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SUMMARY

In this part of the work, the meshless hierarchical partition of unity proposed in [1], referred here as Part I,
is used as a multiple scale basis in numerical computations to solve practical problems. The applications
discussed in the present work fall into two categories: (1) a wavelet adaptivity refinement procedure; and (2)
a so-called wavelet Petrov—Galerkin procedure.

In the applications of wavelet adaptivity, the hierarchical reproducing kernels are used as a multiple scale
basis to compute the numerical solutions of the Helmholtz equation, a model equation of wave propagation
problems, and to simulate shear band formation in an elasto-viscoplastic material, a problem dictated by
the presence of the high gradient deformation. In both numerical experiments, numerical solutions with high
resolution are obtained by inserting the wavelet-like basis into the primary interpolation function basis, a
process that may be viewed as a spectral p-type refinement.

By using the interpolant that has synchronized convergence property as a weighting function, a wavelet
Petrov—Galerkin procedure is proposed to stabilize computations of some pathological problems in numer-
ical computations, such as advection—diffusion problems and Stokes’ flow problem; it offers an alterna-
tive procedure in stabilized methods and also provides some insight, or new interpretation of the method.
Detailed analysis has been carried out on the stability and convergence of the wavelet Petrov—Galerkin
method. Copyright © 1999 John Wiley & Sons, Ltd.

KEY WORDS: meshless methods; reproducing kernel particle method; partition of unity, p-adaptivity; wavelet Petrov—
Galerkin method

1. INTRODUCTION

In [1], a meshless hierarchical interpolant basis is constructed, which has a distinct distribution
of spectral contents of the interpolating object among the different bases; in other words, they
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consist a multi-spectral wave packet. As a matter of fact, as shown in Part I, the higher-order
basis functions does fit into the definition of the pre-wavelet function.®

In this part of the work, the newly developed meshless hierarchical partition of unity is employed
in numerical computations of several engineering problems, in order to test their actual performance
and computational capability. Since the higher-order basis constitute a pseudo-spectral basis, it is
natural to test them by solving the problems that are related to wave propagation, or acoustic
problems, which extends the early work by Liu et al. [2, 3] and Uras et al. [4]. The first numerical
example is to use the meshless hierarchical partition of unity to solve an one-dimensional Helmholtz
equation, the Dirichlet-fixed bar problem. For this class of problems, the regular Galerkin/finite
element methods have some deficiencies in capturing the high-frequency part of the solutions
(see [5, 6], and references therein).

Our computation strategy in this case is very simple: by adding the wavelet shape functions into
the primary interpolation basis to seek improvement of the numerical solutions. It is demonstrated
numerically that by increasing the order of hierarchical basis, high-resolution solutions can be ob-
tained in numerical computations. To extend the above numerical strategy to multiple-dimensional
problems, in the second example, the meshless hierarchical partition of unity are employed in a
computation to simulate the shear band formation in an elasto-viscoplastic material. In the com-
putation, we add the wavelet-like basis into the primary shape function basis as a spectral p-type
refinement desiring to capture high gradient deformation field in the solid. The improvement of
numerical solutions has been observed in the computation. It is worth noting that unlike the con-
ventional p finite element method, which blends the higher-order polynomial bubble modes into the
primary shape function basis, the reproducing kernel hierarchical partition of unity adds wavelet
modes into the original shape function basis; those wavelet bases are built-in through the ori-
ginal construction of the primary shape function basis, and they do not come from the additional
higher-order polynomials, such as the 4—p clouds method proposed by Duarte and Oden [7] in the
context of meshless setting. The main technical obstacle in the implementation of such a numerical
strategy is the ill-conditioning of the resulting stiffness matrix and mass matrix, because adding a
partition of nullity into a partition of unity will result in redundancy in the shape function basis.
This very crucial issue is addressed in Section 3.

In addition to the wavelet refinement, the hierarchical partition of unity developed here can
also form a so-called synchronized reproducing interpolant, which can be used as the weighting
function in a Petrov—Galerkin stabilized procedure to deal with some pathological problems in
numerical computations, such as advection—diffusion problem, Stokes’ flow problem, and others.
Since the computation procedure is very similar to the widely spread Petrov—Galerkin stabilized
method, we coin this particular procedure as the Wavelet—Petrov—Galerkin method with the belief
that a general stabilized mechanism may exist for general wavelet functions.

2. NUMERICAL EXAMPLE I: HELMHOLTZ EQUATION

The Helmholtz equation, or reduced wave equation, presents many difficulties for conventional
Galerkin/finite element procedures. An example of such difficulties is that the numerical solution
does not preserve the ‘non-dispersive’ character of the exact solution [6, 8], which leads to both
amplitude error as well as phase error. To overcome such difficulties, special techniques have to

TBy ‘pre-wavelet’, we mean that the admissible conditions of the basic wavelet function is satisfied
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be developed in dealing with Helmholtz equations, or hyperbolic systems in general. It has been
found that ‘the higher-order p-element exhibit increased accuracy compared to low-order finite
elements for the same order of degree of freedom’ ([5], p. 266).

Therefore, this is a very suitable testing problem that can examine the performance of the pro-
posed meshless hierarchical partition of unity. Consider the following Dirichlet-fixed bar problem:

d2
d—;;+k2u:F(x) (1)
w0)=a and u(1)=0 )

Yu, ve H'([0,L]), the weak formulation is

Pdudo o du I

0 dedx 7 dx

L L
—k2/ uvdx+/ Fodx=0 (3)
0 0

0

The numerical computation is performed on a uniform particle distribution over [0,L] with index
set A={I/|I=1,2,...,11}. We choose the fifth-order spline as a window function with a compact
support radius R; =a;9, where 9= Ax, and a; is in a range 3-0-5-0, which implies that there are
5-9 nodes in the interior domain of the compact support. The generating polynomial basis is

P =(1,x,x%,x%). Select a sub-index set A C A,
A:={I€A, x;€(0,L)}

and card{ jo\} =9, f=1,2,3. The multi-level hierarchical basis are displayed in Figure 1. Note that
there is difference between hierarchical frame and the hierarchical basis. The reason that we called
them as a hierarchical basis is because we eliminate the redundancy of the frame by taking out
some of the higher-order wavelet shape functions at the end points, x=0 and x=L. One may
compare Figure 1 with the corresponding hierarchical partition of unity, Figure 1 in Part I, and
observe the subtle differences. It is not difficult to find that the hierarchical basis remains as a
partition of unity inside the interior domain.

We solve the model equation by substituting the following hierarchical approximation into the
weak formulation (3):

Uy ()= Y ul W () ()
IeA
and
p [0] ;101 LA
Up )= 2w V) + 3 3w ), f=1.2.3 (5)
s o o=
IeA

where {W(x)} is the basis of the zeroth-order kernel function, and {¥!(x)} a0, are the
wavelet-like basis. In the following numerical calculations, the order f in equation (5) is kept
on increasing, that is to add higher-order wavelet-like basis into the primary basis. The numerical
solutions are carried out, and compared at four different wave numbers, £ =8, 16,24,32.
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Figure 1. The hierarchical bases used in computation

For F(x)=0, the exact solution is

_sin(k(L — x))
=g——

3] )

In Figures 2-5, the numerical solutions are plotted against the exact solution for four different wave
numbers, k£ =8,16,24,32. In all four examples, only 11 particles are used in the computation.

In Figure 2, one may find that in the case of 11-particle discretization the numerical solution
ufo](x) is only accurate when wave number is below k=38, after that, both amplitude error and
phase error occur. With the same discretization, we add the first-order wavelet basis into the
primary shape function basis, and the numerical solution, uﬁ](x), is accurate up to the wave
number k =16 (see Figure 3). By adding more wavelet-like bases into the primary shape function
basis, not only the accuracy of the numerical solutions keep increasing, but also the range of such
accurate solutions with respect to wave number is increasing as well. For =2, which means
that two wavelet bases have been added into the primary partition of unity, the accuracy range of

the numerical solution, ufz](x), is up to the wave number k =24 (Figure 4). And the numerical

solution, uE](x), is very close to exact solution at wave number k£ =32 (Figure 5).
The same trend can be observed from the frequency responses of the numerical solutions. We
plot the continuous frequency spectrum of numerical solutions at the middle point of the bar,
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Figure 2. Dirichlet-fixed bar problem: Numerical solutions u[o](x) vs. the exact solution u(x) (f=0): (a) k=38; (b) k=16;
(c) k=24; (d) k=32
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Figure 3. Dirichlet-fixed bar problem: numerical solutions u‘fl](x) vs. the exact solution u(x)(f=1): (a) k=38; (b) k=16;
(c) k=24; (d) k=32
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Figure 4. Dirichlet-fixed bar problem: numerical solutions u‘i’z](x) vs. the exact solution u(x)(f=2): (a) k=8; (b) k=16;
(c) k=24; (d) k=32
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Figure 5. Dirichlet-fixed bar problem: numerical solutions ué](x) vs. the exact solution u(x)(f=3): (a) k=8, (b) k=16;

(c) k=24; (d) k=32
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Figure 6. Frequency response: (a) Log (ufo](O-S,k)); (b) Log (ufl]((}S,k)); (c) Log (ufz](0~5,k)); (d) Log (uf3](0~5,k)); the
dotted line: exact solution; the solid line: numerical solution

x=0-5, with different hierarchical basis in Figure 6. In Figure 6, one may find that as the order
of hierarchical basis increases, the cutoff frequency of the numerical solutions increases. On the
other hand, in the same process, the length of the region that has minimum phase/amplitude error
is almost doubled, when each time a higher-order wavelet-like basis kicks in. These numerical
results show that this hierarchical partition of unity can drastically improve the accuracy of the
numerical solution of the Helmholtz equations.
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3. NUMERICAL EXAMPLE II: HIGH-RESOLUTION SHEAR-BAND COMPUTATION

In this example, the meshless hierarchical basis is utilized to simulate shear-band formation
numerically in an elasto-viscoplastic material. This problem has extensive engineering applica-
tions (see [9—13] and references therein). The idea to use spectral type of p-refinement to capture
the localization mode is not new, which can be traced back to Belytschko et al. [14]. Because the
localization zone is a region with high deformation gradient, a spectral overlay may properly repre-
sent the drastic change (high-frequency part) of the inelastic deformation. However, there are few
differences between the spectral overlay technique and the wavelet-adaptive technique proposed
here. In the spectral overlay technique, the spectral overlay is chosen to align in a given direction,
which is supposed to be the eigen direction of the acoustic tensor when bifurcation occurs, and it
is assumed to be given a priori; and the location of deployment of such spectral overlay is also
prescribed. Moreover, the spectral function used in the overlay has little relations with the primary
shape function basis, and thus carries no information on mesh organization/particle distribution, or
the original interpolation process.

Contrast to the spectral overlay technique, the adaptive wavelet algorithm proposed here is more
general in nature. The orientation of the wavelet basis is isotropic in space, and the enhancement
of the numerical solution due to wavelet basis comes out naturally as the outcome of numeri-
cal computation, though the adaptive region are selected by a given criterion. Since the wavelet
basis is intrinsically connected with the primary interpolation basis, the successive alternating sA—p
refinement process may become efficient.

The model problem considered is the following tension test of an elasto-viscoplastic tensile
bar, a rectangular specimen under plane strain tension (in reality, the plane stress tension test is
probably more common). The prescribed displacement/velocity boundary condition is imposed at
the both ends of the tensile bar as shown in Figure 7. The equilibrium equation, or the equation
of motion is

Oji,j +b,:pl), (7)

where ¢;; is Cauchy stress, b; is the body force, p is the density of the material, and v; is the
velocity of the continuum. For simplicity, the boundary conditions are specified with respect to
the reference configuration,

Pny=T° VXeIy (8)
u=u’, vxery (9)

where P is the first Piola—Kirchhoff stress tensor.
A rate form of constitutive relation is adopted,

¢ = C (d — ) (10)
6 =06 +wo+ow' (11)

v . . . .
where 6 is the Jaumann rate of Cauchy stress, C¢!* is the elastic modulus. The rate of deformation
tensor, d, and the spin tensor, w, are defined as

1 (o0 dv,
di=dyje,0e,  dyi=3 <§ + 6—2’) (12)
] 1
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Figure 7. Description of model problem

1 [ov; Ov;
w::wije,«@)ej, W,'jZ: E (a — a—;) (13)
J i

Followed Needleman [11], the von Mises yield condition is used to determine the flow direction
and the rate of viscoplastic strain,

w 0
dyf = 17(6,8)% (14)
ij
f(o,K)=6—k=0 (15)

The effective stress, &, and the effective viscoplastic strain, &, are defined as

¢ =3s:s (16)

L2
&= —d . d' dt (17)
o V3

where s is the deviatoric stress tensor,
Sij:O-ij_ %tr(o‘) (18)

A power law is used to calculate the viscoplastic strain rate, i.e. in (14),

- 1/m
n=éeo {@] (19)
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where
- [1+ &/eo]"
_ 20
9O =001 oy (20)
The variational (weak) form is stated as
/ ,001/'!.,‘51/{,‘ dQX + / PJ,&F}; dQX — / B,‘éu,‘ dQX — / Tl-oéu[ dl'=0 (21)
QX QX Q)( F;

The following hierarchical reproducing kernel interpolants are used in the computation to simulate
the shear-band formation

p SR 4 100] [00] FONAD 1 [+]
ui(X):/z:l\I!/ (X)dl (z)+|‘z ;jl o) d () (22)
/= al=1 /=

where NP is the total number of particles, and NAD is the number of the particles at which the
adaptive wavelet functions are added. The reproducing kernel hierarchical partition of unity used
in this case is constructed as follows:

() =P (?) DO, (xs — X)AV; (23)

In this case, the dimension of the space, n =2, and o =(0,0),(1,0),(0,1),(1,1); and x, = (x17,Xx2/),
x =(x1,Xx2). The vector b)(x) in (23) is determined by the moment equation

h h h h ()
Moy My My My b 04(0,0)
h h h h (o)
My MmMyo My My by 95(1,0)
h h h h ol = |s (24)
My My Moy My by «(0,1)
h h h h
My my My My by Ou(1.1)

The 2-D cubic spline is used as the window functions. In all the calculations, we take a, =a, =
1-0. Substituting the reproducing kernel interpolants into the weak form, the discrete equations of
motion can be put into the standard form

Md + fint _ fext (25)

where M is the mass matrix, and
7 = / TP (X, 1)®/(X )e; dT + / poB1(X, 1)®/(X )e; dS2 (26)

7 Q
fint — / Pj,-@e,- dQ (27)
/ o 0Xy
where

{200} = {7 ORI OL O {9 00 (28)

A forward gradient time integration scheme—the tangent modulus method proposed by Peirce
et al. [15] is used as time integrator.
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Since the wavelet basis constitute a partition of nullity, it introduces redundant degrees of
freedom into the primary shape function basis. Consequently, the resulting stiffness matrix, and
mass matrix are ill-conditioned. It should be noted that the spectral overlay method [14] introduces
redundancy into the primary partition of unity as well, which is a possible source of pathology
of numerical computation. To circumvent this difficulty, the inertia terms are neglected in the
spectral overlay method, such that a set of semi-decoupled equilibrium equations can be obtained.
A setback of this approach is that it only allows certain stress state within the spectral patch,
regardless whether or not they have physical reality.

In this paper, only explicit integration scheme is adopted; therefore we face a problem to deal
with a possible singular mass matrix. As a matter of fact, the mass matrix will become singular,
if the conventional row summation, a lumped mass technique, is used; and the mass matrix will
become extremely ill-conditioned when consistent mass matrix is employed. To circumvent this
difficulty, the ‘special lumping technique’ proposed by Hinton et al. [16] is adopted.

The formula is

w4, 240, 1=
S ]\/pro J ] (29)

0 1#£)

/ po d€dy
Qy

“ (30)
( AU RS A v | po<qf£“])2dn>
Qx Oy

The justification of Hinton’s special lumping technique is that it retains the diagonal part of the
consistent mass matrix, and assumes that the diagonal part of the consistent mass matrix covers the
correct frequency range of the dynamic response, whereas the non-diagonal part of the consistent
mass matrix is not essential for the final results, at least not in quasi-static cases. This technique
ensures the positive definiteness of the mass matrix, and eliminate the singular mode. A possible
setback may be that it precludes the interaction between the neighbouring materials particles;
however, this is compensated by the reproducing kernel formulation, because reproducing kernel
particle method is a non-local interpolation process in principle.

The imperfections of the specimen are implanted for both geometric imperfection and the yield
stress reduction. The distribution of yield stress reduction is given by the formula

oo(x1,x2) =Gy[1:0 — y exp{—[(x1 — xe1)* + (x2 — x2)*1/r3 }] (31)

where (x.1,x:) is the location of the imperfection, and ), ry are the magnitude and the size of
the imperfection (Needleman [10]).

The geometric imperfection is implanted as the reduction in the width of the tensile bar. A
linear distribution of reduction of width is imposed, the maximum reduction occurs at the middle
section of the specimen (see Figure 9(c)).

Figures 8-13 contain a set of numerical results of four different tests. In the first example,
there is no yield stress reduction at any point, only geometric imperfection is implanted. The
width reduction at the middle section of specimen is 10 per cent, and the adaptive pattern is
illustrated in Figure 9(c). The numerical results of the test are depicted in Figures 8 and 9. In

where
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Figure 8. Test I: the contours of the viscoplastic strain in the tensile bar: (a) without wavelet adaptivity; (b) with wavelet
adaptivity (a=(1,0),(0,1)); (c) with wavelet adaptivity (a=(1,0),(0,1),(1,1))

the second test, both geometric imperfection as well as yield stress reduction are implanted. The
geometric imperfection is the same as test I; and the yield stress reduction is prescribed according
to equation (31), with y=0-1 and x.; =x., =0. The results are depicted in Figure 10. In the third
test, a smaller geometric imperfection is introduced, i.e. a 7-5 per cent reduction of width at the
middle section of the specimen, while a yield stress reduction smeared through the centre with
an intensity at y=0-2. The numerical results are displayed in Figure 11. In the fourth test, the
geometric imperfection is even smaller, only a 1 per cent reduction of width at the middle of the
specimen, and the yield stress reduction is the same as test III.

In all four numerical examples, 3321 particles are used in each computation. Since this is a
bifurcation problem, which is characterized by the loss of ellipticity, the conventional indicators
for elliptical differential equations break down. In this work, an intuitive adaptive criterion is
adopted: we refine the regions, or the set of particles, that have the highest accumulated viscoplastic
strain distribution. In the all four sets of numerical examples, the wavelet basis are added to 241
particles, which have the highest values of viscoplastic strain; subsequently, 482, or 723, new
degrees of freedom are adding into the primary shape function basis. All the plots for the contours
of accumulated viscoplastic strain are taken at time ¢ = 16-8 us; and all the plots for the formation
of shear band are taken at time, ¢ =24 us. The key parameters used in computations are listed in
Table 1. In the computations, the following material parameters are used in all four tests 6y = 460-0
MPa, ry=0-1mm, m=0-01, N=0-1, 6g=2-18 x 10~3,¢; = 100gy and &, = 0-002s~!. One can
observe that not only the width of the shear bands obtained from the wavelet adaptive solutions
become thinner than the numerical solution without adaptivity, but also the finer features of those
shear band come to earth. The numerical results in these four tests clearly demonstrate that the
wavelet adaptive solutions provide the numerical solutions with much higher resolution than the
numerical solution without wavelet adaptive refinement.
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Figure 9. Test I: the shear band in the tensile bar represented by particle formation: (a) without wavelet adaptivity;
(b) with wavelet adaptivity; (c) the adaptive pattern in undeformed configuration
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Figure 10. Test II: the contours of the viscoplastic strain in the tensile bar: (a) without wavelet adaptivity; (b) with wavelet
adaptivity (¢ =(1,0),(0,1)); (c) with wavelet adaptivity (¢ =(1,0),(0,1),(1,1))
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Figure 11. Test III: the contours of the viscoplastic strain in the tensile bar: (a) without wavelet adaptivity; (b)
with wavelet adaptivity «=(1,0),(0,1)); (c) with wavelet adaptivity o= (1,0),(0,1),(1,1))
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Figure 12. Test IV: the contours of the viscoplastic strain in the tensile bar: (a) without wavelet adaptivity; (b) with
wavelet adaptivity o =(1,0),(0,1)); (c) with wavelet adaptivity o =(1,0),(0,1),(1,1))
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Figure 13. Test IV: the shear band in the tensile bar represented by particle formation: (a) without wavelet adaptivity;

(b) with wavelet adaptivity; (c) the adaptive pattern in undeformed configuration

Table 1. The parameters used in numerical tests (w: the reduction of
the width at middle section of the specimen)

Test y w dr (1073 us) t(us) NAD/NP
I 0-1 10% 15 24 241/3321
i 0-1 10% 15 24 241/3321
111 0-2 7-5% 15 24 241/3321
v 0-2 1-0% 15 24 241/3321

The numerical simulation of shear-band formation via conventional finite element technique
show a strong dependency of mesh orientation. As stated by Needleman [17], ‘the ability of
a finite element mesh to resolve localized shearing at angles oblique to the element boundary
significantly affects the predicted course of shear-band development’. As a meshless method, the
reproducing kernel particle method has no explicit mesh, and therefore the issue of dependence
on mesh orientation does not seem to exist. (There is another mesh sensitivity due to the loss
of ellipticity of the governing equations, which does not occur in rate-dependent inelastic solid.)
The previous best numerical results of tension test done by finite element methods are using the
quadrilateral element consisting of four triangle elements with constant strain, whereas all the
computations done here are just using uniform particle distribution with quadrilateral pattern. A
detailed report on the relief of such mesh dependency by meshless method will be presented in a
separate paper. The adaptive criterion used here is primitive, and it may be inadequate in some
situations. There are some other adaptive criteria that can be used in the adaptive process of
localization problem, such as the one proposed by Belytschko and Tabbara [18].
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4. NUMERICAL EXAMPLE III: WAVELET PETROV-GALERKIN METHOD
In this section, the synchronized reproducing kernel interpolant constructed from the combination
of wavelet kernels is used as a weighting function in a Petrov—Galerkin formulation to compute
some typical pathological problems in numerical computations.

4.1. Advection—diffusion equations

We consider the following multiple dimensional advection—diffusion equation described as
follows:

Lo= —(k;0,;),i+up;=f, VxeQ (32)
=g, VxeI (33)
niK;jQ,; = h, Vxel (34)

where {x;;} is the diffusivity, and {u,} is the given velocity of the flow field.
Define

()= [ 1900 (35)
B(W, qD) = /Q(wu,l-qo,l- —+ W’,’Kl'jq)’j)dﬂ (36)
L(w)::/wadQ—&-/Fh wh dT), (37)
Let

P"(x) = 3" @ wi(x) (38)

IeA
wi(x) = 3" (x) (39)

IeA
Wh(x) = w'(x) + " (x) (40)

where 7 is a stability control parameter and is O(1).

For [B|=1 (f=(1,0).(0,1))

W(x) := dW(x) (41)
Wh(x) = ZAc,foEﬁf](x) (42)
le
uj:= 2 and llu|? == wiu; (43)
S

where 0<j<n and |f;|=1.
Then, a consistent weighted residual form is

0", ZLo" — [)=0 (44)
Integration by parts yields the weak formulation
B, ") — / Wity ¢!, dT, = L") (45)
L
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Figure 14. Advection skew to the ‘mesh’: problem statement

30

Figure 15. Numerical results for advection skew to the ‘mesh’ via wavelet Petrov—Galerkin

where " is a synchronized interpolant. The first numerical test is the so-called advection skew

to the ‘mesh’. The problem statement is described in Figure 14, and the result is displayed in
Figure 15. In Figure 15, an uniform particle distribution, 21 x 21, is used; no shock capturing
term is involved. The results show that the numerical solutions are stable.

The second test is the so-called cosine hill problem—advection in a rotating flow field. The
numerical results are shown in Figure 16. Part (a) of Figure 16 displays the profile of the function
@, and the part (b) of the figure shows the contour of advection—diffusion field ¢. The computation
is performed on a 30 x 30 particle distribution. In Figure 16, one can observe that there is no phase
error in numerical results. In both cases, the diffusive coefficient « is taken as 107°. A proof
of stability and convergence for using the above wavelet Petrov—Galerkin method in numerical
computation of advection—diffusion problem is presented in the next section.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 45, 289-317 (1999)



306 S. LI AND W. K. LIU

s
06-
a4

0z

Az
an

Figure 16. Numerical results for advection in a rotating field: (a) the profile of ¢; (b) the contours of ¢

4.2. Stokes flow problem

The mathematical formulation of the problem is as follows:
V-e+f=0 (46)
V-u=0 (47)
where
6= — pl+2us &=3(Vu+(Vu))

with the boundary conditions
u(x)=g(x) VvxeI (48)
(en)(x)=h(x) VxeI (49)
It is well known that the velocity-based computational formulation of the Stokes flow problem
suffers from instability in numerical simulations, if the conventional Bubnov—Galerkin procedure
is adopted. An efficient remedy in computational strategy is to use the so-called mixed method.
However, in a mixed formulation, there are certain restrictions that have to be met for displace-
ment interpolation and pressure interpolation. The celebrated Babuska—Brezzi condition is such a
requirement imposed by stability criterion. For example, it excludes the convenient equal-order
interpolation in computations. Hughes er al [32]. proposed a Petrov—Galerkin formulation to cir-
cumvent the Babuska—Brezzi Condition (CBB), such that any consistent interpolation schemes can
be employed in computations. Here, following almost the exact same Petrov—Galerkin formulation,
we use the synchronized reproducing kernel interpolant as weighting function in the computation,

instead of using the gradient of the pressure trial function as proposed in Hughes’ formulation.
Assume that the set A can be decomposed as*

o
A=A A (50)
This is not always possible in multiple dimensional problems; see discussion in [19]
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where
A:={Ten, Wx)=0, vxe} (51)
oA = {1 e A, Ux)+£0, vx; €00} (52)
We choose the following equal-order interpolation for both displacements and pressure:
w'(x) = ) + 3 g 80 =vi(x) + g'(x) (53)
IGX 1€0A
h . [00]
wh(x) = Yo w (X)) (54)
ref
and
Px)= 3 pr(x) (55)
IeA
¢"(x):= 3 g1V (x) (56)
IeA
For f=1, let
§'(x) = {§1(x). §3(x)} (57)
~h Qj ~ olBil .
q;(x):=5-2 .4,V (x), j=12 (58)
! 2#1%\ b
where there is no summation on j, and in 2-D
B;=(1,0),(0,1) (59)
Then, the following CBB type of Petrov—Galerkin weak form is used in the computation:
B.(w',q"q"v", p") = L.(w".q".q") (60)

where

Bo(w",q", "5 v ") = (e(w"), 208(v")) — (V- W ") + (¢, V- V)

+(1q", Vp" — 2uV - g(v") (61)
LW, q"@") == (W" + 2@" ) + (W™, h)r, — (e(W"), 2pe(g"))
—(¢".V-g") + (:q", 21V e(g")) (62)

where 7 is the stability control parameter.

In numerical experiments, the well-known cavity problem is tested. It is a driven cavity flow
problem with ‘leaky lid” boundary condition. The problem statement is shown in Figure 17. The
synchronized reproducing kernel interpolants developed in Section 3 are employed in the com-
putation. The results presented in Figures 18 and 19 are based on a 11 x 11 particle distribution
on an unit square. In all the computations, 2-D cubic spline is used as the window function, and
the dilation vector is chosen as ¢y =1-h,, 0o =1-h,,. Figure 18 shows the pressure profile of
the cavity problem. Part (a) is the numerical result obtained from Petrov—Galerkin formulation
based on Equation (60). Part (b) is the numerical result obtained from regular Galerkin method,
from which, the pressure distribution exhibits apparent spurious pressure mode. In Figure 19, the
pressure contour and the velocity field, or the field of streamline, are displayed; both of them are
obtained from the Petrov—Galerkin formulation (60).
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Figure 18. Pressure elevation: Petrov—Galerkin solution
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Figure 17. The cavity problem: (a) problem statement; (b) detailed boundary conditions at the corner
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Figure 19. Numerical results of cavity problem: (a) pressure contours; (b) velocity field
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5. STABILITY AND CONVERGENCE OF WAVELET PETROV-GALERKIN METHOD

In this section, the stability and convergence of the proposed wavelet Petrov—Galerkin method is
sketched for a 1-D advection—diffusion problem, which are, in most part, similar to the standard
results by Johnson et al. [19, 20] and Hughes et al. [21-24]. As a matter of fact, the main
philosophy of the proof and much of the technicalities involved here directly comes from an
excellent monograph by Hughes et al. [25]. Nevertheless, there are some unusual spots, such as:
(1) the weighting function is considered as an synchronized reproducing kernel interpolant that is
introduced in Section 4 and (2) the algorithm is a global, continuous approach; no discontinuous
Galerkin argument is necessary.

5.1. Model problem

We consider the following 1-D advective—diffusive problem as the model problem:
—K@x+ap,=f, x€(0,L)CR (63)
P(0)=¢o, @(L)=qL (64)
where ¢ :=do/dx, ¢, :=d*p/dx?, and the source term f(x) is given for x €[0,L]. In (63),

Kk is the diffusive coefficient, and a is the advection velocity; both of them are positive constants.
Let Z:={x;|0<x;<L,I=1,...,np} and define function spaces:

770 = {w? | w? € H}([0,L]) and w? € span {¥[”(x)}} (65)
T :={¢?| ? € H'([0,L]) and ¢? € span { ¥ (x)}} (66)
7= {W? | w? e H'([0,L]) and w? € span {W(x)}} (67)
We assume that there exists index set 4 CC A such that
wo(x) = Y wi Ul (x) (68)
1€A4
where
A={1eA|TP0)=TP(L)=0}*
and
P(x) == 3 oS (x) = 30 s (x) + pogo(x) + @rgr(x) (69)
IeA 1€4
Wo(x) = Swil(x) (70)
IeA

where go(0)=1,g0(L)=0; and g.(0)=0, g.(L)=1.
Let w,(x) :=w?(x) + tsgn(a)w’(x), where 7 is a stability control parameter. We consider the
following algorithm:

Algorithm 5.1. Find ¢° € T9NYw? € v"¢ and the associated Wwo € ¥, such that
L

L L
/ (—ap®w? + kwl %) dx + sgn(a)r/ W (=K@, +agl — f) dx= / wlfdx (71)
0 0 0
§This is always possible in one-dimensional particle distribution; (See [26])
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Define the bilinear form
L
B(u,v):= / (—xu yy + au y)vdx (72)
0

YwPeyvP,

L L
d
B(wP, w) = / (—KkWhe + aw’ W’ dx = / (W) + a-w)) dx = wlwel[gony  (73)
0 ' ’ 0 ’ X ”
and
L
Bwpg(W?;w?) := B(w?,w?) + sgn(a)r/ (—rw?, +aw? )W dx
0
= K||W:()x‘|iz(ﬂ) + T|a|(w,gx’ Wg) — KT Sgn(a)(w,gxx’ 1"{)Q) (74)

5.2. Stability and convergence of wavelet Petrov—Galerkin method

To set the stage, we proceed by listing several inequalities, including the inverse estimate for
the reproducing kernel approximation and the wavelet estimate.

Inequality 5.1. Let ¢>0 and f(x),g(x) € L*(Q). One has

1/1
(9l < 5 <;|fi2(sz) + 8||g|%2(sz)> (75)

Inequality 5.2 (Inverse estimate). Vv¢ € span {\IJEO](x)}, namely,

v(x) = o A e — x,x)Ax, (76)
IeA

there exists C>0, such that |y|=|v| the following inequality holds

||UQ||H\'»I(Q)<C1Q‘“|7|y‘||UQHH\«\(Q)» |oe], [y < m (77)
Proof. The proof follows from Brenner and Scott [27] almost verbatim, except that this is a
direct global estimate. Let
X . 1
(== = W(O:=uvpl);, AVy=—AV
p p"
and define
PO =0 = 3 AU~ LOBAVY (78)
IeA
By homogeneous argument,
|ﬁp|Hw(Q) = pw_n/2|vp|HV‘\(Q)» ‘0‘| <m (79)
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Furthermore, since ¥ is finite dimensional; by equivalence of the norms
”ﬁpHH\ﬁI(Q)<C||ﬁpHL2(Q)
Equation (80) implies that 3C >0 such that
|01y S Co 107 [l 20, 0/ <
Since p<1, we have
||UPHHI/H(Q)<CP7|/3|HUPHLZ(Q): |Bl<m
Now, assume y=o + f. Then
1070|122 < CID*0 ||
< Cp D" e
< Cp ™Moy o
Since |B|=|y| — |«|, it is straightforward that
|Up|HIv\(Q)<CP|1|7M|U”|HI1\(Q)

Equation (77) follows consequently.

Inequality 5.3 (Wavelet estimate). Define

wl(x) = S wil(x)
IeA

W) = Y] (x)
I€A

Ywe e span{\IJEO](x)}, assume
W ll 2o, < Collwhell 2o,

Then 3Cp>0 such that the following estimate holds:

W& — /el 2o, 13y < CaolWo. Il 20.07)

Proof. For m>=1, Theorem (4.1) in Part I asserts that 3C;, C, >0 such that

W = whllaqo.y < Crpwelmao,)
WS = Jell 2o,y < CapWF 20,17

therefore

w8 = w/ellzo.ny = l[(We —we) + (WS — /o)l 20,2)

< WS = wllleqo. oy + W5 — w/ell 2o,y

< (C1 + Celwee 2o,
< (C1 + C)Cpo| W |l 2o.1)
Choosing Cz =(C; + C,)Cp yields (88).

311

(80)

(81)

(82)

(83)

(84)

(85)

(86)

(87)

(88)

(89)
(90)

oD
O
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Remark 5.1 (1) The reason that this estimate holds is because Dy, A gEO](xl —x,x) and A &El]
(x; — x,x) share the same differential consistency condition; (2) if w°(x)e C*([0,L]), Cp=1;
(3) it is apparent that when m>1, Cp <1. In the rest of the proof, we assume that Cg <1.

By stability we mean the coerciveness of the bilinear form Bwpg(w?; w?).

Theorem 5.1 (Stability). Vwe € ¥7¢, the bilinear form based on wavelet Petrov—Galerkin algo-
rithm (5.1) is uniformly coercive, namely

Bwpc(w?; W)= C, (92)

where C.>0 is independent of k.

Proof. By definition,

Bwea(W?w?) = i[|[WS |72 0.1 + Tlal(wl, W) — tic sgn(a)(wl,, )

LXX?
= K”W,gx”%Z([O,L]) + tlalo(w?, W)
—TKQ Sgn(a)(wgcx’ W,Qx) - T|Cl‘Q(W’gx’ W,Qx - MN/Q/Q)
+1r0 sgn(a) (W, wh — w¢/e) (93)
Utilizing inequality (75), it is straightforward that

~ o (1
Bwp(w?w?) > K”W,Qx”%?([O,L]) + T|a|QHWfIx”%2([o,L]) 5 <8|W,Qx||%2([0,L]) + SHW,Qxx'%z([O,L]))

—lalelw 2o, 1w — W/ellzqo.yy — Ticellwlll 2o, op Iws — we/ell2o.1)
(94)
Apply the inverse estimate (77) and the wavelet estimate (88)—(94),
Bwpg (Wi i?) > 0112 0112 ke (1 -202 0|12
weg (W W) = KHW,x”LZ([o,L]) +T|a‘QHW,x||L2([O,L]) ) e + &0 1 ||W,x||L2([O,L])
2 2 2
=Cprlale” Wil zzqo,in Wil 2o, 1) — CoTre™ IWee Iz 0, 1)
TKQ TKE
> (K— 2 CBclzKT— 2@C12> ||W,ngiz([0,L])
+1lalo(1 — CBCI)HW?):”]Z}([O,L]) (95)
Choosing & =rtg, one has
. K
Bweg (W) > {5(1 —2C3Cit — C77°) + tlalo(1 — CBCI)} 1w | 20,17, (96)
Define
Y(t)=1—2CpCit — C37? (97)

There are two distinct roots for equation Y(7)=0,

14 =Cg+/CE4+C/? (98)

In Figure (20), the function Y(7) is plotted against T for Cy =0-01 and C; =2-0.
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Figure 20. Y(7) at a= 1.0, C5 =0-01, C; =2-0
By the assumption that C3C; <1, to meet the condition that
Bwpg(w?w?)>0 (99)

we have to enforce Y(7)>=0 and t(1 — CzC;)>0. This requires that 0 <t <1, where

1:=Cp+1/C3+C;? (100)

Choosing t=1,, we then have
Bwea(w®; W) = olalta || WS || 20,3 = Ce >0 (101)
It should be noted that o[|w||7:, 5, ~ O(e™"). Thus, the estimate is uniform in . O

Theorem 5.2 (Convergence). For the model problem (63) and (64), by using the wavelet packet
generated by a mth order polynomial basis in the variational form (5.1), namely %gO](.’.) and
A gl](-, -). The error for the wavelet Petrov—Galerkin solution is bounded by

9% = @l 10,1 < CQ" || @] rme110,17) (102)

Proof. Let

e=p?—@p=w!—w
=W = Ay'w) + (Hy'w—w)=e’ +1n (103)

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 45, 289-317 (1999)



314 S. LI AND W. K. LIU

where ¢(x) is the exact solution of equation (63). Let

(x)= Y U (x) (104)
IeA

&)=Y §T() (105)
IeA

Define the local Peclet number p, := |a|o/k. By equation (96)

K(3Y (1) + pet(l = CeCr)e% N Fqgo.00)
< Bwpa(e?;¢%)

= Bwpg(e — 11;€%)
<|Bwra(1; €%)| <= Bwpg(e, %) =0
L
— |B(p,¢%) + 7 sgn(a) / &=kt e + an.y)
0

<|B(n,e?)| + tlalol(%/0, n.)| + tre|(€/0, 1 xx)| (106)
By inequality (75), Je;, &, >0 such that

. tlalo (1.
Bwpa(e?;8) < [B(n,e%)| + % (;lle@/glizaow + & ||'1,x|i2<[o,L]>)
ko (1.
+ 3 (g ||ea/9||%2([o,L]) + 82||’1,>CX||%2([0,L])) (107)

Considering the triangular inequality, wavelet estimate (88), and inverse estimate (77), one has
50 /112 TP 012
1€2/ell720.7) = 11€%/0 — €% + €&l 0.0
5 2 2
2(|[e?/e — e,ngLZ([o,L]) + He,QXHLZ([O,L]))
22 2
2(C3C + 1)||3,QxHL2([o,L]) (108)

Following Hughes et al. [25], one may find that J¢>0 such that

NN

2
K 2 a
1B(n,e)| < 2e He»QXHLZ([O,L]) +e (; ”’1”%2([0,L]) + K”"/,X”%%[O,L])) (109)

Then, dividing x through (106), one has

{GY() + (1 = CoCHIe% 2 0.0

1 & p?
< % ||e,gx||iz([o,L]) + Q_ze ””H%Z([O,L]) + 8H’?,x”iz([o,L])

Tpe (2
+ (Z(C%C[z + 1)||e,ngi2([0,L]) t+é ’7,X||%2([0,L]))
10 (2
t5 (g(cécf + I)He,gx”%Z([O,L]) + 82||’1,xx||%2([0,L])) (110)

Find 0 <7<y, such that (see Figure 20)
Y(r)=1 (111)
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Let Y(7)= % We find

11 =Cp+1/C3+0:5C2

Substituting 7; back into (110) yields the following inequality:
(G + peui(1 - CBC1)||eJQx‘|§2([o,L])

2
< et o + 2 o, + el
e 175X L2([0,L]) QZ L*([0,L]) >XIL2([0,L])

pet1 [ 2
+ 62 (E(CéC,z + 1)||€?x|22([0,L])+81’7,x||%2([o,L]))
oty [ 2
+5 <5(C129C12 + D)l 1z 0.1 +62||’7,xx||%2([o,L]))
Follow a similar procedure as in Hughes ef al. [25] and let

8
T+ por(1 = CoCh))
4(C3C? +1)
T 3(1-CsCp)
b 16971 (C3C? + 1)
(1 + peti(1 — CpCr))

€]

We then arrive at the desired result

€4 70,00) < 64p: 5 1112 q0.g) + { o4 7
' ' 0% (1 + peti(1 — CpCy)) ' (1 4 peti(1 = CpCy))
16(C3C? + 1) p,. 1
3(1 = CpCr)(1 + peti(1 — CBCI))}

2 640°ti(C3CT + 1) 2
XH’?,x”Lz([o,L]) + (1+ perr(1 — CBC]))||'7,xxHL2([o,L])

To this end, it is clear that 3Cy, C;, and C, >0 such that

le?2q0.00) < Co@ 2 llZ2qgo,o3y + CillnllZaqo, gy + C20* el 0,0

< C0Q2m||W||12L1m+l([0,L]) + C1Q2m||W||i1m+l([0,L]) + C2Q2m||W||i1m+l([0,L])

~2 2 2
< C o™ [wllzmei o,y
where constants Cy, Cy,C, and C are independent from p,.
That is
= 2
|€Q|Hl([O7L])<CQm||W‘ HmH1([0,L])
Consequently,

‘e|H1([O,L]) |eQ|H‘([0,L]) + |’7|H1([0,L])

<
< Cr0" Wl gmev o,

315

(112)

(113)

(114)

(115)

(116)

(117)

(118)

(119)

(120)
O
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6. CONCLUDING REMARKS

The meshless hierarchical partition of unity developed in Part I of [1] has been applied to a
number of practical engineering problems. It is shown that the wavelet hierarchical partition of
unity developed in [1] enables us to perform some useful numerical operations, such as the wavelet
adaptive refinement, or multiple scale computations. The multiple scale computation carried out
here is beyond the so-called multiple scale analysis done by Liu et al. [3, 11, 17] and Liu and
Chen. [2]. In those works, the multiple scale computation is achieved by varying the support size
of the shape function, whereas in this paper the multiple scale computation is achieved by directly
using the higher-order wavelet bases. The numerical results reported here indicate that the method is
viable, and robust in the meshless environment. A wavelet Petrov—Galerkin method has proposed
as a remedy in dealing with some pathological numerical computations, such as to avoid the
volumetric ‘locking’ and convection dominated destabilization. A stability and convergence proof of
the wavelet Petrov—Galerkin method is also presented for the one-dimensional advection—diffusion
problem, which might provide few insight to the class of stabilization methods. In addition, there
are some advantages of wavelet Petrov—Galerkin method over the conventional Petrov—Galerkin
method; such as there is no need to employ discontinuous Galerkin approach, and there is no need
to evaluate the higher order derivatives, which can save additional computations, especially in a
meshless environment.
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