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Abstract In thiswork,we extend themultiscale cohe-
sive zone model (MCZM) (Zeng and Li in
ComputMethodsApplMechEng199:547–556, 2010),
in which interatomic potential is embedded into con-
stitutive relation to express cohesive law in fracture
process zone, to include the hierarchical Cauchy–Born
rule in the process zone and to simulate three dimen-
sional fracture in silicon thin films. The model has
been applied to simulate fracture stress and fracture
toughness of single-crystal silicon thin film by using
the Tersoff potential. In this study, a new approach
has been developed to capture inhomogeneous defor-
mation inside the cohesive zone. For this purpose, we
introduce higher order Cauchy–Born rules to construct
constitutive relations for corresponding higher order
process zone elements, and we introduce a sigmoidal
function supported bubblemode in finite element shape
function of those higher order cohesive zone elements
to capture the nonlinear inhomogeneous deformation
inside the cohesive zone elements. Benchmark tests
with simple 3Dmodels have confirmed that the present
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method can predict the fracture toughness of silicon
thin films. Interestingly, this is accomplished without
increasing of computational cost, because the present
model does not require quadratic elements to repre-
sent heterogeneous deformation, which is the inherent
weakness of the previous MCZM model. Quantitative
comparisons with experimental results are performed
by computing crack propagation in non-notched and
initially notched silicon thin films, and it is found that
our model can reproduce essential material properties,
such as Young’s modulus, fracture stress, and fracture
toughness of single-crystal silicon thin films.

Keywords Cohesive zone model · Crack · Fracture
toughness · Multiscale simulation · Silicon thin film

1 Introduction

For brittle materials, such as glasses, ceramics and
semiconductor materials, crack initiation and propa-
gation are critical problems for their practical appli-
cations. To avoid such crucial issue, material com-
positions are often modified in both atomistic and
mesoscopic levels to improve their fracture toughness.
For instance, higher strength glass can be attained by
adding small amount of raw materials such as sodium
carbonate (soda), lime, dolomite, silicon dioxide (sil-
ica), aluminium oxide (alumina), etc., to make the
commonly-used soda-lime silicate glass (Shegal and
Ito 1998), which will have far more improved frac-
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ture toughness. Fracture resistance of ceramics can be
controlled by adding small amount quantities of other
components (Terao et al. 2002) or particles (Tamai et al.
2006). Recently, Demetriou et al. (2010) demonstrated
that metallic glass of palladium alloy can attain compa-
rable fracture toughness to the toughest materials that
have known owing to its enhanced resistance to the
share-band sliding process by adding a specific com-
position. In addition, it is well known that controlled
stress distribution in depth direction, namely tensile
and compressive stress layers, makes materials pos-
sessing higher resistance to impacts and collisions. In
glass industry, these manufacture techniques have been
applied to physically and chemically tempered glasses,
and it makes glasses more versatile materials in a wide
range of applications (McMeeking and Evans 1982;
Varshneya 2010; Karlsson et al. 2010; Koike et al.
2012).

Computational simulations can be both helpful and
insightful to understand the physical process of frac-
ture and damage, which can help us find the optimal
and ultimate modification to the brittle materials and
thus accelerate the design andmanufacture process. Ab
initio and classical molecular dynamics methods pro-
vide powerful methods to study fracture by capturing
the atomistic bond breakage process in crack tip from
atomistic viewpoint (Swiler et al. 1995; Li et al. 2014;
Sunyk and Steinmann 2003; Buehler et al. 2006), there-
fore these methods are the most appropriate, when one
needs to optimize atomistic microstructure and com-
position of materials. However, the present computer
and computation technology do not have the resource
to attempt such calculations at macroscale. For this rea-
son, multiscale methods, which are abound in ingenu-
ity, have been extensively studied to overcome the large
scale gaps in both space and time (Abraham et al. 2000;
Tadmor and Miller 2011).

Contrarily, although conventional finite element
methods (FEM) are not capable of simulating dis-
continuity of crack propagation, several innovative
technologies based on continuum models have been
developed to simulate fracture in recent decades. The
eXtended FEM (XFEM) allows us to apply FEM to
simulate crack propagation owing to its local enrich-
ment functions, which does not require remeshing
during the simulation (Belytschko and Black 1999;
Belytschko et al. 2001). Peridynamics is another
emerging method, which employs a nonlocal spatial
integral equations to model the discontinuous phenom-

ena in non-local media (Siling 2000; Siling et al. 2007;
Madenci and Oterkus 2014).

A relatively more established approach to model
fracture is the so-called Cohesive Zone Model (CZM)
(Shet and Chandra 2002; Volokh 2004) that assumes
the presence of a zero-thickness fracture process zone
between elements. It enables us to simulate fragmen-
tation of materials and delamination of adhesions by
using the empirical traction-separation relations for the
process zone. Besides of its empirical cohesive law,
the conventional CZM process zone has zero thick-
ness, which limits its ability to simulate mixed mode
fracture, and its empirical cohesive law is always in-
consistentwith the bulkmaterialmechanical responses.
To fundamentally resolve these issues, we have devel-
oped the Multiscale Cohesive Zone Model (MCZM),
which employs atomistic based information to derive
the cohesive law, in order to simulate crack propagation
with atomistic resolution without any ad-hoc assump-
tions (Liu et al. 2008; Zeng and Li 2010; He and Li
2012; Qian and Li 2010; Liu and Li 2012; Li et al.
2012; Zeng and Li 2012; Fan et al. 2013; Fan and Li
2015). In this method, the cohesive zone between two
bulk elements is modeled as a significantly thin ele-
ment, and the relation between stress and strain is eval-
uated by using interatomic potential functions with an
unit cell composed of multiple atoms for both cohesive
zone (CZ) and bulk elements. Thereby, it is possible to
model intrinsic weakness of CZ due to existences of,
for instance, defects or mismatch of crystal structure
at grain boundary by assuming an interface depletion
potential (Zeng and Li 2010; Qian and Li 2010) or
higher order deformation in CZ (Fan et al. 2013; Fan
and Li 2015).

In this study, we will discuss how to extend the
MCZM to three-dimensional calculations for practi-
cal applications of the real materials, because previ-
ous works have mainly focused on theoretical con-
struction of the MCZM and 2D simulations with rel-
atively simple potential functions. In this work, we
select crystal silicon as a model material, because it is
the basic functionalmaterial for semiconductor devices
and extensively used in micro-electromechanical sys-
tem (MEMS), such as various integrated circuits,
microscale sensors, actuators, reactors and so on
(Bogue 2007; Jensen 1999). In recent years, we have
seen further developments in various sophisticated
MEMS structure in order to continuously extending its
application range, increasing its efficiency, and con-
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Fig. 1 Concepts of
hierarchical multiscale
cohesive zone model

suming less power and materials, which put further
requirements and demands on materials strength and
fracture toughness. Since the small material tough-
ness of silicon is crucial for MEMS design, vigorous
efforts have been made to measure silicon’s mechan-
ical properties, such as Young’s modulus and frac-
ture toughness, corresponding to specific microscale
structures experimentally e.g. Boyd et al. (2013), Li
et al. (2005), Fitzgerald et al. (2000), Nakao et al.
(2008), Sundararajan and Bhushan (2002), Chasio-
tis et al. (2006), Ando et al. (2005). In the present
study, we would like to take a multiscale computa-
tional approach to exam the small scale silicon frac-
ture toughness by considering the interatomic inter-
action. To do so, we employ Tersoff potential that
considers bond order to represent three-body interac-
tion (Tersoff 1988a, b). Because the Tersoff potential
has been widely used in modeling of various impor-
tant brittle materials in MEMS, such as silicon (Ter-
soff 1988b), silicon carbide (Tersoff 1989), silicon
nitride (de Brito Mota et al. 1998) and silica (Munetoh
et al. 2007), the implementation of the Tersoff poten-
tial inMCZManalysis will enhance applicability of the
method.

The outline of the paper is as follows: Sect. 2
describes the finite element framework of the MCZM,
and proposes definition of CZ element with bubble
mode for 3D model. Then, we shall derive equations
including the second order stress tensor to implement
the Tersoff three-body potential to the MCZM for
single-crystal silicon. Sect. 3 demonstrates usefulness
of the bubble mode by using relatively simple 3Dmod-
els, and shows numerical results for Young’s modu-

lus and the fracture stress by using the Tersoff poten-
tial. After illustrating the main concepts, detailed sim-
ulation and quantitative comparison with experiments
of fracture toughness measurements for thin single-
crystal silicon film is performed in Sect. 4. Finally,
some concluding remarks are given in Sect. 5. Some
detailed derivatives and formulations are provided in
“Appendix”.

2 Multiscale cohesive zone model (MCZM) and its
FEM formulation

We start by reviewing the multiscale cohesive zone
model and formulating the finite element formulation
of the multiscale cohesive zone model (MCZM).

2.1 Hierarchical Cauchy–Born rule based MCZM

In theMCZM, the entire domain of the specimen is dis-
cretized by a number of bulk elements as the usual finite
element (FEM) discretization, and the cohesion zone
is represented by a network of cohesive zone elements
among bulk elements, see Fig. 1. However, unlike con-
ventional cohesive zone model, the cohesive zone (CZ)
or the process zone in MCZM is represented by an ele-
ment with extremely thin but finite thickness. In this
work, since the tetrahedral element is utilized for the
bulk element, the cohesive zone element is represented
by a triangular-shaped prism element which shares two
triangular facets of the two adjacent tetrahedral (bulk)
elements as shown in Fig. 2.
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Fig. 2 Wedge shape cohesive zone element with two tetrahedral
bulk elements

Another important characteristic of MCZM is that
the strain-stress relation is derived based on the
Cauchy–Born (CB) rule that is evaluated by deforma-
tion of an unit cell, which is embedded in each quadra-
ture point in both bulk and CZ elements.

The key feature of the so-called hierarchical MCZM
is that the different order of the Cauchy–Born rule is
applied to different order of the cohesive zones. We
denote the bulk element as the zero-th order cohesive
zone, the interphase element between two bulk ele-
ments as the first order cohesive zone, and void among
the multiple bulk elements and interphase elements as
the third order or even fourth order cohesive zone ele-
ments [see Li et al. (2014) for details].

Consider the finite deformation of a crystalline lat-
tice. We may be able to express any deformed position
vector in the current configuration by its undeformed
image in the referential configuration through Taylor
expansion,

Δx = ∂x
∂X

∣
∣
∣
X=XA

·ΔX+ 1

2!
∂2x
∂X2

∣
∣
∣
X=XA

: ΔX ⊗ ΔX

+ 1

3!
∂3x
∂X3

∣
∣
∣
X=XA

...ΔX ⊗ ΔX ⊗ ΔX + · · · (1)

or in a more common notation,

Δx = FA · ΔX + 1

2!GA : ΔX ⊗ ΔX

+ 1

3!HA
...ΔX ⊗ ΔX ⊗ ΔX + · · · (2)

where

FA := ∂x
∂X

∣
∣
∣
X=XA

is the deformation gradient, and

GA := ∂2x
∂X2

∣
∣
∣
X=XA

and HA := ∂3x
∂X3

∣
∣
∣
X=XA

are the second and the third gradient of F.
The above expression is often referred to as the

higher order Cauchy–Born rule e.g. Sunyk and Stein-
mann (2003). The so-called hierarchical MCZM is that
it uses the first order Cauchy–Born rule,

Δx ≈ FA · ΔX,

to derive the stress-strain relation in the bulk crystal
element, i.e. the zero-th order cohesive zone; and it
uses the second order Cauchy–Born rule,

Δx ≈ FA · ΔX + GA : ΔX ⊗ ΔX,

to derive the stress-strain relation in the first cohesive
zone element, and it uses the third order Cauchy–Born
rule,

Δx ≈ FA · ΔX + GA : ΔX ⊗ ΔX + HA
...ΔX ⊗ ΔX ⊗ ΔX

to derive the constitutive relation in the second order
cohesive zone element; and so on and so forth. In this
work, we restrict our attention to only the bulk element
and the interphase element, i.e. the first order cohesive
zone element.

For single-crystal silicon, it is not a Bravais lattice,
and the unit cell of silicon is composed of a multi-
ple atoms. The silicon lattice structure is that diamond
cubic structure. With considering shape change of the
unit cell associated with each element deformation, we
can evaluate the first Piola-Kirchhoff stress tensor P
and the second order stress tensor Q as derivatives of
strain energy density W computed with Tersoff poten-
tial as shown in 2.4.

2.2 Multiscale finite element formulation of MCZM

Here we briefly derive the Galerkin weak formulation
based on virtual work principle for FEM implementa-
tion. The details can be found in our previous works
(Zeng and Li 2010; He and Li 2012; Qian and Li 2010;
Liu and Li 2012; Li et al. 2012; Zeng and Li 2012; Fan
et al. 2013; Fan and Li 2015). At first, the Lagrangian
of the continuum system is defined as,

L = K −
(

Wint + Wext

)

(3)

whereWext is the external potential energy.Wint andK
are the strain energy of the continuum and total kinetic
energy, respectively, and defined as,
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K =
∫

Ω

1

2
ρu̇ · u̇dV (4)

Wint =
∫

Ω

W (F, G)dV (5)

ρ and u̇ are the mass density and velocity field of the
continuum, respectively.W is the strain energy density
function as functions of strain and strain gradient.

Then, the Hamiltonian principle can be applied to
derive the variational weak formulation,
∫ t1

t0

(

δK − (δW int + δWext )
)

dt = 0, (6)

where
∫ t2

t1
δKdt =

∫ t2

t1

∫

Ω

ρu̇ · δu̇dVdt

= −
∫ t2

t1

∫

Ω

ρü · δudVdt (7)

δW int =
∫

Ω

[∂W

∂F
: δF + ∂W

∂G

...δG
]

dV

=
∫

Ω

[

P : δF + Q
...δG

]

dV (8)

δWext = −
∫

Ω

b · δudV −
∫

δΩt

T̄ · δudS (9)

In Eq. (9), b and T̄ are the body force inside the
bulk media and the traction vector on the surface δΩt ,
respectively. Consequently, the Galerkin weak formu-
lation can be reformulated in terms of element summa-
tion as follows.

neB
A
e=1

{∫

Ωe
B

(

ρ0üh · δu + P : δFh
)

dV

}

+
neC
A
e=1

{∫

Ωe
C

(

P : δFh + Q
...δGh

)

dV

}

=
neB
A
e=1

{∫

Ωe
B

b · δuhdV

}

+
neC
A
e=1

{∫

Ωe
C

b · δuhdV

}

+
neB
A
e=1

{∫

Γt

T̄ · δuhdS

}

(10)

where,Ωe
B andΩe

C are the domains of bulk and CZ ele-
ments;Γt is the traction boundary of the system; neB and
neC are number of bulk and CZ elements, respectively,
and superscript h represents kinetic field correspond-
ing to FEM interpolation field. Note that only the bulk
element is assumed to have constant deformation gra-
dient, while all cohesive elements are assumed to have
up to the second order deformation gradient, i.e. the

first gradient of the deformation gradient, which will
be discussed in details in later sections.

By considering FEM interpolation approximation,
displacement field can be represented by using element
shape function matrix N as follows,

uh(X) =
nnode∑

i=1

Ni (X)di . (11)

where nnode is number of node composing an element,
and d is the nodal displacement vector. According to
Eqs. (10) and (11), the discrete equation of motion for
FEM procedure is expressed as,

Md̈ + f int (d) − fcohe(d) = fext (12)

where, M is the mass matrix. f int , fcohe and fext are
force vectors from bulk elements, CZ elements and
external force, respectively. They are defined as fol-
lows:

M =
neB
A
e=1

∫

Ωe
B

ρ0NeT NedV (13)

f int =
neB
A
e=1

∫

Ωe
B

BeT Pe(d)dV (14)

fext =
neB
A
e=1

{ ∫

Ωe
B

NeT BedV +
∫

∂Γt

NeT T̄edS
}

(15)

fcohe =
nCZ
elem
A
e=1

∫ {

BeT Pe(d) + CeT Qe(d)
}

dV (16)

where, Be and Ce are the element strain-displacement
matrix and the gradient of the strain-displacement
matrix, respectively. The explicit time integration based
Newmark-β method with β = 0 (Belytschko 1983) is
used in nodal velocity and displacement updates.

Figure 3 shows nodes of the triangular prism ele-
ments and the Gauss integration points in the elements.
For thewedge element, we apply the following isopara-
metric shape function with bubble mode, in order to
describe second order deformation adequately. It is of
course possible to employ quadratic elements for both
bulk and CZ elements, however it requires more expen-
sive computation. Instead of doing that, we neverthe-
less add only one bubble mode in the center of CZ
element to minimize increasing computational cost for
the occasion to applyMCZMtomore complex or amor-
phous materials. The complete set of shape functions
are,
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Fig. 3 Six nodes of isoparametric triangular prism element and
a bubble node. Red circle is the point of a bubble node, and the
cross indicates six Gauss integration points; (1/6, 1/6, ±1/

√
3),

(1/6, 2/3, ±1/
√
3), (2/3, 1/6, ±1/

√
3)

N1 = 1
2 (1 − ξ − η)(1 − ζ ) − 1

6 N7

N2 = 1
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6 N7

N4 = 1
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6 N7
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⎫
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Shape functions

(17)

Then, according to the shape functions, the first and
second order deformation gradients are expressed as,

F = I + ∂N

∂X
· d = I + B · d (18)

G = ∂2N

∂X ⊗ ∂X
· d = C · d (19)

where

B :=
[
∂N

∂X

]

, and C :=
[

∂2N

∂X ⊗ ∂X

]

.

We note in passing that the bubble mode approach can
be also used for the second order cohesive element,
which is involved with the third order Cauchy–Born
rule; and it needs some cubic order polynomials to sup-
port the second order gradient of the deformation gradi-
entF. In theAppendix,we listed the bubble function for
a complete isoparametric quadratic interpolation func-
tions for a prism element.

The thickness of CZ elements (tCZ ) is defined by
using a representative length (L) associated with area
of the triangular facet (Atri ),

tCZ = pth × L = pth × 2

(
Atri√
3

)1/2

(20)

where the parameter L is length of a side if the trian-
gular facet is assumed as an equilateral triangle. Here,
a scale parameter pth is introduced, which is in a range
from 0.001 to 0.1. The reason why the CZ thickness
depends on the area of facet of the tetrahedron bulk
element is because the thickness of the CZ element
should be small enough compared with the character-
istic length of the bulk element that it is associated to.
Usually, we assume that the thickness of CZ element
is a scale factor multiplying the characteristic length
of the bulk element. On the other hand, if the bulk
element is a regular tetrahedron, meaning that its all
four facets are equilateral triangles, then the character-
istic length of tetrahedron can be associated the area
of the equilateral triangle. At the same time, the scale
parameter should be small enough such that the dis-
crete medium will not have obvious dispersion, which
makes the MCZM mesh close to the physical reality
that it tries to approximate.

Alternative to Eq. (16), the internal cohesive force
can be also evaluated by using integration of parts as
discussed in Fan and Li (2015),
∫

Ω

(P(φ) : δF + Q(φ)
.
.
.δG)dV = −

∫

Ω

(

∇X · (P − ∇XQ)
)

· δxdV

+
∫

∂Ω

(

P − ∇X · Q
)

: (N ⊗ δx)dS +
∫

∂Ω

Q
.
.
.(N ⊗ δF)dS

(21)

where, Ω is domain of CZ element, and N is normal
vector of the facet of CZ element. Observing Eq. (21),
the first term of the right-hand side (RHS) will disap-
pear because it is part of the equation of motion in the
cohesive zone. The second and third terms of RHS are
boundary conditions, and the third term is the boundary
condition for the second order stress tensor, which we
often neglect because of its numerical insignificance.
Note that these boundary conditions are in fact the inter-
face boundary conditions between the bulk crystal ele-
ment and the cohesive zone element.

Byusingdivergence theorem, the second termcanbe
converted to a surface integral on the interface between
the bulk crystal element and the cohesive zone element,
and we can then define a higher order interface traction
vector,
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T = (P − ∇X · Q) · N . (22)

Thus, according to Eqs. (14)–(16) and (22), it is pos-
sible to express interfacial cohesive relation by using
only atomistic potential, instead of using the empir-
ical formulation e.g. Xu and Needleman (1994). By
doing so, we can derive the traction-separation based
onfirst-principlewhileworking in the framework of the
macroscale continuum modeling. Thus the proposed
higher order Cauchy–Born rule basedMCZMprovides
great advantage to examine fracture toughness ofmate-
rials whose experimental data is not available.

2.3 Higher order Cauchy–Born rule in crystal lattices

We now apply the higher order Cauchy–Born rule dis-
cussed in the previous section to crystal lattices in dif-
ferent type of cohesive elements (see Fig. 4).

In this work, we only consider the crystal structure
of silicon, which is a type of diamond cubic, i.e. Fd3m.
It may be viewed as the intrusion of two FCC lattices, α
and β (Fig. 5). Hence, the inner displacements between
two lattices can be defined as a vector v from the first
lattice α to another β (Tadmor et al. 1999; Khoei et al.
2014; Park andKlein 2008;Khoei andDorMohammadi
2012; Tang et al. 2006).

When evaluating stress based the Tersoff Potential,
we only take the nearest four atoms into account to
calculate interactions, the strain energy density and its
derivative can be calculated by the pseudo unit cell
composed of five atoms. The nearest four atoms, which
composed of a tetrahedral structure with the central
atom, all belong to a different FCC lattice unit cell
β from the FCC lattice α to which the center silicon
resides (Fig. 5). If we term the central atom as index
1, and others are from 2 to 5, distances of atoms are
defined as,

r1 j = |r1 j | = |r1 − r j − v| j = 2, 3, ..., 5 (23)

Fig. 4 Illustration of higher order Cauchy–Born rule in crystal
lattices

Fig. 5 Unit cell of silicon crystal diamond cubic. Red and blue
colors indicate atoms belong to two different FCC lattices

r jk = |r jk | = |r j − rk | j, k = 2, 3, ..., 5, and j �= k

(24)

The vector v can be evaluated tominimize strain energy
density as shown in “Appendix”. It had been found that
the optimization of vector v is crucial to figure out the
most stable configuration of atoms at each deformation
(Tadmor et al. 1999).

Because overall non-uniform deformation field can
be interpreted by a set of bulk elements with piece-wise
uniform deformations, we can assume the first order
Cauchy–Born rule to represent deformation of the bulk
element.

ri = FRi (25)

where, Ri is original position of atom i in the unit cell,
and ri is the position after deformation. F is the first
order deformation gradient of each element.

F = ∂x
∂X

(26)

On the other hand,CZ elements that connect the bulk
elements support nonlinear and non-uniform deforma-
tion, and thus higher order deformation gradient should
be taken into account when calculating stress in the CZ
element. Indeed, it has been already confirmed that the
effect of second order deformationwill weaken CZ ele-
ment in 2D model (Fan et al. 2013; Fan and Li 2015).
In this study, we have applied the same technique to
the 3D cohesive zone element by considering the sec-
ond order deformation gradient, where the presence of
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the non-uniform deformation is postulated. Thus, atom
position can be expressed by using the second order
deformation gradient tensor G,

ri = FRi + 1

2
G : (Ri ⊗ Ri ) (27)

G = ∂F
∂X

= ∂2x
∂X ⊗ ∂X

(28)

2.4 Tersoff potential

The strain energy density W can be written as follows,

W = U1

Ω0
= 1

2Ω0

5
∑

j=2

V1 j (29)

where, U1 is the potential energy for the central atom
1, and Ω0 is the volume occupied by an atom in the
initial configuration. V1 j is the Tersoff potential energy
between the central atom 1 and a surrounding atom j
as

V1 j = fC (r1 j )[ fR(r1 j ) + b1 j f A(r1 j )] (30)

In the Tersoff potential, the functions fR , f A are,

fR(r1 j ) = Aexp(−λ1 j r1 j ) (31)

f A(r1 j ) = −Bexp(−μ1 j r1 j ) (32)

and the cut off function fC is defined as follows;

fC (r1 j ) =

⎧

⎪⎨

⎪⎩

1 r1 j ≤ R1 j
1
2 + 1

2 cos
(

π(r1 j−R1 j )

S1 j−R1 j

)

R1 j < r1 j < S1 j
0 r1 j ≥ S1 j

(33)

Note here that, second derivative of the original cutoff
function (33) is discontinuous, it is thus unfavorable to
estimate inner vector v at the transition points r = R1 j

and r = S1 j . To resolve this issue, (Izumi and Sakai
2004) introduced the dumping cutoff function as;

fC (r1 j ) = 1

2
− 1

2
tanh

[π

2

( r1 j − R1 j

S1 j − R1 j

)]

(34)

In this study, we employ the modified cutoff function
of Eq. (34) instead of Eq. (33) without changing para-
meters R1 j and S1 j of the original Tersoff potential.

By taking account three body interaction, the para-
meter b1 j in Eq. (30) will explicitly depend on the loca-
tion of the third atom k as follows,

b1 j =
(

1 + βnζ n
1 j

)−1
2n

(35)

ζ1 j =
5
∑

k �=i, j

fc(r1k)g(θ1 jk) (36)

g(θ1 jk) = 1 + c2

d2
− c2

d2 + (h − cosθ1 jk)2
(37)

cosθ1 jk = r1 jr1k
r1 j r1k

= (r21 j + r21k − r2jk)

2r1 j r1k
(38)

The parameter set of the Tersoff potential used in this
study is adopted from Tersoff’s second paper (Tersoff
1988b), which can reproduce elastic properties of sili-
con more accurately.

According to the expression of the potential energy
density, the first Piola-Kirchhoff stress tensor can be
derived as,

P = ∂W

∂F
= 1

2Ω0

∂

∂F

( 5
∑

j=2

V1 j
)

= 1

2Ω0

5
∑

j=2

(∂V1 j
∂F

+ ∂V1 j
∂v

∂v
∂F

)

. (39)

The inner displacement v can be evaluated byminimiz-
ing of the strain energy density W , i.e.
(∂V1 j

∂v

)

F
= 0 . (40)

This condition is achieved by using Newton-Raphson
method to find the minimum of the strain energy den-
sity, and as a result, the inner displacement vector v
can be obtained. The detailed procedure is presented
and documented in “Appendix”. Finally, we have

P = 1

2Ω0

5
∑

j=2

(∂V1 j
∂F

)

= 1

2Ω0

5
∑

j=2

[∂V1 j
∂r1 j

∂r1 j
∂F

+
5
∑

k=2,k �= j

(∂V1 j
∂r1k

∂r1k
∂F

+ ∂V1 j
∂cosθ1 jk

∂cosθ1 jk
∂F

)]

(41)

where,

∂ri j
∂F

= ∂ri j
∂ri j

∂ri j
∂F

= ri j ⊗ Ri j

ri j
(42)

∂cosθ1 jk
∂F

=
( 1

r1k
− cosθ1 jk

r1 j

)∂r1 j
∂F
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+
( 1

r1 j
− cosθ1 jk

r1k

)∂r1k
∂F

−
( r jk
r1 j r1k

)∂r jk
∂F

(43)

According toEq. (30), the derivative ofV1 j with respect
to distance r is

∂V1 j
∂r1 j

= ∂ fC
∂r1 j

(

fR(r1 j ) + b1 j f A(r1 j )
)

+ fC (r1 j )
(∂ fR(r1 j )

∂r1 j
+ b1 j

∂ f A(r1 j )

∂r1 j

)

(44)

where

∂ fC (r1 j )

∂r1 j
= − π

4(S1 j − R1 j )
cosh

[π(r1 j − R1 j )

2(S1 j − R1 j )

]

(45)
∂ fR(r1 j )

∂r1 j
= −Aλ1 j exp(−λ1 j r1 j ) (46)

∂ f A(r1 j )

∂r1 j
= Bμ1 j exp(−μ1 j r1 j ) . (47)

Similarly we can take derivatives of V1 j with respect
to r1k and θ1 jk to estimate Eq. (41), and they are,

∂V1 j
∂r1k

= fC (r1 j ) f A(r1 j )
[

−1

2
(1 + βnζ n

1 j )
−1
2n −1

]

βnζ n−1
1 j

× ∂ fC (rik)

∂r1k
g(θ1 jk) (48)

∂V1 j
∂cosθ1 jk

= fC (r1 j ) f A(r1 j )
[

−1

2
(1 + βnζ n

1 j )
−1
2n −1

]

βnζ n−1
1 j

× fC (r1k)
2c2(cos θ1 jk − h)

[d2 + (h − cos θ1 jk)2]2 . (49)

2.5 Second order stress tensor

Next, the second order stress tensor Q is defined as the
derivative of strain energy by the gradient of deforma-
tion gradient G, which is a measure of strain gradient
in finite deformation. Analogous to the case of the first
Piola-Kirchhoff stress tensor Eq. (41), the second order
stress is defined as the conjugate variable of the strain
gradient G,

Q = ∂W

∂G
= 1

2Ω0

d

dG

⎛

⎝

5
∑

j=2

V1 j

⎞

⎠

= 1

2Ω0

5
∑

j=2

(
∂V1 j
∂G

+ ∂V1 j
∂v

∂v
∂G

)

= 1

2Ω0

5
∑

j=2

[
∂V1 j
∂r1 j

∂r1 j
∂G

+
5
∑

k=2,k �= j

(
∂V1 j
∂r1k

∂r1k
∂G

+ ∂V1 j
∂cosθ1 jk

∂cosθ1 jk
∂G

)
⎤

⎦

(50)

Here, we again assume that (∂V1 j/∂v)G = 0 withmin-
imizing the strain energy [see Eq. (40)], and, in this
equation, we have

∂ri j
∂G

= ∂ri j
∂ri j

∂ri j
∂G

= ri j ⊗ Ri j ⊗ Ri j

2ri j
(51)

and

∂cosθ1 jk
∂G

= ∂cosθ1 jk
∂r1 j

∂r1 j
∂G

+ ∂cosθ1 jk
∂r1k

∂r1k
∂G

+ ∂cosθ1 jk
∂r jk

∂r jk
∂G

=
( 1

r1k
− cosθ1 jk

r1 j

)∂r1 j
∂G

+
( 1

r1 j
− cosθ1 jk

r1k

)∂r1k
∂G

−
( r jk
r1 j r1k

)∂r jk
∂G

(52)

According to Eq. (50), ∇X · Q is eventually found as
follows,

∇X · Q = 1

2Ω0

5
∑

j=2

[
∂2V1 j
∂r21 j

R1 j ⊗ r2nd1 j +
5
∑

k=2

∂2V1 j
∂r21k

R1k ⊗ r2nd1k

+
{

∂2V1 j
∂cosθ21 jk

1

r1 j

( 1

r1k
− cosθ1 jk

r1 j

)

− ∂V1 j
∂cosθ1 jk

1

r21 j

}

S1 j ⊗ r2nd1 j

+
{

∂2V1 j
∂cosθ21 jk

1

r1k

( 1

r1 j

− cosθ1 jk
r1k

)

− ∂V1 j
∂cosθ1 jk

1

r21k

}

S1k ⊗ r2nd1k

−
{

∂2V1 j
∂cosθ21 jk

1

r1 j r1k

}

S jk ⊗ r2ndjk

+ ∂V1 j
∂cosθ1 jk

1

r1 j

( 1

r1k
− cosθ1 jk

r1 j

)

R1 j ⊗ r2nd1 j

+ ∂V1 j
∂cosθ1 jk

1

r1k

( 1

r1 j
− cosθ1 jk

r1k

)

R1k ⊗ r2nd1k

− ∂V1 j
∂cosθ1 jk

1

r1 j r1k
R jk ⊗ r2ndjk . (53)

The detailed derivative is somewhat involved, and it
can be found in “Appendix”. Here we define,
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r2nd = 1

2
G : (Ri j ⊗ Ri j ) (54)

Samn =
( 1

r1k
− cosθ

r1 j

)ra1 j R
a
1 j

r1 j
ramn

+
( 1

r1 j
− cosθ

r1k

)ra1k R
a
1k

r1k
ramn

−
( r jk
r1 j r1k

)rajk R
a
jk

r jk
ramn . (55)

Moreover the following relations are assumed in the
above equations,

∂2V1 j
∂r21 j

= ∂2 fC (r1 j )

∂r21 j
( fR(r1 j ) + bi j f A(r1 j )) + 2

∂ fC (r1 j )

∂r1 j
(

∂ fR(r1 j )

∂r1 j
+ b1 j

∂ f A(r1 j )

∂r1 j

)

+ fC (r1 j )

(

∂2 fR(r1 j )

∂2r1 j
+ b1 j

∂2 f A(r1 j )

∂r21 j

)

(56)

∂2V1 j
∂r21k

= fC (r1 j ) f A(r1 j )

{
1

2

( 1

2n
+ 1

)

(1 + βnζ n
1 j )

−1
2n −2nβ2nζ 2n−2

1 j

−1

2
(n − 1)(1 + βnζ n

1 j )
−1
2n −1βnζ n−2

1 j

}(∂ fC (r1k)

r1k
g(θ1 jk)

)2

+ fC (r1 j ) f A(r1 j )

{

−1

2
(1 + βnζ n

1 j )
−1
2n −1βnζ n−1

1 j

}

∂2 fC (rik)

∂r21k
g(θ1 jk) (57)

∂2V1 j
∂cosθ21 jk

= fC (r1 j ) f A(r1 j )

{
1

2

( 1

2n
+ 1

)

(1 + βnζ n
1 j )

−1
2n −2nβ2nζ 2n−2

1 j

−1

2
(n − 1)(1 + βnζ n

1 j )
−1
2n −1βnζ n−2

1 j

}
∂ζ1 j

∂cosθ1 jk
∂ζ1 j

∂cosθ1 jk
(58)

∂2 fC (r)

∂r2
= π2

4(S − R)2
sinh

(
π(r − R)

2(S − R)

)

cosh−3
(

π(r − R)

2(S − R)

)

(59)

2.6 Lennard-Jones potential

In order to evaluate the capacity of the proposed
method, we also apply the Lennard-Jones (L-J) poten-
tial as a general benchmark potential to solve fracture
problems, because of its simplicity. The L-J potential
and its derivatives are listed as follows;

V L J = 4ε
{(σ

r

)12 −
(σ

r

)6}

(60)

∂V L J

∂r
= −24ε

r

{

2
(σ

r

)12 −
(σ

r

)6}

(61)

∂2V L J

∂r2
= 24ε

r2

{

26
(σ

r

)12 − 7
(σ

r

)6}

. (62)

Subsequently, we can express stress and higher order
stress and it divergence as,

PL J = 1

2Ω0

N
∑

j=2

∂V L J
1 j

∂r1 j

r1 j ⊗ R1 j

r1 j
(63)

QL J = 1

4Ω0

N
∑

j=2

[
(∂V L J

1 j

∂r1 j

1

r1 j

)

r1 j

⊗R1 j ⊗ R1 j

]

(64)

∇X · QL J = 1

2Ω0

N
∑

j=2

∂2V L J
1 j

∂r21 j
r2nd1 j ⊗ R1 j . (65)

The parameters, σ and ε for silicon atoms, are taken
from Raghunathan et al. (2007), in which the L-J fluid
of SiO2 is studied. For an FCC lattice L-J system, there
are twelve first nearest neighbor atoms that are interact-
ing with the central atom at the equilibrium distance.

3 Model evaluation and verification

3.1 Determining of bubble node

An important technical ingredient of the proposed
method is how to define the position of the bubble
node to represent inhomogeneous deformation in CZ
element (see Fig. 3). Here we assume that the degree
of the inhomogeneity relates to magnitude of defor-
mation. To do that, a sigmoidal function is introduced
to make a correlation between the deformation of CZ
element and bubble node position in ζ direction,

ζbub(t) = 2

1 + exp{−Pnl(|F(t − 1) · N | − 1)} − 1,

(66)

where, ζbub is the normalized coordinate of bubble node
on ζ direction at time t . N is the normal vector of the
CZ element and F(t − 1) is the first order deforma-
tion gradient at previous time step. |F · N | represents
degree of deformation in the direction of cohesive zone
element thickness. If deformation gradientF is unit ten-
sor ζbub is zero, which means ζbub locates in the center
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Fig. 6 Relation between deformation and bubble node coordi-
nation in ζ direction as a function of the parameter Pnl in Eq.
(66)

of CZ element (see Fig. 7). Once we can find ζbub, it
is possible to calculate displacement vector dbub of the
bubble node by assuming that N7 = 0 in Eq. (17).

dbub =
6
∑

i=1

Ni

(

ξ = 1

3
, η = 1

3
, ζ = ζbub(t)

)

di .

(67)

Then, the displacement at the bubble node position
is utilized to estimate deformation gradient F at each
Gauss integration point. To simplify the definition, we
set ξ = 1/3 and η = 1/3. In Eq. (66), a new adjustable
parameter Pnl is introduced. Figure 6 visualizes effect
of Pnl on sensitivity of ζbub as a function of |F·N |. ζbub
changes more steeply with increasing Pnl . Figure 7 is a
schematic drawing of inhomogeneous deformation of
the CZ element associated with ζbub. If ζbub > 0.0, the
CZ element is elongated more at the lower integration
points than upper ones, while larger deformation can be
seen at upper points when ζbub < 0.0. In these cases,

Fig. 8 Gradient of deformation gradient (G333) promoted by
heterogeneous deformation of CZ element, when tilted stretch is
applied to the model composed of two bulk elements (Fig. 9II).
In legend, Pnl in Eq. (66) is displayed

different magnitude of stress is emanated at the Gauss
integration points due to heterogeneous deformation.
Figure 8 shows gradient of deformation gradient G333

promoted in CZ element as a function of deformation
gradient F33. The gradient is enhanced more when the
element is elongated further. The relation can proclaim
a hypothesis that effects of initial defects, flaws or any
other causes of fracture in material would become evi-
dent when material deforms more. It is thus possible
to assume that Eq. (66) associates with weakening of
fracture process zone when the interface is sufficiently
elongated. In addition, we can recognize more hetero-
geneous deformation is generated by larger Pnl even at
small deformation range.

3.2 Lennard-Jones potential with FCC lattice

In order to confirm the postulate that the heteroge-
neous deformation provokes higher fragility of the CZ

Fig. 7 Schematic drawings of inhomogeneous deformation dependent on bubble node position in the CZ element. Circles and crosses
indicate bubble node positions and gauss integration points, respectively
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Fig. 9 Test models. I
Antisymmetric uniaxial and
II tilted stretch of two bulk
elements with a cohesive
zone element. III Cubic
specimen composed of 100
bulk elements with 158
cohesive zone elements

Fig. 10 Effect of bubble node position onweakening of the CZ element by using the L-J potential with FCC lattice. (Left) antisymmetric
uniaxial stretch and (right) tilted stretch of the simplest model composed of two bulk elements. See Fig. 9I, II

element, we employ the simplest model composed
of a couple of bulk elements and a CZ element to
test hypothesis by using the L-J potential in a crys-
tal with FCC lattice. Antisymmetric uniaxial and tilted
stretches are applied to the vertex nodes of the two bulk
elements as boundary conditions (Fig. 9I, II)). As seen
in Fig. 10, the force generated by theCZ element gradu-

ally decreasingwith increasing its deformation for both
cases. The decline is relatively subtle but the differ-
ence is big enough to confine material failure points
within the CZ element due to its weakness in strength
by being compared with that of the bulk element. Fig-
ure 11 shows the effect of second order deformation
to decrease the force of CZ element. In this case only
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Fig. 11 Effect of 2nd order
deformation of force
generated in CZ element by
using L-J potential with
FCC lattice. Tilted stretch of
the simplest model
composed of two bulk
elements are examined

Fig. 12 Stress–strain curve of the cubic specimen with L-J
potential (Fig. 9III)

fractional effect is recognized even when we assume
relative large Pnl . We would discuss the effect by using
larger specimen afterward.

Next, a cubic specimen containing multiple CZ ele-
ments is studied by using L-J potential with applying
uniaxial deformation to vertical direction (Fig. 9III).
Figs. 12 and 13 display strain-stress curve and total
force evoked on the bottom plane of the specimen,
respectively. It is possible to recognize that the elastic
constant decreases with increasing the parameter Pnl ,
and the material gets softening monotonically. These
results lead a conclusion that the parameter Pnl can be
rationalized to the CZ element weakening by inhomo-
geneous deformation as assumed in our definition. If
we consider higher order stress Q associated with sec-
ond order deformation G, more fragile condition can
be presumed as shown in Fig. 14.

Fig. 13 Relation between strain and total force acting on the
bottom face of the cubic specimen by uniaxial stretch with L-J
potential

Fig. 14 Effect of second order deformation on the fracture stress
of the cubic specimen with L-J potential (Fig. 9III). Parenthesis
shows the parameter Pnl in Eq. (66)
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Fig. 15 Strain–stress curve of single-crystal silicon along the
〈100〉 and 〈110〉 directions estimated by Tersoff potential

3.3 Tersoff potential with single-crystal silicon cubic
lattice

In this section, we will show the accuracy of single-
crystal silicon model that employs the Tersoff poten-
tial and diamond cubic lattice (Fig. 5). First, in order to
validate the reproducibility of the modulus of single-
crystal silicon by using the present method, we have
calculated the Young’s modulus (Ey) along the 〈100〉
and 〈110〉 directions by using the simplest model com-
posed of two bulk elements and a CZ element (Fig. 9).
Figure 15 shows relation between strain and stress gen-
erated by symmetric uniaxial stretch. According to the
slope at the initial strain region, Ey of 〈100〉 and 〈110〉

are estimated as 89 and 134GPa, respectively. These
values are relatively smaller than experimental values,
130GPa along the 〈100〉 and 169GPa for 〈110〉 direc-
tion (Hopcroft et al. 2010), however our result is close
enough to molecular dynamics simulation at 300K,
which estimates Young’s modulus along the 〈110〉 is
138GPa (Kang and Cai 2007). It it thus possible to
state that the MCZM using the small unit cell com-
posed of five atoms can reproduce Tersoff’s elastic
modulus.

Next, we evaluated the fracture stress (σ f ) of silicon
in the uniaxial stretch simulation of the cubic speci-
men (Fig. 9III) with varying parameter Pnl . According
to Fig. 16, which displays strain-stress curves along
the 〈100〉 and 〈110〉 directions, it is obvious that σ f

of the cubic specimen decreases with increasing the
parameter Pnl , consistently. Therefore, as we inferred,
material toughness can be reduced by more heteroge-
neous deformation in the CZ. To visualize the trend,
Fig. 17 summarizes the fracture stress as a function of
the parameter Pnl , andwe can find that the estimatedσ f

is from 3.8 to 8.4GPa. This result is reasonably close
to the experimental observations. In Petersen (1982),
σ f of single-crystal silicon is noted as 6.9GPa. Eric-
son andSchweitzl have investigated fracture strength of
single-crystal silicon by using micron-sized cantilever
beams, and reported it is 6.1 ± 0.8GPa (Ericson and
Schweitz 1990). In addition, Li et al. (2005) measured
fracture toughness of single-crystal silicon film with
andwithout initial notch, and reported fracture stress of
the filmwithout notch is dispersed from 3.6 to 6.4 GPa.
One of the possible reasons for such a wide dispersion

Fig. 16 Strain–stress curve of single-crystal silicon along the 〈100〉 and 〈110〉 directions estimated by the Tersoff potential
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Fig. 17 Shift of the fracture stress of single-crystal silicon by
inhomogeneous deformation

Fig. 18 Simulated fracture stress of single-crystal silicon by
considering second order deformation. Parenthesis shows the
parameter Pnl in Eq. (66)

might be initial flaw of the specimen. Analogous to the
case of L-J potential, further fragile condition can be
assumedwith taking second order deformation inCZ as
shown in Fig. 18. Interestingly, the adjustable parame-
ter Pnl enables us to presume more fragile conditions
corresponding to the range experimentally observed.
Therefore we conclude that the MCZM can evaluate
the fracture stress within reasonable accuracy, although
the numerical modeling is not accurate enough. More
detailed computational examples are presented in the
next sectionwith quantitatively comparisonwith exper-
imental data.

It isworth noting here that, as discussed in references
Kang andCai (2007) andHauch et al. (1999),molecular
dynamics simulations that are using three body empir-
ical potentials, such as the Tersoff or the Stillinger–
Weber (S–W) (Stillinger and Weber 1985) potentials,

cannot estimate fracture stress of single-crystal silicon,
because brittle crack propagation does not occur in their
simulations. Hauch et al. (1999) have explained that
the main reason for this may be related to the short
cutoff of these potentials, which induces unreasonable
large attraction force before rupture. As a result, MD
simulation of silicon nanowire can reach to 30% elon-
gated strain before breaking, and its fracture strength
is 26.3GPa (Kang and Cai 2007), which is obviously
larger than the experimental observation. To compen-
sate this shortcoming,Hauch et al. (Hauch et al. (1999))
modified the S–W potential to make the strength of
the angle term twice large. It renders brittle fracture,
howevermelting temperature and theYoung’smodulus
change drastically. Buehler et al. (Buehler et al. (2006))
have shown reactive force field (ReaxFF), which has
been developed based on quantum mechanics, is an
alternative method to capture crack propagation in sili-
con, although it is a more expensive interatomic poten-
tial. Because the MCZM does not calculate bond rap-
ture intrinsically, it allows us to simulate brittle fracture
reasonably, despite of the inevitable drawback of the
Tersoff potential.

4 Numerical simulation of fracture toughness

Since it has confirmed that our model is accurate to
estimate the essential silicon properties, we apply the
method to non-notched and notched microscale sili-
con film specimens to predict fracture toughness of the
thin films, and compare the simulation results with the
experimentally measured fracture toughness (Li et al.
2005; Nakao et al. 2008; Ando et al. 2005; Wong and
Holbrook 1987). In Fig. 19, the dimension of a single-
edge-notched tension specimen is illustrated.

Fig. 19 Size of thin specimen used to calculate the fracture stress
of single-crystal sililcon
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Table 1 Mesh size of 1.0µm notched specimen examined by using the Lennard-Jones potential

Mesh A (1) Mesh A (2) Mesh A (3) Mesh B

Node 2612 9132 52,836 11,664

Bulk element 653 2283 13,209 2916

CZ element 1143 3963 23,866 5192

Total element 1796 6246 37,075 8108

Avg. element vol. (µm3) 38.28 10.95 1.89 8.57

Avg. side length (µm) 4.8 3.1 1.7 2.9

CZ thickness pth (−) 0.02 0.013 0.007 0.02 0.013 0.02 0.01

Avg. CZ thickness (µm) 0.095 0.063 0.035 0.063 0.035 0.035 0.029

Fig. 20 Two types of mesh discretization. (Left) uniform size (right) Finer mesh around notch

4.1 Simulation condition test

At first, we examine sensitivities of mesh patterns,
mesh size, and CZ thickness for fracture stress esti-
mation by using the L-J potential. The notch length
of the specimen was designed as 1.0µm. The detail
of model is summarized in Table 1. We prepared two
types of FEM discretizations: one is composed of rela-
tively uniform size of elements (Type-A), and another
has finer meshes around the notch (Type-B), as drawn
in Fig. 20. For the Type-Amesh, three different density
of meshes were investigated.

Because the thickness of CZ element depends on
the element size according to Eq. (20), we exam-
ined different size of CZ thickness, such as 0.035,

0.063 and 0.095µm in average, by adjusting parame-
ter pth . In this simulation, time interval was set to
1.0 × 10−4 ns, and constant displacement boundary
condition of 5 × 104 m/s was applied to the both side
edges of the specimen. The total integration time until
material fracture was about 300−400 ns. All these test
calculations were carried out by using the first order
Cauchy–Born rule with linear CZ element (Pnl = 0).

The computationally estimated fracture stress σ f is
shown in Table 2, and crack patters are visually illus-
trated in Figs. 21 and 22. According to these results for
Type-A meshes, the fracture pattern and σ f are sensi-
tive to mesh size but not much to CZ element thick-
ness. In the case of the coarse Mesh (A-1), only the
model with the thinnest cohesive zone width shows the
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Table 2 Results of the
calculations of fracture
stress of the noted specimen
(1.0µm) by using thye
Lennard-Jones potential

CZ thickness Fracture stress

pth (−) Avg. (µm) σ f (MPa) Ratio with
Mesh A (3)

Mesh A (1) 0.020 0.095 142 158%

0.013 0.063 129 144%

0.007 0.035 134 149%

Mesh A (2) 0.020 0.063 110 122%

0.011 0.035 100 111%

Mesh A (3) 0.020 0.035 90 –

Mesh B 0.010 0.029 59 66%

Fig. 21 Crack path of the
specimen with 1.0 [µm]
initial notch calculated by
using the Lennard-Jones
potential to check
calculation conditions.
Mesh Type-A. Parenthesis
indicates average thickness
of cohesive zone element

Fig. 22 Crack initiated in
the specimen with 1.0 [µm]
initial notch calculated by
using the Lennard-Jones
potential. Mesh Type-B
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branched crack path that is analogous to the case of
the finer meshes. However, even for the case with the
thinnest cohesive zone width, pth = 0.007, σ f is about
50% larger than that of the finest Mesh (A-3). On the
other hand, Mesh (A-2) can reproduce σ f with only
11% difference from that of the Mesh (A-3), if the
cohesive zone thickness has the same value. Addition-
ally, both cases of two different CZ thickness of Mesh
(A-2) show branched crack paths. Therefore, we find
that Mesh (A-2) is sufficiently appropriate enough to
examine fracture in the notched specimen. Of course,
Mesh (A-3) can demonstrate more realistic crack path
and reliable fracture properties, however, it may be
too expensive in simulation by using with the Tersoff
potential. This is because that the potential requires
three body interaction, and in each time step we need
to optimize internal displacement vector v by using the
Newton-Raphson iteration method.

In contrary, the Type-Bmesh shows obviously lower
toughness being compared with that of Type-A. Finer
mesh around the notchmight be able to reproducemore
precise stress distribution, and this may be attributed to
crack initiation at smaller strain. We therefore exam-
ine Type-A(2) mesh and Mesh B to measure fracture
toughness of the single-crystal silicon with the Tersoff
potential.

4.2 Fracture toughness of single-crystal silicon

For the single-crystal silicon simulation, the simulation
time interval is set to 1.0×10−4 ns, and uniaxial stretch
is at the rate 3 × 105 m/s in horizontal direction was
applied. The crystal orientation in stretched direction
is 〈110〉.

First, non-notched specimen was examined with a
model discretized by comparable mesh size with Mesh
A(2) for 1.0µm notched specimen. The detail of model
and simulation results are elaborated in Table 3. The
non-notched specimen was cracked at 5.7 and 4.9GPa
stress for Pnl = 0.0 (liner) and 9.0, respectively. These
results are analogous to the case of small cubic speci-
men which is investigated in Sect. 3.3. Fracture stress
of single-crystal silicon is reported as 6.9 [see Petersen
(1982)] and 6.1 ± 0.8GPa [see Ericson and Schweitz
(1990)]. Li et al. Li et al. (2005) measured fracture
stress of the micron size silicon film and it is from
3.0 to 6.4GPa. It is therefore reasonable to say that
the proposed method can predict the fracture stress by
adjusting the empirical parameter Pnl in a reasonable

Table 3 Model and simulation results of fracture stress for non-
notched specimen of single-crystal silicon by using the Tersoff
potential

Mesh model

Node 9348

Bulk element 2337

CZ element 4074

Total element 6411

CZ thickness pth(−) 0.011

Simulation result of the fracture stress σ f (GPa)

Pnl = 0.0 (linear) 5.7

Pnl = 9.0 4.9

range associated with experimental error for the testing
specimen.

Next, a numerical simulation of crack growth in a
specimenwith a notch was performed, in which the ini-
tial notch length is 1.0μm. For the single-edge-notched
specimen, fracture toughness KIC is evaluated bymea-
suring the fracture stress σ f according to the following
equation (Nakao et al. 2008),

K1C = Yσ f
√

πa, (68)

where a is the notch length, and the parameter Y is
calculated based the following formula,

Y = 1.12 − 0.231λ + 10.55λ2 − 21.72λ3+30.39λ4,

(69)

where, λ is ratio of notch length and specimen width
as λ = a/W . Experimentally observed KIC of single-
crystal silicon is in the range of 0.82–1.0MPa m1/2 as
summarized in Wong and Holbrook (1987). For the
micron scale single-edge-notched specimen, slightly
higher values are reported, e.g. 1.28MPa m1/2 (Nakao
et al. 2008), 1.13–1.74MPa m1/2 (Ando et al. 2005), by
loading to 〈110〉 direction. The range of these experi-
mentally estimated KIC corresponds to fracture stress
from 0.41 to 0.88GPa, according to Eq. (68). Fracture
stress of the 1.0µm single-edge-notched 100µmwidth
specimenwas also reported as 0.85GPa (Li et al. 2005).

The simulated fracture stress of the single-notched
specimen are listed in Table 4. In the case of Mesh
A(2), assuming uniform deformation in CZ element
(Pnl = 0), crack cannot be initiated from the notch
until 3.0GPa tensile stress is reached, and eventually
the specimenwas broken from the edge. Applying non-
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Table 4 Calculated yield
toughness of 1.0µm
notched single-crystal
silicon specimen by using
Tersoff potential. Loading
direction is 〈110〉.
Parenthesis indicates order
of Cauchy–Born rule
considered

CZ thickness Pnl for CZ Fracture stress Fracture toughness

pth (−) Avg. (µm) Pnl (−) σy (GPa) KIC (MPa m1/2)

Mesh A (2) 0.011 0.035 0.0 (1st) 3.0 6.0

9.0 (1st) 2.7 5.4

Mesh B 0.010 0.029 0.0 (1st) 2.3 4.6

12.0 (1st) 2.1 4.2

36.0 (1st) 1.5 3.0

36.0 (2nd) 1.4 2.8

60.0 (1st) 1.5 3.0

60.0 (2nd) 1.2 2.4

linear deformation for CZ with Pnl = 9.0 makes the
specimen weaker only slightly and the specimen is torn
from the notch at 2.7GPa. The fracture stress is still not
comparable to the experimental data. It is thus obvious,
Mesh A(2), which equally discretizes the specimen,
overestimates the fracture toughness.

Even for Mesh (B), which is discretized with finer
mesh around the notch, the estimated fracture stress is
much higher than experimental data until Pnl = 36.0.
We need to set a very high heterogeneous deformation
in CZwith Pnl = 60.0 to obtain the second order stress
effect on the fracture stress that conforms to experi-
mentally measured fracture stress of the notched spec-
imen. The experimental fracture stress corresponds to
about 1.0% strain. Therefore, the presumable reason
would be because crack should be initiated at such
extremely small deformation. Since our method asso-
ciates nonuniform deformation in CZwith deformation
tensor F, heterogeneous deformation can be provoked
at such small deformation only by sufficiently large Pnl .

According to these results, it is reasonable to con-
clude that we can useMCZMwith the Tersoff potential
to predict the fracture stress quantitatively in compari-
son with experimental observations, although the para-
meter Pnl that represents nonuniform deformation in
CZ, should be adjusted to the system studied.

5 Conclusions

In order to simulate fracture and crack propagation in
single-crystal silicon films, we modified and extended
the Multiscale Cohesive Zone Method (MCZM) to
three-dimensional case for crystals with non-Bravais
lattice. The multiscale constitutive models in both bulk
crystal as well as fracture process zone are derived

based on the Cauchy–Born rules from the tetrahedral
Si–Si4 lattice unit cell that is embedded at every quadra-
ture points.

In this study, instead of using the so-called depletion
potential, we adopt a higher order Cauchy–Born rule
approach to take account of strain gradient effect in con-
stitutive modeling. The key for a successful simulation
of fracture is that we use different order of the Cauchy–
Born rules in the bulk element and the cohesive element
respectively, which provides a natural failure selection
as the failure thresholds in different elements will be
different if the order of the Cauchy–Born rule used is
different. Since material failure, or fracture in this case,
often occurs first at where the deformation is inhomo-
geneous, therefore the higher order Cauchy–Born rule
governed cohesive zone will always fracture first and
it hence forms a crack path.

In doing so, we utilize the wedge element with an
bubble node to capture the non-uniform deformation
in cohesive elements, which represents inherent weak-
ness of cohesive zone. For this purpose, we conceived
a new numerical scheme to make the inhomogeneous
deformation at each gauss integration points by using
only first order deformation tensor F. In addition, we
have introduced a sigmoidal function to make relation
between degree of inhomogeneous deformation and
bubble node position.

Moreover, the single-crystal Si–Si4 is not a Bravais
lattice, and it has an internal vector to form a diamond
cubic lattice. We employed the modified Cauchy–
Born rule for the non-Bravais lattice in deriving the
macroscale stress-strain relationwith theTersoff poten-
tial for the single-crystal Si–Si4 lattices. Note that this
modified Cauchy–Born is implemented in both the first
order Cauchy–Born rule as well as the second order
Cauchy–Born rule.
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Numerical examinations by using relatively small
scale models with the Lennard-Jones and the Tersoff
potentials have shown that it is possible to reduce the
toughness of CZ element compared with bulk element
by using only an empirical parameter to define the posi-
tion of the bubble node in CZ element. This assump-
tion maintains linear deformation when the deforma-
tion of CZ element is small enough, while heterogene-
ity degree increases with increasing the CZ deforma-
tion. If we apply the MCZM to more complex crystals
or amorphous materials, more atoms in a unit cell are
necessary to calculate stress-strain relation. By com-
paring with Molecular Dynamics simulation, MCZM
is a much economical option, because a Molecular
Dynamics simulation system of 100µm × 50µm ×
5µm film would contain more than trillions of atoms
(>1013), with even today’s fastest computer, it would
take a long time and considerable resource to per-
form such simulations. For instance, it takes over a day
to simulate stretch of only 13 nm × 13 nm × 13 nm
size of single-crystal silicon by using the sophisti-
cated MD code, LAMMPS (Plimpton 1995), with
eight cores parallel computing. On the other hand,
only about an hour is sufficient to compute the frac-
ture stress of single-crystal silicon with cubic speci-
men (Fig. 9III) by using a single core desktop com-
puter. It is thus prohibitively expensive to simulate
material fracture for such large and complex systems
with atomistic resolution. Therefore, the method pro-
posed in this study is useful to contain increasing of
computational cost of MD simulation, and to offer
a simple simulation model for the practical applica-
tions.

After examining sensitivities of mesh size and CZ
element thickness, we demonstrated 3D simulations
of fracture of non-notched and notched thin single-
crystal silicon films. The simulated fracture stress of
non-notched specimen was 5.7 GPa, and it quanti-
tatively agrees with the experimental data. In addi-
tion, it was demonstrated that more general condi-
tion may be assumed if non-uniform deformation was
assigned by an adjustable parameter Pnl . In the case of
1.0µmsingle-edge-notched specimen, relatively larger
Pnl was indispensable to reproduce experimental frac-
ture toughness. This is because crack is initiated at
small deformation in the notched specimen.
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Appendix

Appendix 1: Optimization of inner vector of diamond
cubic lattice

First, we document the procedure on how to find the
inner vector v position based on strain energy mini-
mization.

In order to satisfyEq. (40),weuseNewton’smethod,

vi+1 = vi + δv (70)

δv =
(∂2V

∂v2

)−1(∂V

∂v

)

. (71)

Then, similar to Eq. (41), one may find that

∂V

∂v
= 1

2Ω0

5
∑

j=2

(∂V1 j
∂v

)

= 1

2Ω0

5
∑

j=2

[∂V1 j
∂r1 j

∂r1 j
∂v

+
5
∑

k=2, j �=k

(∂V1 j
∂r1k

∂r1k
∂v

+ ∂V1 j
∂cosθ1 jk

∂cosθ1 jk
∂v

)]

(72)

where

∂cosθ1 jk
∂v

= ∂r1 j
∂v

∂cosθ1 jk
∂r1 j

+ ∂r1k
∂v

∂cosθ1 jk
∂r1k

+ ∂r jk
∂v

∂cosθ1 jk
∂r jk

=
( 1

r1k
− cosθ1 jk

r1 j

)∂r1 j
∂v

+
( 1

r1 j
− cosθ1 jk

r1k

)∂r1k
∂v

−
( r jk
r1 j ri1k

)∂r jk
∂v

(73)

and

∂ri j
∂v

=
⎧

⎨

⎩

∂r1 j
∂r1 j

∂r1 j
∂v

= −r1 j
r1 j

i, j ∈ α, or i, j ∈ β

0 otherwise

(74)

For the second derivative,

∂2V

∂v2
= 1

2Ω0

5
∑

j=2

(∂2V1 j
∂v2

)
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= 1

2Ω0

5
∑

j=2

[
∂2V1 j
∂r21 j

∂r1 j
∂v

∂r1 j
∂v

+ ∂V1 j
∂r1 j

∂2r1 j
∂v2

+
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1 j
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(75)

∂2cosθ1 jk
∂v2

=
( 1

r1k
− cosθ1 jk

r1 j

) ∂2r1 j
∂v2

+
( 1

r1 j
− cosθ1 jk

r1k

) ∂2r1k
∂v2

+
(

− 1

r21k

∂r1k
∂v
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∂v

1

r1 j
+ cosθ1 jk

r21 j

∂r1 j
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) ∂r1 j
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+
(

− 1

r21 j

∂r1 j
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− ∂cosθ1 jk
∂v

1

r1k
+ cosθ1 jk

r21k

∂r1k
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(76)

where the following relation,

∂2ri j
∂v2

=
⎧

⎨

⎩

∂

∂v

(

− ri j
ri j

)

= 1

r1 j

(

I − ri j ri j
r2i j

)

, i, j ∈ α or , i, j ∈ β

0, otherwise

(77)

and Eqs. (56)–(59) are applied.

Appendix 2: Divergence of the second order stress ten-
sor

Second, we show how to find the divergence of the
second order stress tensor based on the higher Cauchy–
Born rule for the Tersoff potential.
According to Eqs. (50)–(53), we have,

∇X · Q = 1

2Ω0

5
∑

j=2

[

∇X

(∂V1 j
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1
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and based on the above equation, we can write the fol-
lowing expressions with abbreviating index,
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Here, r2nd is the additional term in atom coordination
[see Eq. (27)] owing to second order deformation. And,
an example for the angle term is,

∇X
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where ∂cosθ/∂F has shown in Eq. (43), and
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Appendix 3: Second order shape functionwith a bubble
mode

Second order shape function for wedge element with a
bubble node in the center of element. Node positions
are illustrated in Fig. 23.
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Fig. 23 Fifteen nodes of isoparametric triangular prism element
and a bubble node. Red circle is the point of a bubble node

N2 = 1

2
ξ(2ξ − ζ − 2)(1 − ζ ) − 1

15
N16

N3 = 1

2
η(2ξ − ζ − 2)(1 − ζ ) − 1

15
N16

N4 = −1

2
(1 − ξ − η)(2ξ + 2η − ζ )(1 + ζ ) − 1

15
N16

N5 = 1

2
ξ(2ξ + ζ − 2)(1 + ζ ) − 1

15
N16

N6 = 1

2
η(2η + ζ − 2)(1 + ζ ) − 1

15
N16

N7 = 2ξ(1 − ξ − η)(1 − ζ ) − 1

15
N16

N8 = 2ξη(1 − ζ ) − 1

15
N16

N9 = 2η(1 − ξ − η)(1 − ζ ) − 1

15
N16

N10 = 2ξ(1 − ξ − η)(1 + ζ ) − 1

15
N16

N11 = 2ξη(1 + ζ ) − 1

15
N16

N12 = 2η(1 − ξ − η)(1 + ζ ) − 1

15
N16

N13 = (1 − ξ − η)(1 − ζ 2) − 1

15
N16

N14 = ξ(1 − ζ 2) − 1

15
N16

N15 = η(1 − ζ 2) − 1

15
N16

N16 = 19683

4096
ξη(1 − ξ − η)(2ξ + 2η

+ζ )(2ξ − ζ − 2)(2η − ζ − 2)

(2ξ + 2η − ζ )

(2ξ + ζ − 2)(2η + ζ − 2)(1 − ζ 2) (82)

References

Abraham FF, Bernstein N, Broughton JQ, Hess D (2000)
Dynamic fracture of silicon: concurrent simulation of quan-
tum electrons, classical atoms, and the continuum solid.
MRS Bull 25:27–32

Ando T, Li X, Nakao S, Kasai T, Tanaka H, Shikida M, Sato K
(2005)Fracture toughnessmeasurement of thin-film silicon.
Fatigue Fract Eng Mater Struct 28:687–694

Belytschko T (1983) An overview of semidiscretization and time
integration procedures. Computational methods for tran-
sient analysis (A 84-29160 12-64). North Holland, Ams-
terdam, pp 1–65

Belytschko T, Black T (1999) Elastic crack growth in finite ele-
ments with minimal remeshing. Int J Numer Methods Eng
45:601–620

Belytschko T, Möes N, Usui S, Parimi C (2001) Arbitrary dis-
continuities in finite elements. Int J Numer Methods Eng
50:993–1013

Bogue R (2007) MEMS sensors: past, present and future. Sens
Rev 27:7–13

Boyd EJ, Li L, Blue R, Uttamchandani D (2013) Measurement
of the temperature coefficient of Young’s modulus of single
crystal silicon and 3C silicon carbide below 273 K using
micro-cantilevers. Sens Actuators A Phys 198:75–80

Buehler MJ, van Duin ACT, Goddard WA III (2006) Multipar-
adigm modeling of dynamical crack propagation in silicon
using a reactive force field. Phys Rev Lett 96:095505

Chasiotis I, Cho SW, Jonnalagadda K (2006) Fracture toughness
and subcritical crack growth in polycrystalline silicon. J
Appl Mech 73:714–722

de Brito Mota F, Justo JF, Fazzio A (1998) Structural properties
of amorphous silicon nitride. Phys Rev B 58:8323

Demetriou MD, Launey ME, Garrett G, Schramm JP, Hofmann
DC, Johnson WL, Ritchie RO (2010) A damage-tolerant
glass. Nat Mate 10:123–128

Ericson F, Schweitz JÅ (1990) Micromechanical fracture
strength of silicon. J Appl Phys 68:5840

Fan H, Li S (2015) Multiscale cohesive zone modeling of crack
propagations in polycrystalline solids.GAMMMitteilungen
38:268–284

Fan H, Shi C, Li S (2013) Application of multiscale process
zone model to simulate fracture in polycrystalline solids. J
Multiscale Model 5:1350015

Fitzgerald AM, Dauskardt RH, Kenny TW (2000) Fracture
toughness and crack growth phenomena of plasma-etched
single crystal silicon. Sens Actuators A Phys 83:194–199

Hauch JA, Holland D,MarderMP, Swinney HL (1999) Dynamic
fracture in single crystal silicon. Phys Rev Lett 82:3823–
3826

He M, Li S (2012) An embedded atom hyperelastic constitu-
tive model and multiscale cohesive finite element method.
Comput Mech 49:337–355

Hopcroft MA, Nix WD, Kenny TW (2010) What is the Young’s
modulus of silicon? J Microelectromech Syst 19:229–238

Izumi S, Sakai S (2004) Internal displacement and elastic proper-
ties of the silicon Tersoff potential. JSME Int J Ser A Solid
Mech Mater Eng 47:54–61

Jensen KF (1999) Microchemical systems: status, challenges,
and opportunities. AIChE J 45:2051–2054

123



Higher order Cauchy–Born rule based multiscale cohesive zone model 181

Kang K, Cai W (2007) Brittle and ductile fracture of semicon-
ductor nanowires-molecular dynamics simulations. Philos
Mag 87:2169–2189

Karlsson S, Jonson B, Stålhandske C (2010) The technology of
chemical glass strengthening–a review. Glass Technol Eur
J Glass Sci Technol Part A 51:41–54

Khoei AR, DorMohammadi H (2012) Validity and size-
dependencyofCauchy–BornhypothesiswithTersoff poten-
tial in silicon nano-structures. Comput Mater Sci 63:168–
177

Khoei AR, DorMohammadi H, Aramoon A (2014) A
temperature-related boundary Cauchy–Born method for
multi-scale modeling of silicon nano-structures. Phys Lett
A 378:551–560

Koike A, Akiba S, Sakagami T, Hayashi K, Ito S (2012) Dif-
ference of cracking behavior due to Vickers indentation
between physically and chemically tempered glasses. J Non
Cryst Solids 358:3438–3444

Li X, Kasai T, Nakao S, Tanaka H, Ando T, Shikida M, Sato K
(2005) Measurement for fracture toughness of single crys-
tal silicon film with tensile test. Sens Actuators A Phys
119:229235

Li S, Zeng X, Ren B, Qian J, Zhana J, Jha AK (2012)
An atomistic-based interphase zone model for crystalline
solids. Comput Methods Appl Mech Eng 229:87–109

Li S,RenB,MinakiH (2014)Multiscale crystal defect dynamics:
a dual-lattice process zone model. Philos Mag 94:1414–
1450. doi:10.1080/14786435.2014.887859

LiuL,Li S (2012)Afinite temperaturemultiscale interphase zone
model and simulations of fracture. J Eng Mater Technol
134:31014

Liu X, Li S, Sheng N (2008) A cohesive finite element for quasi-
continua. Comput Mech 42:543–553

Madenci E, Oterkus E (2014) Peridynamics theory and its appli-
cations. Springer, Berlin

McMeeking RM, Evans AG (1982) Mechanics of
transformation-toughening in brittle materials. J Am
Ceram Soc 65:242–246

Munetoh S, Motooka T, Moriguchi K, Shintani A (2007) Inter-
atomic potential for SiO systems using Tersoff parameteri-
zation. Comput Mater Sci 39:334–339

Nakao S, Ando T, Shikida M, Sato K (2008) Effect of temper-
ature on fracture toughness in a single-crystal-silicon film
and transition in its fracture mode. J Micromech Microeng
18:15026

Park HS, Klein PA (2008) A surface Cauchy–Born model for
silicon nanostructures. Comput Methods Appl Mech Eng
197:3249–3260

Petersen KE (1982) Silicon as a mechanical material. Proc IEEE
70:420–457

Plimpton S (1995) Fast parallel algorithms for short-range mole-
cular dynamics. J Comput Phys 117:1–19

Qian J, Li S (2010) Application of multiscale cohesive zone
model to simulate fracture in polycrystalline solids. J Eng
Mater Technol 133:11010

Raghunathan AV, Park JH, Alurua NR (2007) Interatomic
potential-based semiclassical theory for Lennard-Jones flu-
ids. J Chem Phys 127:174701

Shegal J, Ito S (1998) A new low-brittleness glass in the soda-
lime-silica glass family. J Am Ceram Soc 81:2485–2488

Shet C,ChandraN (2002)Analysis of energy balancewhen using
cohesive zone models to simulate fracture processes. J Eng
Mater Technol 124:440–450

Siling SA (2000) Reformulation of elasticity theory for disconti-
nuities and long-range forces. J Mech Phys Solids 48:175–
209

Siling SA, EptomM,Weckner O, Xu J, Askari A (2007) Peridy-
namics states and constitutive modeling. J Elast 88:51–184

Stillinger FH, Weber TA (1985) Computer simulation of local
order in condensed phases of silicon. Phys Rev B 31:5262–
5271

Sundararajan S, Bhushan B (2002) Development of AFM-based
techniques to measure mechanical properties of nanoscale
structures. Sens Actuators A Phys 101:338–351

Sunyk R, Steinmann P (2003) On higher gradients in continuum-
atomistic modelling. Int J Solids Struct 40(24):6877–6896

Swiler TP, Simmons JH,Wright AC (1995) Molecular dynamics
study of brittle fracture in silica glass and cristobalite. J Non
Cryst Solids 182:68–77

Tadmor EB, Miller RE (2011) Modeling materials—continuum,
atomistic and multiscale technologies. cambridge Univer-
sity Press, Cambridge

Tadmor EB, Smith GS, Bernstein N, Kaxiras E (1999) Mixed
finite element and atomistic formulation for complex crys-
tals. Phys Rev B 59:235–245

Tamai J, Chen I-W, Yamamoto Y, Komatsu M, Komeya K, Kim
DK, Wakihara T, Meguro T (2006) Fracture resistance and
contact damage of TiN particle reinforced Si3N4 ceramics.
J Ceram Soc Jpn 114:1049–1053

TangZ,ZhaoH,LiG,AluruNR (2006) Finite-temperature quasi-
continuum method for multiscale analysis of silicon nanos-
tructures. Phys Rev B 74:64110

TeraoR,Tatami J,MeguroT,KomeyaK (2002)Fracture behavior
of AlN ceramics with rare earth oxides. J Eur Ceram Soc
22:1051–1059

Tersoff J (1988) New empirical approach for the structure and
energy of covalent systems. Phys Rev B 37:6991–6999

Tersoff J (1988) Empirical interatomic potential for silicon with
improved elastic properties. Phys Rev B 38:9902–9905

Tersoff J (1989) Modeling solid-state chemistry: interatomic
potentials for multicomponent systems. Phys Rev B
39:5566–5568

Varshneya AK (2010) Chemical strengthening of glass: lessons
learned and yet to be learned. Int JApplGlass Sci 1:131–142

Volokh KY (2004) Comparison between cohesive zone models.
Commun Numer Methods Eng 20:845–856

Wong B, Holbrook RJ (1987) Microindentation for fracture and
stresscorrosion cracking studies in singlecrystal silicon. J
Electrochem Soc 134:2254–2256

XuXP, NeedlemanA (1994) Numerical simulations of fast crack
growth in brittle solids. J Mech Phys Solids 42:1397–1434

Zeng X, Li S (2010) A multiscale cohesive zone model and
simulations of fractures. Comput Methods Appl Mech Eng
199:547–556

Zeng X, Li S (2012) Application of a multiscale cohesive zone
method tomodel compositematerials. Int JMultiscaleCom-
put Eng 10:391–405

123

http://dx.doi.org/10.1080/14786435.2014.887859

	Higher order Cauchy--Born rule based multiscale cohesive zone model and prediction of fracture toughness of silicon thin films
	Abstract
	1 Introduction
	2 Multiscale cohesive zone model (MCZM) and its FEM formulation
	2.1 Hierarchical Cauchy--Born rule based MCZM
	2.2 Multiscale finite element formulation of MCZM
	2.3 Higher order Cauchy--Born rule in crystal lattices
	2.4 Tersoff potential
	2.5 Second order stress tensor
	2.6 Lennard-Jones potential

	3 Model evaluation and verification
	3.1 Determining of bubble node
	3.2 Lennard-Jones potential with FCC lattice
	3.3 Tersoff potential with single-crystal silicon cubic lattice

	4 Numerical simulation of fracture toughness
	4.1 Simulation condition test
	4.2 Fracture toughness of single-crystal silicon

	5 Conclusions
	Acknowledgements
	Appendix
	Appendix 1: Optimization of inner vector of diamond cubic lattice
	Appendix 2: Divergence of the second order stress tensor
	Appendix 3: Second order shape function with a bubble mode

	References




