e−R2d F

+
ωe
V
, (38)

where p is the pressure, V is the volume, w is the Gruneisen parameter, d F is the volume ratio V
V0

(V0 is the initial
volume) and A, R1, B, R2, ω. The specific constants of the C4 charge used in the computation are given in Table 1.

The material parameters for the soil and C4 charge are taken from [38].

2.4. Coupling of Peridynamics and SPH

The state-based Peridynamics has been mainly used to model solid or granule materials, because it has a bond
breaking feature that can model decohesion between solid particles, whereas SPH is primarily used to model fluids,
even though occasionally it was used to model solids as well. In those cases, the shortcomings of SPH such as tensile
instability and lack of consistency in interpolation field may become obvious. Therefore, in the soil fragmentation
simulation, we choose the state-based Peridynamics to model soil medium, while using a modified SPH method to
model the explosive. Therefore, a crucial step in the simulation is how to couple the two different methods to ensure
a seamless interaction between soil particles and explosive gas. From computational perspective, both Peridynamics
and SPH are nonlocal strong form particle methods. In fact the modified SPH method outlined in the previous section
can be viewed as a “Peridynamics” in the current configuration, or an updated Lagrangian form of Peridynamics [27].
This affinity between the two methods provides an easy coupling scheme of the two methods.

In Fig. 2, we show a schematic illustration at the interface of Peridynamics (blue) domain and SPH (red) domain.
One can see that near the interface of the two domain, there are SPH particles (red) in a Peridynamics particle’s
horizon, and vice versa there are Peridynamics particles inside a support of an SPH particle. To couple the two
methods, if an SPH particle is inside the horizon of a Peridynamics XJ ∈ HXI , one may simply treat it as
a “Peridynamics” particle by constructing the same influence function ω(|XI J |), and the shape tensors KJ , NJ .
Combining Eqs. (8)–(13), we can find the force acting on a Peridynamics particle as

F I =

∑
XJ ∈HXI

[
ω(|XI J |)(PJ − PI )K−1

I · XI J
]

V 0
J . (39)
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Fig. 2. Schematic illustration of the coupling scheme of Peridynamics particles and SPH particles. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

To fake an SPH particle as a Peridynamics particle, the only state variable unknown is the first Piola–Kirchhoff
stress tensor PI of the particle, which can be partially recovered by using the pressure value of the SPH particle, i.e.

PJ = JJ pJ F−T
J (40)

where pJ is the pressure, FJ is the deformation gradient at particle XJ and JJ = det[FJ ].
On the other hand, when a Peridynamics particle is inside the support of an SPH particle, we shall treat (pretend) it

as an SPH particle, and the corresponding SPH quantities of the Peridynamics particle, such as the density ρJ , velocity
vJ and pressure pJ are needed, in order to perform the SPH calculations, i.e. the integration of SPH hydrodynamics
equations (22)–(25). First, the velocity vJ is always available. In addition, other related variables can also be calculated
based on the following formulas:

(1) Density : ρJ =
1
JI
ρ0

J , (41)

and

(2) Pressure : pJ = 1/3tr(σ J ) = 1/(3JJ )tr(PJ FT
J ), (42)

where ρ0
J is the initial density at particle XJ .

To this end, one more technical ingredient is still needed to determine the nonlinear cohesive-frictional spring
force between two material or soil particles. In the state-based Peridynamics, this is done by incorporated the
macroscale phenomenological constitutive model into the Peridynamics formulation, i.e. once we determine the
nonlocal deformation gradient, we shall use the phenomenological geomaterial constitutive relation to determine
stress state (the first Piola–Kirchhoff stress PI and PJ ), and then evaluate the bond force,

F I = ω(|XI J |)(PJ − PI )K−1
I · XI J .

In the literature, several conventional constitutive material models have been implemented in the state-based
Peridynamics for solids, such as hypoelastic model [39], hyperelastic model [21], viscoplastic model [40], continuum
damage model such as the modified Johnson–Cook constitutive model [41], and among others. In this work, we shall
implement several geomechanics models in the state-based Peridynamics formulation, which will be discussed in next
section.

3. Soil constitutive modeling

In this section, we discuss how to model soil behaviors, and how to implement these constitutive models into
Peridynamics formulation.

3.1. Drucker–Prager plasticity model (without cap)

The state-based Peridynamics can be termed as a nonlocal continuum theory with an integral equation formulation.
Since that in the state-based Peridynamics, we can incorporate conventional macroscale stress–strain relation through
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the force state (see Eq. (6)) once the discrete deformation gradient is constructed. The existence of the internal force
state is based on an equivalence or existence of the strain energy density function. As a granular material, soils usually
present great nonlinearities after plastic yielding, with pressure-sensitive yield surfaces. In the literature, there are
several successful constitutive models for soils, such as the Drucker–Prager (DP) model, the Mohr–Coulomb (MC)
model and the Matsuoka–Nakai (MN) model. In this work, the Drucker–Prager (DP) plasticity model [22] is adopted
to characterize the plastic behaviors of the soil. The DP model has been extensively used in numerical simulations
of soil, rock and concrete structures [42]. The material parameters of the DP model for soils are well documented
with experimental calibrations. In this section, we first give a brief review of the uncapped DP model, mainly
focusing on the constitutive updates for a nonlinear finite deformation, which are then expressed in the corresponding
Peridynamics formulation.

The yield function of the Drucker–Prager model is given as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

f = ∥s∥ − (A(φ′)c′
− B(φ′)p′) ≤ 0

A(φ′) =
2
√

6 cosφ′

3 + β sinφ′

B(φ′) =
2
√

6 sinφ′

3 + β sinφ′
, −1 ≤ β ≤ 1

(43)

where s is the deviatoric stress tensor i.e. s := τ −
1
3 tr(τ )I, c′ is the effective cohesion (Pa), p′ is the mean effective

stress, and φ′ the effective friction angle. We use β = 1 and β = −1 to approximate two cases of the Drucker–Prager
model, i.e, the triaxial extension (TE) corners and the triaxial compression (TC) corners of the Mohr–Coulumb yield
surface, respectively.

As a non-associative flow rule, the Drucker–Prager plastic potential function can be expressed as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

g = ∥s∥ − (A(ψ ′)c′
− B(ψ ′)p′)

A(ψ ′) =
2
√

6 cosψ ′

3 + β sinψ ′

B(ψ ′) =
2
√

6 sinψ ′

3 + β sinψ ′
, −1 ≤ β ≤ 1

(44)

where ψ ′ is the effective dilation angle. If φ′
= ψ ′

= 0, Eqs. (43) and (44) are the identical (the yield function and
potential function overlaps), and the Drucker–Prager model reduces to a form similar to J2 plasticity, which is very
useful in approximating the shear strength of undrained soil.

The rate equation for the stress, evolution equations for the plastic flow and internal variables can be expressed as,

Lvτ = a : (d − dp); (45)

dp
= γ̇

∂g
∂τ

; (46)

q̇ζ = γ̇H · h(τ ,qζ ), and (47)

h = −
∂ f
∂qζ

, (48)

where Lvτ is the Lie derivative of the Kirchhoff stress tensor τ ; a = λI ⊗ I + 2µI is the spatial elasticity tensor with
I as the second order unit tensor and I as the fourth order symmetric tensor; d =

1
2

(
ℓ + ℓT )

; ℓ = ḞF−1 is the rate of
deformation, dp is the plastic rate of deformation, h is a hardening function and qζ are the specific internal states. For
the uncapped DP model, qζ = {c′, φ′, ψ ′

}
T . For the sake of simplicity, it is assumed that the ISVs are to evolve under

an independent, linear hardening/softening model, i.e.,

H =

⎡⎣H c 0 0
0 Hφ 0
0 0 Hψ

⎤⎦ (49)

where H c, Hφ, Hψ are linear hardening/softening modulus for c′, φ′, ψ ′, respectively.
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Based on the plastic potential function (see Eq. (44)), the evolution of plastic flow can be derived as

dp
= γ̇

∂g
∂τ

= γ̇

(
∂∥s∥
∂τ

+ B(ψ ′)
∂p′

∂τ

)
= γ̇

(
s

∥s∥
+

1
3

B(ψ ′)I
)

where I is the second order identity tensor.
In Eq. (47), h is a hardening function. Using the maximum plastic dissipation principle, for the uncapped DP

model, one can obtain

h =

⎛⎜⎜⎜⎜⎝
A(φ′)
∂A(φ′)
∂φ′

c′
−
∂B(φ′)
∂φ′

p′

∂A(ψ ′)
∂ψ ′

c′
−
∂B(ψ ′)
∂ψ ′

p′

⎞⎟⎟⎟⎟⎠ . (50)

Using the consistency condition ḟ = 0, the plastic multiplier γ̇ can be obtained as⎧⎪⎪⎪⎨⎪⎪⎪⎩
γ̇ =

1
χ

∂ f
∂τ

: a : ḋ

χ =
∂ f
∂τ

: a :
∂g
∂τ

−
∂ f
∂qζ

: H · h.

(51)

Eqs. (45), (47) and (51) are the equations of constitutive update of a non-linear plastic constitutive model. The three
sets of unknowns (τ ,qζ , γ̇ ) are coupled in the non-linear evolution equations, which can be solved by the Newton–
Raphson iteration method. For simplicity, the following explicit update algorithm is adopted in this work,

τ tr
I (tn+1) = fI (tn+1)τ I (tn)fT

I (tn+1) + aI : (dI (tn+1)∆t) (52)

f tr
n+1 = ∥str

∥ −
[
A(φ′

n)c′

n − B(φ′

n)(p′)tr
n+1

]
(53)

where the superscript tr stands for the corresponding trial items. Note that in Eq. (52) we define

fI (tn+α) := I + α∇̃n∆uI (54)

where ∆u = un+1
− un; 0 ≤ α ≤ 1; ∇̃n is a nonlocal gradient operator, and we define

hI (tn) := ∇̃n(∆uI ) :=

( ∑
XJ ∈HXA

(∆uJ − ∆uI ) ⊗ xn
I J V 0

J

)
(Kn

I )−1, (55)

where

Kn
I :=

∑
XJ ∈HXI

(
w(|XI J |)xn

I J ⊗ xn
I J V 0

J

)
. (56)

In the next section, we shall show that the non-local mapping fI (tn+α) ≈ FI (tn+α)FI (tn)−1.
In subsequent constitutive update:
If f tr

n+1 < 0, elastic phase: update τ n+1 = τ tr
n+1 and qζn+1 = qζn .

If f tr
n+1 ≥ 0, plastic phase:

∆γ =
f tr
n+1

2µ+ K B(φ′)B(ψ ′) + H c(A(φ′))2 ; (57)

τ I (tn+1) = τ tr
I (tn+1) − ∆γ (K B(ψ ′))I + 2µn̂I (tn+1); (58)

qζI (tn+1) = qζI (tn) + ∆γH · hI (τ ,qζ ). (59)
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3.2. Drucker–Prager plasticity model (cap model)

The yield and plastic potential functions f and g for the non-associative Drucker–Prager cap plasticity model are
defined as

f
(
τ ,qζ

)
= ∥s∥ −

√
Fφ

cap

√(
Aφ − Bφ p

)2
−

(
Aφ − Bφζ

)2 (60)

Aφ =
2
√

6c cosφ
3 + β sinφ

; Bφ =
2
√

6 sinφ
3 + β sinφ

, − 1 ≤ β ≤ 1 (61)

Fφ
cap = 1 − H (κ − I1)

(
I1 − κ

Xφ(κ) − κ

)2

, 0 ≤ Fφ
cap ≤ 1 (62)

Xφ(κ) = κ − R(Aφ − Bφκ) (63)

g
(
τ ,qζ

)
= ∥s∥ −

√
Fψ

cap

√(
Aψ − Bψ p

)2
−

(
Aψ − Bψζ

)2 (64)

where τ is the Kirchhoff stress tensor, s := τ − (τmm/3)I is the deviatoric Kirchhoff stress, φ is the friction angle,
and ψ denotes the dilatation angle. β = −1 indicates the Drucker–Prager yield surface passes through the triaxial
compression vertices of the Mohr–Coulomb yield surface, while β = 1 indicating passing through the triaxial
extension vertices of the Mohr–Coulomb yield surface. qζ is the stress-like internal state variable associated with
tension cap softening, κ is a parameter associated with compression cap position, and c is the constant cohesion. Fφ

cap
is the yield cap function; R is the ellipticity of the compression cap; H (κ − I1) is the Heaviside function; Xφ(κ)
denotes the position of the compression cap, whereas ζ denotes the position of the tension cap. Functional forms of
Fψ

cap, Aψ and Bψ are of the same form with Fφ
cap, Aφ and Bφ , respectively, except that φ is replaced with ψ .

For the Drucker–Prager cap model, the internal state variable (ISV) vector is qζ = {c, φ, ψ, ζ }T , and the ISVs are
evolving based on the following hardening/softening model,

H =

⎡⎢⎢⎣
H c 0 0 0
0 Hφ 0 0
0 0 Hψ 0
0 0 0 H ζ

⎤⎥⎥⎦ , (65)

where H c, Hφ, Hψ , H ζ are the linear hardening/softening moduli for c, φ, ψ, ζ , respectively.
The Kuhn–Tucker condition of plastic loading requires

f ≤ 0; γ̇ ≥ 0; f γ̇ = 0. (66)

During plastic loading, by using the consistency condition ḟ = 0, the plastic multiplier γ̇ can be obtained as

γ̇ =

∂ f
∂τ

: a : d
∂ f
∂τ

: a :
∂g
∂τ

−
∂ f
∂qζ : H · h

. (67)

The return-mapping algorithm involves the updating of the stress and stress-like ISVs at step n (τ n,qζn, γ̇n) to those
at step n+1 (τ n+1,qζn+1, γ̇n+1), by making use of these coupled equations. The following is a standard return-mapping
algorithm:

1. Update the stress tensor: Compute trial elastic stresses and evaluate the yield function

τ tr
I (tn+1) = τ I (tn) + ∆τ I (68)(

qtr)ζ
I (tn+1) = qζI (tn) (69)

f tr
n+1 = ∥str

n+1∥ −

√(
Fφ

cap

)tr

n+1

√(
Aφ − Bφ ptr

n+1

)2
−

(
Aφ − Bφζn

)2
. (70)

2. Check for yielding:
if f tr

n+1 < 0 (elastic phase),
update the stress and the internal state variables (ISVs) as τ I (tn+1) = τ tr

I (tn+1); qζI (tn+1) = qζI (tn)
else (plastic phase),
solve f (∆γ ) = 0 for ∆γ (consistency) and update the stress and ISVs correspondingly, and
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3. Update the force state: PI (tn+1) = τ I (tn+1)F−T
I (tn+1)

→ TI J [XI , tn+1]⟨XI J ⟩ = ω(|XI J |)PI (tn+1)K−1
I XI J .

In this work, no consistent tangent moduli is needed, because we are conducting explicit dynamic computations. For
the sake of clarity and completeness, details of the algorithm in computing ∆γ for the Drucker–Prager cap model is
provided in the Appendix A.

3.3. The Arenisca geomaterial model

To take into account the viscoplastic effect, porosity and saturated void effect, and soil grain disaggregation effect
under blast loading, Brannon and her co-workers [25,26] have developed a semi-empirical geomaterial constitutive
model to model the soil behaviors during explosions. This geomechanics model is named as Arenisca. The Arenisca
soil model is a computational constitutive model for saturated or unsaturated sandstone in high-rate loading [44].

Since the Arenisca soil model is a semi-empirical constitutive model, it is carefully fitted with experimental data
that are measured and obtained from the experiment of real geomaterials. From this perspective, it is a data-enhanced
or data-driven constitutive model. The Arenisca model can take into account the viscoplastic effect of soil by using
an overstress model. The Arenisca model has at least three different versions i.e. Arenisca 2.0, 3.0, and 4.0. In
the following, we briefly outlined a simplified version of Arenisca 3.0 model, and it is the one used in the present
study [45,46].

The plastic yield surface of the Arenisca model is a two function equation comprised of one that controls the shear
behavior (F f ) and the other one that characterizing an elliptical cap (Fc) that controls the compressive behavior.

f =

√
J2 −

{
F f (I1) ; I1 ≥ κ

F f (I1)Fc(I1, X ) ; I1 < κ
(71)

where J2 is the second invariant of the deviatoric stress tensor, I1 is the first invariant of the Cauchy stress, and κ and
X are interdependent variables that control the location of the cap.

The Arenisca soil model adopts the following nonlinear form of the shear limits function

F f = A1 − A3eA2 I1 − A4 I1 (72)

where A1, A2, A3 and A4 are material parameters. For simplicity, a linear Drucker–Prager shear limit function is used
in the Arenisca model. F f is a linear function

F f = β(I max
1 − I1) (73)

where β is the tangent of the friction angle (φ), and I max
1 is the tensile limit of the first stress invariant. One can see

that for the linear case, A1 = β I max
1 , A3 = 0 and A4 = β.

The elliptical cap function Fc is defined as

Fc =

⎧⎪⎨⎪⎩
1 ; I1 ≥ κ√

1 −

(
κ − I1

κ − X

)2

; I1 < κ,
(74)

where X is the intersection of the cap with the hydrostatic axis and κ is the isotropic hardening internal state variable
that controls the location of the cap. A shape parameter (CR) is used to control the geometry of the yield surface and
it is assumed that during yielding, the yield surface geometry remains constant. In Arenisca 3.0, CR is defined as

CR =
I max
1 − κ

I max
1 − X

. (75)

Evolution of κ is controlled by an empirical “crush curve” that is fitted to hydrostatic compression data in which
the strains are measured in the experiment until a complete collapse of pore space in the soil. The curve is defined as

ϵ p
v = p3

(
e−p1(p0−X )

− 1
)
, (76)

where ϵ p
v is the volumetric plastic strain; p0 is three times the mean pressure at the elastic limit; p1 is proportional

to the initial slope of the porosity vs. pressure curve, and p3 is the maximum plastic volumetric strain. For tensile
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response, the Arenisca soil model uses a hyperbolic function to describe the position of the cap with volumetric
plastic strain, which is combined with the compressive crush curve to create a piecewise function.

X = p0(ϵ p
v + 1)

1
p0 p1 p3 . (77)

Fundamentally, the Arenisca model is a data-enhanced computational framework of geomaterial models. First, the
Arenisca model is in fact a curve fitting model. Many material relations and parameters of the model are fitted
with experimental data of drained or partially saturated Mason sand under various loading condition. These include:
tangent modulus-mean stress relation, effective mean stress-elastic volumetric strain relation, effective mean stress-
volumetric plastic strain relation, saturation-plastic volumetric strain relation, saturation-volumetric strain relation,
porosity-effective mean strain relation, and among some other parameters and relations. For the detailed curve fitting
procedures, readers are referred to [24]. Second, even though it may have a yield surface resembling that of the
cohesive-frictional materials, but the term “yield” is generalized to include a broader class of inelastic responses
of geomaterials such as backstress, porosity, saturation, and pore collapse and crush, etc. The Arenisca model also
includes a partially saturated solid module. For implementation of the Arenisca partial saturated solid model, readers
are referred to [24].

Compared with some thermodynamics-based geomaterial models, e.g. Borja’s model [47], the Arenisca soil
model may lack of physics-based mathematical deduction or rigorous. Since the main objective of this work is
the modeling and simulation of soil fragmentation in engineering scale, a data-enhanced computational model
may be more suitable than a geoscience based material model. Furthermore, the main focus of this work is about
Peridynamics-SPH modeling and simulation of soil fragmentation, we refer readers to consult references [45,46] for
the detailed information on computational aspects of the Arenisca model, such as consistent bisection (CB) algorithm
and transformed-space closest-point return (TSCPR) algorithm.

3.4. Objective time-stepping algorithm

Recently we have found that the discrete nonlocal Peridynamics computation may not satisfy the material frame-
indifference requirement, which may result in erroneous numerical results, if the objectivity is not strictly enforced.
This could happen in both kinematic update of a vector or a tensorial field as well as constitutive update of stress or
strain field.

To enforce the objectivity requirement, we adopt and apply the Hughes–Winget incremental objectivity algorithm
in both the kinematic update as well as the stress update of the Peridynamics integration. The objective time-stepping
algorithm adopted in this work mainly follows that in [48].

In the following, we briefly outline the main procedure. The trial stress in Eq. (52) is obtained under the assumption
of small deformation. But in general, the soil particle under undergoes finite deformation with large rotations during
blast loadings. To ensure an objective time integration, the Hughes–Winget algorithm [49] is implemented in the
state-based Peridynamics framework. Between the two configurations at time step n and n + 1, the Hughes–Winget
algorithm introduces an intermediate configuration n + α, such that the rate approximations of the spatial quantities
(rate of deformation, stress tensor) are objective.

As shown in Fig. 7, an intermediate configuration at time step n + α is defined as

xn+α
:= (1 − α)xn

+ αxn+1, 0 ≤ α ≤ 1 (78)

where α is a scalar. The nonlocal deformation gradient at the material point XI in the configuration xn+α can be
approximated as,

FI (tn+α) =
∂xn+α

∂X

⏐⏐⏐
XI

:=

⎛⎝ ∑
XJ ∈HXI

ω(|XI J |)(xn+α
J − xn+α

I ) ⊗ XI J V 0
J

⎞⎠ · K−1
I , (79)

which is a nonlocal strain measure.
In addition, the nonlocal gradient of displacement increment ∆u = xn+1

− xn with respect to the reference
configuration can be formulated as,

∇̃X∆u
⏐⏐⏐
XI

:=

⎛⎝ ∑
XB∈HXI

ω(|XI J |)(∆uJ − ∆uI ) ⊗ XI J V 0
J

⎞⎠ · K−1
I . (80)
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If this is a local gradient field, one can then obtain the increment of local deformation gradient via Chain Rule,

hn+α =
∂(∆u)
∂xn+α

= ∇̃X(∆u) · F−1
n+α. (81)

However, the state-based Peridynamics is a nonlocal formulation of continuum mechanics, and one cannot directly
apply Chain Rule in the above derivation. In the following, we shall show that Eq. (81) is valid for the non-local field
as a first order approximation.

We first define hn+α at the material point I by considering the following updated Lagrangian derivative in the
configuration n + α,

hI (tn+α) :=

⎛⎝ ∑
XJ ∈HXI

ω(|XI J |)∆uI J ⊗ xn+α
I J V 0

J

⎞⎠ · (Kn+α
I )−1, (82)

where

Kn+α
I :=

∑
XJ ∈HXI

(
ω(|XI J |)xn+α

I J ⊗ xn+α
I J V 0

J

)
, (83)

is the shape tensor in the configuration n + α.
For a first order approximation, one can show that (see [27]),

FI (tn+α) := NI (K0
I )−1

≈ Kn+α
I N−T

I , (84)

where

NI :=

∑
XJ ∈HXI

(
ω(|XI J |)xn+α

I J ⊗ XI J V 0
J

)
.

From Eq. (84), we have

Kn+α
I ≈ FI (tn+α)NT

I → (Kn+α
I )−1

≈ N−T
I (FI (tn+α))−1, (85)

and then one can show that

(FI (tn+α))T (Kn+α
I )−1

= (K0
I )T NT

I · (N−T
I ) · (FI (tn+α))−1

= (K0
I )T

· (FI (tn+α))−1. (86)

As mentioned in the previous section that in the state-based Peridynamics, the following relationship, i.e. the
Cauchy–Born rule, is valid,

xn+α
I J ≈ FI (tn+α) · XI J . (87)

Substituting Eq. (87) into (82) and utilizing Eqs. (85) and (86), we have

hI (tn+α) :=
∂(∆u)
∂xn+α

⏐⏐⏐
XI

=

∑
XJ ∈HXI

(
ω(|XI J |)∆uI J ⊗ xn+α

I J V 0
J

)
· (Kn+α

I )−1,

=

∑
XJ ∈HXI

(
ω(|XI J |)∆uI J ⊗ XI J V 0

J

)
· (FI (tn+α))T (Kn+α

I )−1

=

∑
XJ ∈HXI

(
ω(|XI J |)∆uI J ⊗ XI J V 0

J

)
(K0

I )−1(FI (tn+α))−1

= ∇̃X∆u · (FI (tn+α))−1, ∀α ∈ [0, 1] (88)

which is the nonlocal version of Eq. (81).
Eq. (88) can be split into the following strain and rotation increments,

γ I = (hI (tn+α) + hT
I (tn+α))/2, (89)

ωI = (hI (tn+α) − hT
I (tn+α))/2. (90)
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In passing, we note that both kinematic quantities are nonlocal. The objective effective stress increment is evaluated
as,

∆τ = a : γ . (91)

Finally, Eq. (52) is replaced by the following set of equations

τ tr
I (tn+1) = τ̂ I (tn) + aI : γ I , (92)

τ̂ I (tn) = ΛT
I τ I (tn)ΛI , (93)

ΛI = I + (I − αωI )−1ωI . (94)

We now show that fI (tn+α) = FI (tn+α)(FI (tn))−1.
Let α = 0 in Eq. (88), we have

∇̃x∆uI = ∇̃X∆UI · (FI (tn))−1

→ ∇̃X∆UI = ∇̃x∆uI · FI (tn), ∀XI ∈ Ω0. (95)

By definition,

FI (tn+α) = FI (tn) + α(FI (tn+1) − FI (tn)) = FI (tn) + α∇̃X∆UI .

Substituting Eq. (95) into the above equation yields

FI (tn+α) = FI (tn) + α∇̃X∆UI = FI (tn) + α∇̃x∆uI · FI (tn)
= I + α∇̃x∆uI FI (tn).

We then have the desired result,

fI (tn+α) := I + α∇̃x∆uI = FI (tn+α) · (FI (tn))−1, (96)

which is what we have used in the simulations. In passing, we note that the desired objectivity result (96) requires
the nonlocal formulation converges to the local formulation, i.e. Eq. (84) (see [27]). If a nonlocal method does not
mathematically converge to an objective local formulation, the above proof will be not valid; and we know that
some nonlocal particle material models do not converge to the localized Cauchy continuum in terms of rigorous
mathematical arguments, whose objectivity issue is still an open problem. Numerical study on the objectivity of the
time-stepping algorithm is discussed in the following section.

4. Numerical examples

In this section, several numerical examples are presented. First, a three-dimensional column is prescribed with
uniaxial compression, to verify the Peridynamics model and the corresponding numerical implementation. Second,
two numerical tests are conducted to demonstrate the objectivity of the time integration algorithm for the Drucker–
Prager cap plasticity model. Finally, the PD-SPH coupling method is employed to simulate soil fragmentation under
blast loading for three different soil constitutive models.

4.1. A three-dimensional soil column under uniform step load

Fig. 3(a) shows the geometrical configuration of a soil column with a square cross-section of side length L = 1 m
and height H = 10 m. The soil column is uniformly discretized into 14,196 Peridynamics particles. A pressure load
P(t) is applied at the top surface. The step load P(t) is shown in Fig. 4, with the maximum pressure P0 and rising time
t0. The bottom of the soil column is fixed in the vertical (z) direction and the four side surfaces are confined with zero
displacements in the corresponding out-normal directions, in order to produce a one-dimensional loading condition.
The simulation time step is chosen to be dt = 1.0 × 10−3 s, with a total simulation time t = 2.0 s. The material
parameters of all three geomaterial models are provided in Table 2. The adaptive dynamic relaxation method for the
Peridynamics (see [50]) is employed to obtain a steady-state solution in the dynamic simulation. Three different load
cases with P0 = 10, 20, 30 kPa and t0 = 0.05 s are considered. The numerical results are compared to the small
strain steady-state analytical solution of consolidated vertical displacement under small deformation (linear elastic).
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Fig. 3. A three-dimensional soil column under uniform step load: (a) geometrical configuration; (b) representation of the domain with 14,196
particles.

Fig. 4. A step loading function with maximum value P0 and rising time t0.

The analytical solution for the vertical displacement at the top of the column is ∆H = (P0 H )/(λ + 2µ) [51], where
λ and µ are the Lame constants. From the comparison in Fig. 5, one can see that the numerical results are in good
agreement with the analytical solutions at the regime of small strain, which to some extent proves the validity of the
implementation of the Peridynamics model.

4.2. Objectivity of the time-stepping algorithm

To validate the Peridynamics numerical integration algorithm for finite deformation, we first test its objectivity in
the sense of frame-indifference [52].
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Table 2
Material parameters used in the computation for three geomaterial models.

Drucker–Prager E µ H c φ ψ β

(uncapped) 98.5 (MPa) 0.25 0.2 (MPa) 0.74 0.74 −1

Drucker-Prager E µ R κ Hχ H c φ ψ c0 β

(capped) 98.5 (MPa) 0.25 10 −2 (KPa) −100 (MPa) 0 0.35 0.17 (KPa) 100 −1

E µ β I max
1 CR P0 P1 P2

Arenisca 98.5 (MPa) 0.25 0.65 1 0.5 −0.33 1.2e−8 0.25
model

Fig. 5. Convergence of the nonlocal Peridynamics solutions to the analytical solutions.

Fig. 6. A soil cylinder: (a) geometrical configuration; A, B and C are particles on the top surface; (b) representation of the cylinder with 11,882
particles.

4.2.1. A solid cylinder with rigid-body rotation
Fig. 6 shows the configuration of a cylinder with a radius R = 0.025 m and height H = 0.05 m. Particle A, B

and C are located at the top surface of the cylinder with the distances to the principle axis rA = 1/2R, rB = 3/4R
and rC = R. The cylinder is prescribed with an initial angular velocity ω = 1000 rad/s, with respect to the principal
axis. Subjected to no external displacement or traction boundary conditions, the cylinder is expected to continuously
rotate with initial angular velocity ω forever (rigid body motion with no deformation). The material properties of
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Fig. 7. Geometric relations of the intermediate configuration xn+α .

Fig. 8. Comparison of numerical and analytical results for velocity magnitudes at specific positions: (a) without the objective time-stepping
algorithm; (b) with the objective algorithm.

the soil are shown in Table 2. The time step is set to be dt = 5.0 × 10−7 s, in order to comply with the Courant–
Friedrichs–Lewy (CFL) condition [53]. The total simulation time is t = 1.0 × 10−3 s. To check the objectivity of
the proposed time-stepping algorithm, the velocity magnitudes of the three particles A, B and C are recorded and
plotted against the simulation time. Fig. 8(a) shows the numerical results of particle velocity magnitudes for the case
without the objective time-stepping algorithm, all of which diverge from the theoretical values vA = ωrA = 12.5 m/s,
vB = 18.75 m/s and vC = 25 m/s, for only a few time steps. On the contrary, the numerical results of the velocity
magnitudes obtained with the objective time-stepping algorithm compare quite well with the theoretical values, as
shown in Fig. 8(b). In fact, they simply oscillate around the theoretical values, owing to the inertial effects. From this
example, one can see that the proposed integration algorithm in the framework of the state-based Peridynamics is
invariant or incrementally invariant under the rigid body rotations. Instead of producing non-physical deformations in
the soil cylinder, the algorithm passed the benchmark test, and it provides physically correct results. In other words, it
satisfies the objectivity requirement.

4.2.2. A three-dimensional column under harmonic loading
To take a further look at the objectivity of the algorithm, a numerical example with the presence of both loading

and initial rotation is presented. Fig. 9 shows a soil column with side length L = 1 m and height H = 10 m. The
soil column is uniformly discretized into 6804 particles. A harmonic pressure load P(t) (see Fig. 10) is applied at
the top surface. The bottom surface is fixed in the vertical direction and the four side surfaces are free. The material
parameters are shown in Table 2. The simulation time step is set to be dt = 5.0 × 10−4 s, with the total simulation
time t = 1.5 s. The maximum loading pressure is P0 = 40 kPa and the initial angular velocity (with respect to the
principal axis of the column) is ω = 1.57 rad/s. The analytical solution for the vertical displacement at the top surface
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Fig. 9. A schematic of a soil column with initial angular velocity ω subjected to a pressure load P(t) at the top surface.

Fig. 10. A harmonic loading function with maximum load P0.

of the column (under small deformation) is

∆H =
P0 H
2E

[
1 +

(ω/ωn)2

1 − (ω/ωn)2 cosωnt −
1

1 − (ω/ωn)2 cosωt
]
, (97)

where E is the Young’s modulus and ωn is the natural frequency. Subjected to the harmonic pressure loading at the
top surface, numerical tests with and without the presence of rotation around the axis are conducted. Fig. 11(a) shows
the comparison of the top surface displacements for the case without objective time-stepping algorithm, together with
the analytical solution. One can see that with the presence of rigid body rotation, the simulation results diverge from
the theoretical value for merely a few time steps. On the contrary, Fig. 11(b) shows that the top surface displacements
obtained with the proposed objective time-stepping algorithm. It can be seen that the rotation has little effect on the
results, although with the presence of the loading, which further proves the objectivity of the proposed algorithm. For
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Fig. 11. Comparison of numerical and analytical results for vertical displacements at the top of the column: (a) without the objective time-stepping
algorithm; (b) with the objective algorithm.

Fig. 12. Effective stress distribution during the compressing/rotating process.

the sake of completeness, a time sequence of the column during the compressing/rotating process (simulated with the
objective integration algorithm) is shown in Fig. 12.
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Fig. 13. A schematic of the experiment setup used in [43].

Fig. 14. Representation of the computational domain with 4,891,414 Peridynamics particles (blue) and 2477 SPH particles (red): (a) Uniform
particle distribution, and (b) Random particle distribution. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

4.3. Explosive induced soil fragmentation

In this example, the PD-SPH coupling method is employed to simulate the soil fragmentation resulting from
detonation of 100-gram charge of C4 explosive. Fig. 13 shows the simulation setup, which is exactly the same as
the experiments conducted by Bergeron et al. [43]. A cylindrical barrel with the radius of 45.72 cm and the height
of 71.07 cm is fully filled with soil. A 100-gram C4 explosive charge of cylindrical-disk shape is buried into the soil
along the axis of the barrel with its face parallel to the soil surface. The distance between the top face of the explosive
and the soil surface is defined as the depth of burial (DOB). Two different overburdens with DOBs 3 cm and 8 cm are
considered in the simulation.

To reduce the computational cost, a semi-uniform discretization of the computational domain is adopted. The
whole domain is divided into two different regions, each of which is discretized uniformly with a unique particle
space ∆i , i = 1, 2. Given that we are mainly interested in the soil deformation around the explosive charge, the region
embedded with the C4 charge is discretized with the smallest particle space ∆1 = 4.0 × 10−3 m, whereas the other
region is discretized with ∆2 = 2∆1. As shown in Fig. 14(a), the whole domain contains 4893,891 particles, of which
4,891,414 are Peridynamics (soil) particles and 2477 are SPH (C4 charge explosive) particles. To check whether the
simulation result is sensitive to the initial particle distributions or not, an additional particle distribution is generated
from a random perturbation of the semi-uniform discretization (see Fig. 14(b)). In particular, the particle position X′

of an old particle X in the new discretization is obtained through the following formula,

X′
= X + 0.05rand∆i , (98)

where X is the particle position in the semi-uniform discretization, rand is a random vector with each component
−0.5 ≤ rand( j) ≤ 0.5, j = 1, 3 and ∆i is the smallest particle space in the corresponding region. The statistical
distribution of the random number is the Gaussian distribution.



370 H. Fan, S. Li / Comput. Methods Appl. Mech. Engrg. 318 (2017) 349–381

Fig. 15. Time sequence of the dynamic soil fragmentation process for uncapped Drucker–Prager model: DOB = 8 cm, non-perturbed semi-uniform
discretization; The contour color represents the velocity magnitude (m/s). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

The Jones–Wilkins–Lee (JWL) equation of state is used to model the C4 explosive charge. The parameters for the
C4 charge are taken from [38]. The simulation time step is chosen to be ∆t = 0.25 × 10−6 s, with the total time
t = 0.8 × 10−3 s. A parallel PD-SPH code is developed by using the OpenMP [54] application program interface. By
using the PD-SPH coupling method, computer simulations of a system of total 4,891,414 material particles are carried
out by using 16 and 32 threads, respectively, in the same Intel(R) Xeon(R) E5-2698 CPU. The total simulation time
recorded for the 16 threads case is around 77.5 h, the total simulation time recorded for the 32 threads case is around
42.0 h. For the detailed OpenMP implementation of PD-SPH method, the readers are referred to [55].

The time sequence of the dynamic soil fragmentation process for the overburden of DOB 8 cm is presented in
Fig. 15, with the color contour denoting the velocity magnitude, with the unit of meter per second. From Fig. 15,
one can see that the SPH particles gained very large momentums immediately after the ignition, resulting from the
enormous energy of the explosive charge. The shock waves quickly propagated through the interaction zone of the SPH
and Peridynamics particles (interphase zone), which indicates the coupling of the Peridynamics and SPH particles
is successful. After passing through the interphase zone, the shock waves continuously expanded in each direction.
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Fig. 16. Comparison of the dynamic soil fragmentation process: DOB = 8 cm; Three different constitutive models; (a–c) for the uncapped Drucker–
Prager model, (d–f) for the Drucker–Prager cap model and (g–i) for the Arenisca model. The contour color represents the velocity magnitude (m/s).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

When the first shock wave reached the top surface of the cylinder, a small soil bubble started to form (Fig. 15(b)), and
it gradually grew in its height and width.

Fig. 16 shows comparisons between the simulation results obtained from three different soil constitutive relations.
Overall, the soil fragmentation patterns are similar, but they differ in details. First one may find that the shock wave
fronts of all three simulations are almost the same. This makes sense, because we used the same Young’s modulus
(98.5 MPa) and the Poison’s ratio 0.25 for all three models (see Table 2). On the other hand, it seems to us that
the uncapped Drucker–Prager model has less resistance to soil fragmentation than that of the Drucker–Prager cap
model and the Arenisca model. Even though the results obtained by using the Drucker–Prager cap model and the
Arenisca soil mode are similar, the soil bubble shapes obtained from these two different modeling methods have
distinct differences in the tangential soil ejecta angle and overall profiles (see Fig. 16).

Fig. 14 is a comparison of numerical models (“meshes”) between uniform particle distribution and non-uniform
particle distribution, while Fig. 17 shows the comparison of dynamic soil fragmentation profiles between the two
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Fig. 17. Comparison of soil bubble fragmentation between uniform discretization model and non-uniform discretization model (DPC): (a) Velocity
field and (c) Damage field for a uniform particle distribution model, and (b) Velocity field and (d) Damage field for a non-uniform particle
distribution model.

models i.e. the uniform particle distribution and the non-uniform particle distribution. In Fig. 17(a) (b), the color
contour is the magnitude of the velocity field in soil, and in Fig. 17(c) (d) the color contour is the magnitude of the
damage field in soil. In both cases, the Drucker–Prager Cap (DPC) model is used in the simulation. The velocity
and damages contours for both have similar patterns, except that for the case of the uniform particle distribution,
those patterns are almost symmetric whereas for the case of non-uniform mesh both velocity field and damage
field have certain asymmetric profiles. For the case of non-uniform particle distribution, those asymmetric patterns
become prominent when the first shock wave arrives at the interface of two regions with different particle densities
as shown in Fig. 17. This may attribute to the shock wave reflection and deflection at the inhomogeneous interface.
The non-uniform particle distribution will also induce the non-uniform impedance at the interface, which may cause
the asymmetric reflection at the interface. Nevertheless, we are mainly interested in the early stage of the soil
fragmentation before the first shock wave hits the boundary region.

The early soil deformation and fragmentation state, i.e. the soil bubble shape as an ejecta front, obtained from the
simulations are compared with that obtained from the experimental measurement, e.g. [43]. The time histories of the
soil bubble height and width evolution of the ejecta front for both the 3 cm and 8 cm depth of burial (DOB) are plotted
in Fig. 19(a)–(f) for three soil models, respectively. The definition for the width and height of a soil bubble is shown
in Fig. 18. The curve of the bubble height for the 3 cm DOB, i.e. the first curve (blue) (3 cm–simulation) in Fig. 19(a),
(c), and (e), are used to calibrate simulation parameters. The rest three sets of curves (8 cm for height and both curves
for width) in Fig. 19 are obtained as the predictive values that are extracted from simulation results with the set of the
parameters calibrated in the first case. One can see that the soil bubble height of the 8 cm DOB matches well with that
of the experiment results for the Drucker–Prager cap model as well as the Arenisca model. The bubble widths obtained
for simulations of both 3 cm and 8 cm DOBs are both in general agreement with the experimental data with small
discrepancies (<10% ∼ 20%), which may be attributed to the fact that the smallest particle gap (∆1 = 4.0 × 10−3 m)
is much larger than the typical sand size (0.16 ∼ 0.63 × 10−3 m) in the experiment. However, both the uncapped
Drucker–Prager model and the Arenisca model give good predictions on soil bubble width in the case of 3 cm DOB;
whereas the Drucker–Prager cap model gives good prediction on soil bubble width in the case of 8 cm DOB.
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Fig. 18. Definitions of the width and height of a soil bubble.

The difference in the resolutions of the particle gaps inevitably introduces the difficulties in identifying the shapes,
especially the widths of the early soil bubbles. Nevertheless, to a large extent, the simulation result validates the
PD-SPH coupling method and its application in the modeling of soil fragmentation.

Moreover, the simulation results for the uncapped Drucker–Prager model show localized soil bubbles growing
inside the exterior bubble and then collapsing at late stage. In Fig. 20, we show a sequence of soil bubble evolution
obtained in a two-million particle simulation that uses the uncapped Drucker–Prager model as its soil constitutive
model. It is worth noting that even though the uncapped Drucker–Prager model renders poor prediction on the soil
bubble height, its related simulation results show a distinct soil bubble shape that contains explosive gas with outward
expansion. Moreover, from Fig. 20, one may observe that there is a mixed soil/gas jet inside the soil bubble first, and
then it is bursting out the outer layer of the soil bubble in the fragmentation stage of the event. To the best of the
authors’ knowledge, this phenomenon has never been reported before in open literature, and it is somewhat similar to
gas bubble bursting out of the water in underwater explosions.

5. Discussions

It has been a technical challenge in several decades to accurately predict soil fragmentation caused by blast
loadings. In this work, we present a Peridynamics/SPH coupling method in modeling and simulation of soil
fragmentation caused by underground explosion of the buried explosive charge in an attempt to quantitatively predict
laboratory scale soil fragmentation under blast loads.

In this work, we first used the experimental measurement data in the literature to tune the parameters in the
Peridynamics model, and then used the Peridynamics model to predict a different set of experimental results.
Remarkably, it has been found that the Peridynamics simulation results or the predictions on the new set of
experiments are in general agreement with the experimental data.

Moreover, we have shown that (1) the proposed Peridynamics soil formulation with the non-local Hughes–Winget
integration algorithm can pass the objectivity benchmark test; (2) the Peridynamics computation also works on
unstructured random particle distribution, and (3) by using the OpenMP parallel algorithm we can conduct a large
scale Peridynamics simulation (up to 5 million particles) in a desktop workstation. We would like to point out that
even though the objective time-integration algorithm has been developed since 1980s, they have been mainly applied
to the Galerkin weak formulation based finite element method in local continuum mechanics. To the best of the
authors’ knowledge, the present work may be the first case that the objective time-integration procedure is being
applied to the nonlocal continuum mechanics based Peridynamics formulation, or the state-based Peridynamics.

Even though the Drucker–Prager models, both the uncapped and the capped, provide reasonable estimates to the
soil behaviors such as strain localization under quasi-static loading, it may not be suitable for soil behaviors under
high strain rate loadings. In this respect, the Arenisca model may provide some useful predictions, because it is a
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Fig. 19. Comparison of soil bubble shapes (height (a, c, e) and width (b, d, f)) at the soil ejecta front for both 3 cm and 8 cm overburdens with
experimental results from [43]; (a–b) for the uncapped Drucker–Prager model; (c–d) for the Drucker–Prager cap model; (e–f) for the Arenisca
Model.

data-enhanced constitutive model for high strain rate loading. However, one may argue that all these constitutive
models discussed above may not correctly predict soil motion during or after soil fragmentation because after a soil
medium fragments some soil particles no longer interact with each other. This is one of the motives of the present
development of Peridynamics modeling. Fundamentally, the state-based Peridynamics soil model developed in this
work is an advanced or complex “discrete element approach”, which models the soil particle as a soft sphere. The
radius of the sphere is the radius of the horizon, δI , for particle I. (See Fig. 21). After fragmentation, a soil particle,
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Fig. 20. Soil bubble evolution obtained from a two million particle simulation using the uncapped Drucker–Prager model. (The contour color
represents the velocity magnitude.) (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 21. Peridynamics soil particle cohesive and decohesion model: A nonlocal soft sphere becomes a local hard sphere during fragmentation.

say particle I, may sever all its bonds from the adjacent soil particles within its horizon (soft sphere), and the nonlocal
soft sphere evolves to a rigid particle, or a local hard sphere with minuscule radius (δI = (3∆VI /(4π ))1/3) as shown
in Fig. 21.1 It is noted that by nonlocal soft sphere, we mean that there are neighboring particles inside the deformable
sphere (horizon); by local hard sphere, we mean that there is no other particle inside or interact with the particle I, and
the sphere cannot deform FI = I.

The spring between two soil particles shown in Fig. 21 is in fact a cohesive-frictional spring, and its force–
displacement relation may be derived from the Peridynamics force state by the following expression,

F I J (FI ) = ω(X I J )(PJ − PI )(FI )K−1
I · XI J , (99)

in which the first Piola–Kirchhoff stress may be derived from geomaterial constitutive model once the deformation
gradient FI is obtained. It may be noted that in the state-based Peridynamics, the bond force fI J in Eq. (99) looks
like a pair force between the particles I and J, but it is in fact a nonlocal force representing the overall interaction

1 This situation may change if we consider the recohesion.
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surrounding the material bond XI J . This is fundamentally different from the bond-based Peridynamics as well as
DEM, in which the local pair force is used as the bond force.

During the soil fragmentation, if all the bonds of a particle, say particle I, are severed from its neighbors, we reset
KI = I and NI = I, and subsequently,

FI = I → PI = 0.

Moreover, if the bond between the particle pair IJ is severed, their interaction force state is set to zero as well,
i.e. fI J = 0, even though PI and PJ may not be zero, because there may exist other soil particle bonds.

From Eq. (99), one may see that the role of the constitutive modeling is to provide the force–deformation relation
for the Peridynamics nonlinear springs, which depends on soil constitutive models, no matter it is the Drucker–Prager
model, or the Arenisca model. Moreover, the nonlinear spring force defined in Eq. (99) is not necessarily along the
direction of XI J nor is it perpendicular to XI J . One can see from Fig. 21 that this force has parallel component as
well as perpendicular component to the direction dI J = XI J/|XI J |, which may be interpreted as normal cohesive
component as well as tangential cohesive and frictional component. In fact, for the state-based Peridynamics, one
can show that if we sum all the bond force contributions from all the particles inside the horizon, the net force
of tangential component will disappear [21]. There are two caveats of the present method: (1) The Peridynamics
decohesion criterion only considers the normal bond breaking not the tangential bond breaking, and (2) The present
method does not consider the re-cohesion, i.e. once a soil particle becomes a rigid body particle, it does not return
to its “soft sphere” particle state. This treatment is sufficient for the simulation of soil fragmentation in the early and
middle stage, but it is not capable of simulating dust particle falling off and settling after the explosion. Perhaps,
a more advanced Peridynamics soil constitutive model is still needed in order to accurately predict the detailed
decohesion/collision/re-cohesion process as well as the dynamic liquefaction process of soil media, e.g. [11,56].

The main part of this work is to use various geomaterial constitutive models to find the Peridynamics nonlinear
spring force vector. As the numerical results indicate, however, if we use the same Peridynamics decohesion
algorithm to break the bond, the general trends of soil fragmentation for different constitutive models are similar.
Therefore, we think that it is the nonlocal state-based Peridynamics modeling and its corresponding decohesion bond
breaking algorithm (criterion) that provide decisive advantages in both the modeling as well as the simulation of soil
fragmentation. However, much work remains to be done to physically link the decohesion criterion or algorithm of
the state-based Peridynamics with the geomaterial damage model.
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Appendix A. Constitutive update for Drucker–Prager cap model

In this Appendix, we document the detailed computational algorithm in updating the stresses and other internal
state variables (ISVs) when the yield function is tested to be greater than zero with the elastic trial stress. The stress
and ISVs at time step n are provided, we need to obtain their corresponding values at time step (n + 1) by

τ n+1 = τ n + ∆ta : (d − dp) − ∆γ a :
∂g
∂τ

(100)

qζn+1 = qζn + ∆γhq , (101)

subjected to the condition,

fn+1 = 0. (102)

Eqs. (100)–(102) are a set of nonlinear equations, which can be solved by using the Newton–Raphson method. For
the sake of clarity, in the following presentation, the subscript (n + 1) is left off.



377 H. Fan, S. Li / Comput. Methods Appl. Mech. Engrg. 318 (2017) 349–381

Fig. 22. Schematic illustration of the experimental layout for soil blasts experiments in the centrifuge: side (a) and top (b) view.
Source: From Hansen and Pak [57].

Define a vector variable

X =

⎡⎣ τ

qζ
∆γ

⎤⎦ , (103)

and a corresponding residual function of Eqs. (100)–(102)

R(X) =

⎡⎣Rτ

Rq

Rγ

⎤⎦ =

⎡⎢⎣τ − τ n − ∆ta : (d − dp) + ∆γ a :
∂g
∂τ

−qζ + qζn + ∆γhq

f

⎤⎥⎦ = 0. (104)

One can linearize the residual R term for the unknown variable X as

Rk+1
= Rk

+
∂R
∂X

⏐⏐⏐⏐
k
· δX ≈ 0, (105)

where

∂R
∂X

=

⎡⎢⎢⎢⎢⎢⎢⎣

∂Rτ

∂τ

∂Rτ

∂qζ
∂Rτ

∂∆γ
∂Rq

∂τ

∂Rq

∂qζ
∂Rq

∂∆γ
∂Rγ

∂τ

∂Rγ

∂qζ
∂Rγ

∂∆γ

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
I + ∆γ a :

∂2g
∂τ∂τ

∆γ a :
∂2g
∂τ∂qζ

a :
∂g
∂τ

∆γ
∂hq

∂τ
−1 + ∆γ

∂hq

∂qζ
hq

∂ f
∂τ

∂ f
∂qζ

0

.

⎤⎥⎥⎥⎥⎥⎥⎦ . (106)

For a given iteration k, we can first rewrite the first two equations as[
Rτ

Rq

]
+ D ·

[
δτ

δqζ
]

+ δ(∆γ )

[
a :

∂g
∂τ

hq

]
= 0, (107)

where

D =

⎡⎢⎢⎣I + ∆γ a :
∂2g
∂τ∂τ

∆γ a :
∂2g
∂τ∂qζ

∆γ
∂hq

∂τ
−1 + ∆γ

∂hq

∂qζ

⎤⎥⎥⎦ . (108)
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Fig. 23. Time sequence of the dynamic soil fragmentation in a Centrifuge simulated by using the Arenisca soil model. (The contour color represents
the magnitude of velocity field.) (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Multiplying Eq. (107) by
[
∂ f
∂τ

∂ f
∂qζ

]
· D−1 from the left, and reorganizing the equation, one can obtain

δ(∆γ )
[
∂ f
∂τ

∂ f
∂qζ

]
· D−1

·

[
a :

∂g
∂τ

hq

]

= −

[
∂ f
∂τ

∂ f
∂qζ

]
· D−1

·

[
Rτ

Rq

]
−

[
∂ f
∂τ

∂ f
∂qζ

]
·

[
δτ

δqζ
]
. (109)

Notice that[
∂ f
∂τ

∂ f
∂qζ

]
·

[
δτ

δqζ
]

= − f. (110)
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Fig. 24. Comparison of the soil bubble height and width between the results of numerical simulation and that of the Centrifuge test.

One can then solve the Newton–Raphson iteration increment for the time increment of the plastic multiplier as

δ(∆γ ) =

f −

[
∂ f
∂τ

∂ f
∂qζ

]
· D−1

·

[
Rτ

Rq

]
[
∂ f
∂τ

∂ f
∂qζ

]
· D−1 ·

⎡⎣a :
∂g
∂τ

hq

⎤⎦ . (111)

By substituting Eq. (111) back into Eq. (107), one can obtain the update for the stress and ISVs as follows,[
δτ

δqζ
]

= −D ·

⎡⎣Rτ
+ δ(∆γ )a :

∂g
∂τ

Rq
+ δ(∆γ )hq

⎤⎦ . (112)

Appendix B. Experimental validation of the Arenisca model

The Arenisca soil model has been tested in various high strain rate shock wave loading conditions e.g. [24,44,46].
In this Appendix, we present the results of a Peridynamics numerical simulation of a centrifuge characterization of
soil ejecta kinematics and crater morphology by using the state-based Peridynamics with the Arenisca model, hoping
to validate the Peridynamics modeling by the centrifuge test results on dynamic soil responses under blast loading.
A schematic illustration of the experiment setup layout for the soil blasts experiment is shown in Fig. 22, which is
taken from [57], and a detailed description on the experiment setup can be also found in [57]. The dimension of the
rectangular steel container is 1.2 m by 1.0 m by 0.61 m. The test makes use of a 1 g C4 charge, under a 5.1 cm DOB
(Depth of Burial) overburden, and it is detonated at 1g level. The soil is modeled by using the Arenisca geomechanics
model with all the material parameters listed in Table 2. The whole system is discretized into 2,954,902 particles.
Time sequences of the explosion process is provided in Fig. 23. The evolution of the soil bubble shapes during the
explosion process for both the numerical simulation and the corresponding experiments are shown in Fig. 24. One can
see that the numerical and experiment curves have some margins within 30%–40% range, however they have shown
similar trends. In Fig. 23(g) (h), and (i), one can clearly see the crater shape after the explosion, which is compared
well with experiment results.
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