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a b s t r a c t

In this work, a hierarchical higher order multi-scale cohesive zone model (MCZM) is
developed to simulate the fracture and crack propagation in crystalline solids. The main
novelties of the present work are: (1) the hierarchical cohesive zone model is developed,
and higher order Cauchy–Born rules (up to the third order) are employed to model differ-
ent orders of the process zones; (2) the finite element bubble mode is added into the lower
order element to capture high-order strain gradient effects in the conventional bilinear
quadrilateral element; (3) Barycentric finite element method is used to construct shape
functions for hexagonal shaped cohesive zones, and (4) realistic EAM potential is imple-
mented to simulate fracture in metals. Numerical simulations of fracture and crack prop-
agation in both monocrystalline solids and polycrystalline solids are performed. Results
show that the crack propagation velocity is in general agreement with that of a
corresponding molecular dynamics simulation. Moreover, the transition from intergranu-
lar fracture to transgranular fracture in polycrystalline solids is found to be sensitive to
both the grain size and the relative grain strength. Finally, it is revealed that the proposed
multiscale model can capture the spall fracture in a copper plate under high-speed impact.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Crystalline materials are extensively used in many engineering branches such as aerospace, civil, mechanical engineering
and materials science. The fracture of crystalline materials has been a critical issue in material design, synthesis and perfor-
mance. The failure mechanics of materials [1,2] has been the focal point of material science. Considering the microstructure
of polycrystalline solids, each grain has a unique crystallographic lattice orientation, shape and size, and the grain boundary
between two grains is an inhomogeneous interphase with finite thickness. Many researchers, e.g. [3,4], have pointed out that
the microstructure of polycrystalline solids has strong influences on how crack propagates in crystalline materials.

To model the fracture in crystalline solids, various methods have been developed at different scales. At macro-scale, there
are many classical continuum damage models such as [5–8]. For instance, a temperature dependent creep damage model is
proposed to investigate the damage of polycrystalline ice e.g. [9]. As a physical model of continuum damage,
micromechanics-based void growth and coalescence models of polycrystalline solids have been extensively studied
[10,11]. However, the main drawback of continuum damage models is that these models cannot describe the effects of
microstructure characteristics such as lattice orientations and shapes [1,12]. At micro-scale, although ab initio methods or
the first principle method are accurate, it is hardly practical to implement them to solve problems of large atomic systems
metals.



Nomenclature

G gradient of deformation gradient
H second order gradient of deformation gradient
Fe element deformation gradient
P the first Piola–Kirchhoff stress
/ the atomistic potential
Q the stress couple
Ri undeformed lattice distance
S the second Piola–Kirchhoff stress
r the Cauchy stress
U the second order stress couple
u(x) the displacement field
W strain energy density
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because of the expensive computational cost [13]. Classical molecular dynamics (MD) increases the computational speed
substantially but makes a compromise in accuracy compared to the first principle method e.g. [14]. Nevertheless, it is still
impossible to conduct simulations of large scale atomistic systems for practical applications. From micro-scale to mesoscale,
researchers have proposed many multi-scale methods in order to bridge the atomistic and continuum scales in a consistent
manner. For example, a multi-scale boundary element method is proposed to investigate the degradation and fracture in
polycrystalline materials [15]. Clayton [1] investigated dynamic thermomechanical response of a tungsten heavy alloy by
considering cohesive interaction between adjacent grains.

Since middle 1990s [16], the cohesive zone model (CZM) has been widely used to simulate fractures in solid materials. It
is a finite element version of classical cohesive crack model proposed by Dugdale [17] and Barrenblatt [18]. In this model,
cohesive zone separates bulk elements automatically based on the magnitude of the external load, and it is governed by
the traction-separation cohesive law between two bulk elements. This method has gained much popularity in computational
materials failure analysis and mesoscale polycrystalline modeling. However, one prominent drawback of the conventional
cohesive zone model lies in the fact that the bulk and cohesive zone constitutive relations are not related, and the empirical
cohesive laws may not describe a mixed-mode decohesion mechanism of solids [19]. To overcome this problem, Zeng and Li
[20] and Li et al. [21] proposed a multi-scale cohesive zone model, which employs an atomistic potential to construct the
constitutive relation of bulk material using the Cauchy–Born rule. In particular, a depletion potential of the cohesive
interface is constructed in accord with the atomistic potential inside the bulk material. These potentials naturally take into
account the information of lattice microstructure, such as atom positions and lattice orientations. Subsequently, the
multi-scale cohesive zone model was utilized to simulate many phenomenons in practice. For example, Qian and Li [2]
adopted the multi-scale cohesive zone model to study the crack propagation in polycrystalline solids. Zeng and Li used this
method to model composite materials [22]. He and Li [23] combined the embedded atom method (EAM) with cohesive zone
model (CZM) to simulate the fracture and crack propagation at mesoscale and macroscale. Liu and Li [24] proposed a finite
temperature multi-scale interphase zone model to simulate crack propagation of metallic materials. Fan and Li [25]
employed the multi-scale cohesive zone model(MCZM) to study crack propagation in polycrystalline solids, by making
use of the higher order Cauchy–Born rules of the same atomistic potential in both the cohesive interface and bulk elements.

There are several differences between the current work and that in [25]. In the original work of Fan and Li [25], a bilinear
quadrilateral element was employed to model the cohesive zone element. The deformation inside the process zone is
assumed to be inhomogeneous, and the second order Cauchy–Born rule is used to derive the constitutive relation. However,
the bilinear quadrilateral element only provides bilinear polynomials, which cannot support the main part of the second
order strain gradients, so that the effect by using second-order Cauchy–Born rule based constitutive relation is almost the
same as that by using the first-order Cauchy–Born rule based constitutive relation. Therefore, in the present work, a bubble
mode is added into the quadrilateral element to support high-order strain gradient effects. Moreover, through mathematical
manipulation of integration by parts, an interface cohesive law that is capable of describing the lattice microstructure of the
cohesive zone is derived.

In this work, the multi-scale cohesive zone model is constructed in a Lagrange type of the Galerkin finite element weak
form formulation. Barycentric finite element method is used to construct shape functions and quadrature integration rules
for hexagonal domains. Numerical simulations of fracture in crystalline and polycrystalline solids are carried out. The first
example only considers the first-order process zone in polycrystalline solids, while both the first-order and second-order pro-
cess zone are taken into account in crystalline solids for the second and third example. Finally, the effects of the grain size and
the strength ratio between the intergranular fracture to transgranular fracture transition are investigated quantitatively. The
critical strength ratio for the transition from intergranular fracture to transgranular fracture is given for different grain sizes.
Please cite this article in press as: Lyu D et al. A hierarchical multiscale cohesive zone model and simulation of dynamic fracture in metals.
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This paper is organized as follows. Section 2 introduces the concept of multiscale cohesive zone model (MCZM). Section 3
presents the modeling of the polycrystalline structure. In Section 4, modeling of the multi-scale cohesive zone is provided.
Section 5 focuses on constructing the Galerkin weak-form and the corresponding implementations. Several numerical
examples are presented in Section 6. Finally, a few remarks are made in Section 7.

2. Multiscale cohesive zone model (MCZM)

From the viewpoint of the statistical mechanics, the multiscale cohesive zone model (MCZM) is a coarse grain model. In
the MCZM, a global non-uniform deformation field is discretized into a set of bulk crystal elements with piece-wise uniform
deformations, and they are connected by a network of process zone that contains many finite size cohesive elements of
different orders, in which the deformations are highly non-uniform and nonlinear as shown in Fig. 1.

A comparison between the conventional cohesive zone model and the multiscale cohesive model is shown in Fig. 2. In the
conventional cohesive zone model [16], the cohesive element is a pair of discrete cohesive surfaces with zero width or thick-
ness, and two surface elements are glued together by prescribing certain cohesive laws between them. The introduction of
the cohesive surface element is to allow discontinuity kinematics in finite element solution. While for the multiscale
cohesive zone model, bulk elements with uniformed deformation are connected by finite-width cohesive zone element with
nonlinear or non-uniform deformations.

From Fig. 1, one may find that the crystalline solid bock is decomposed into bulk crystal elements (0-th order process
zone) and higher order cohesive zone (interphase) elements, in which the constitutive modeling for both bulk materials
as well as cohesive zones are constructed based on the same atomistic potential and lattice microstructure inside. However,
the order of the Cauchy–Born rules for the bulk crystal elements and the cohesive zone are different.

3. Modeling polycrystalline microstructure

In this work, Centroidal Voronoi Tessellation has been extensively utilized to create various random microstructure to
investigate the effect of grain morphology on mechanical properties of polycrystalline solids e.g. [26,27,3]. In this work,
the test specimens are generated by centroidal voronoi tessellation. As can be seen from Fig. 3, each Voronoi cell represents
a grain and all edges of cells are considered to be grain boundaries. Fig. 6 shows triangular elements generated by using the
Delaunay triangulation method inside each grain, which are treated as bulk elements. Cohesive zones are constructed on the
interfaces of bulk elements. For the bulk elements and the cohesive zones in the same grain, they have the same lattice
orientation. However, we randomly assign each grain a lattice orientation a g in order to characterize the varying grain
morphology. Here the superscript g represents granular region and the superscript gb denotes the zones on grain boundaries.
Meanwhile, the lattice orientation of grain boundary zones agb can be assigned based on different assumptions. For the
purpose of simplicity, the lattice orientation of a grain boundary zone is set to be the average of orientations of the two
adjacent grains, i.e. agb ¼ 1

2 ða g
A þ a g

B Þ, as shown in Fig. 3.

4. Constitutive modeling

In this section, we discuss how to derive the constitutive equation inside the bulk and cohesive zone by using the higher-
order Cauchy–Born rule. Before deriving stress–strain relation, we first explain what is the Cauchy–Born rule.

4.1. Higher-order Cauchy–Born rules

In the following, we first lay out the hierarchical higher order Cauchy–Born rules up to the third order.

4.1.1. The 1st order Cauchy–Born rule in the 0th order process zone (bulk element)
In a crystalline bulk element, say element e, which usually is a part of single crystal or a single grain, we assume that the

deformation is uniform, and thus the deformation gradient inside the whole element is the same, i.e.
Please
Engng
FeðXÞ ¼ @x
@X

���
x
¼ const:; 8X 2 Xe
Note that in the entire solid domain we have Fe; e ¼ 1;2; . . . ; nb
elem, where nb

elem is the total number of bulk (superscript)
elements.

Then based on the first order Cauchy–Born rule, an arbitrary deformed chemical bond ri between two atoms inside the
element can be related to the original undeformed bond Ri as
ri ¼ Fe � Ri; i ¼ 1; . . . ;nb ð1Þ

where index i denotes a chemical bond inside element e and nb represents the total number of bonds the element. In practice,
chemical bonds in a representative unit inside Xe, nb.

With these definitions, the strain energy density in the bulk element e can be written as
cite this article in press as: Lyu D et al. A hierarchical multiscale cohesive zone model and simulation of dynamic fracture in metals.
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Fig. 1. Schematic illustration and local finite element mesh of MCZM.

4 D. Lyu et al. / Engineering Fracture Mechanics xxx (2016) xxx–xxx

Please
Engng
W0e ¼ 1
2X0

Xnb
i¼1

/ðriÞ ¼ 1
2X0

Xnb
i¼1

/ðFe � RiÞ ¼ WðFeÞ; ð2Þ
where nb again indicates the number of neighboring bonds in a representative unit cell; X0 is the volume of the unit cell in
the referential configuration; /ðriÞ is the atomistic potential, and ri ¼ jrij is the current length of bond ri in the unit cell. The
energy density expression (2) is formulated based on the first order Cauchy–Born rule (see Eq. (1)), and the first
Piola–Kirchhoff stress tensor inside the bulk crystal element can be found by
P ¼ @W0e

@F

���
Fe
:

4.1.2. The 2nd order Cauchy–Born rule in the 1st order process zone
For the first-order process zone element, which is usually a rectangular strip between two adjacent sides of two bulk

crystal elements, the second order Cauchy–Born rule is employed to establish the constitutive relation in it. The so-called
second order Cauchy–Born rule assumes that in a representative 1st order process zone element e, a deformed chemical
bond between two atoms may be expressed by the following expression,
ri ¼ Fe � Ri þ 1
2
Ge : ðRi � RiÞ ð3Þ
where
Ge ¼ @2x
@X� @X

¼ @Fe

@X
¼ const: 8X 2 Xe
Note that in this case, Fe – const.
Taking into account the 1st order strain gradient effect on strain energy density, we may write the strain energy density in

the 1st order process zone element e as
Fig. 2. Comparison of (a) conversional cohesive zone model and (b) multiscale cohesive zone model.

cite this article in press as: Lyu D et al. A hierarchical multiscale cohesive zone model and simulation of dynamic fracture in metals.
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Fig. 3. Voronoi cell representation of polycrystal grains and orientations of grains and grain boundary.
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Please
Engng
W1e ¼ 1
2X0

Xnb
i¼1

/ðriÞ ¼ 1
2X0

Xnb
i¼1

/ Fe � Ri þ 1
2
Ge : ðRi � RiÞ

����
����

� �
¼ WðFe;GeÞ; ð4Þ
which is based on the second order Cauchy–Born rule (see Eq. (3). Subsequently, the constitutive relation inside the 1st order
process zone can be expressed as,
P ¼ @W1e

@F

���
Fe ;Ge

and Q ¼ @W1e

@G

���
Fe ;Ge

:

4.1.3. The 3rd order Cauchy–Born rule in the 2nd order process zone
For the second-order process zone element, which is either a hexagonal element or a rectangular element (see Figs. 13

and 18), the third-order Cauchy–Born rule is employed to derive its constitutive relation. In the third-order Cauchy–Born
rule, a chemical bond can be expressed as
ri ¼ Fe � Ri þ 1
2!

Ge : ðRi � RiÞ þ 1
3!

He
..
.ðRi � Ri � RiÞ; ð5Þ
where i ¼ 1; . . . ;nb is the index of number of bonds in a unit cell, and
He ¼ @3x
@X� @X� @X

¼ @2F
@X� @X

¼ @G
@X

¼ const: 8X 2 Xe:
Note that the dot product operation defined in this paper has the following equivalent indicial notations,
F � Ri ¼ FmnRnem; G : ðRi � RiÞ ¼ G‘mnRmRne‘; and

H..
.ðRi � Ri � RiÞ ¼ H‘mnoRmRnRoe‘; ‘;m; n; o ¼ 1;2;3
where e‘; ‘ ¼ 1;2;3 are the unit base vectors of the Cartesian coordinates.
Following the similar argument mentioned above, we can show that the strain energy density in the second-order process

zone element e may be generally expressed in the form of
W2e ¼ WðFe;Ge;HeÞ:

Note that in this case Fe – const. and Ge – const.

By taking into account the first and second order strain gradients, we can derive the constitutive relations in the 2nd
order process zone as
P ¼ @W2e

@F

���
Fe ;Ge ;He

; Q ¼ @W2e

@G

���
Fe ;Ge ;He

and U ¼ @W2e

@H

���
Fe ;Ge ;He

:

It is noted in passing that we have interchangeably used terms process zone and cohesive zone. In fact, there is a subtle
difference between the two: the term cohesive zone mainly refers to interface or interphase zone, whereas the term process
zone is a general term for the defect zone that not only refers to interface/interphase zone, but also refers to other types of
defects such as voids, dislocation loops, and disclination zones.
cite this article in press as: Lyu D et al. A hierarchical multiscale cohesive zone model and simulation of dynamic fracture in metals.
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4.2. Multiscale constitutive models

Different from [25], in this work, we simulate dynamic fracture in real materials, specifically in metallic materials. For
metallic materials, we can use the atomistic potential based on the embedded atom method (EAM) to construct the free
energy density function for the crystal solid under consideration,
Please
Engng
W ¼ 1
X0

Xnb
i¼1

ð1� vÞFð �qiÞ þ
1
2
v
X
j–i

/ðrijÞ
 !

; rij ¼ jrj � rij: ð6Þ
where v is a weighting parameter between zero and one and /ðrijÞ is the pairwise interaction function. Since /ðrijÞ is always
shared by two atoms, there is a coefficient of 1

2 for the pairwise interaction function. Fð �qiÞ is the embedded energy function
and the host electron density �q is a function of the electron density
�q ¼
X
j–i

qðrijÞ:
For simplicity, in this paper, we only consider the crystal materials whose crystal lattices have only one atom inside the
unit cell, i.e. the Bravais lattice. Under this restriction, the potential energy density inside a unit cell can be further simplified
as
W ¼ 1
X0

ð1� vÞFð�qÞ þ 1
2
v
X
j

/ðrjÞ
 !

; �q ¼
X
j

qðrjÞ; ð7Þ
where i; j ¼ 1;2; . . . ;nb is the bond number of pair potential in a unit cell. With the above free energy density, the first Piola–
Kichhoff stress can be obtained as
P ¼ @W
@F

¼ 1
X0

Xnb
j¼1

ð1� vÞF 0ð�qÞq0ðrjÞ þ 1
2
v/0ðrjÞ

� �
rj � Rj

rj
: ð8Þ
Other useful formulas for stresses and high order stress couples can also be derived as,
S ¼ 1
X0

Xnb
j¼1

ð1� vÞF 0ð�qÞq0ðrjÞ þ 1
2
v/0ðrjÞ

� �
Rj � Rj

rj
; ð9Þ

r ¼ 1
X0

Xnb
j¼1

ð1� vÞF 0ð�qÞq0ðrjÞ þ 1
2
v/0ðrjÞ

� �
rj � rj
rj

; ð10Þ

Q ¼ @W
@G

¼ 1
2X0

Xnb
j¼1

ð1� vÞF 0ð�qÞq0ðrjÞ þ 1
2
v/0ðrjÞ

� �
rj � Rj � Rj

rj
; ð11Þ

U ¼ @W
@H

¼ 1
6X0

Xnb
j¼1

ð1� vÞF 0ð�qÞq0ðrjÞ þ 1
2
v/0ðrjÞ

� �
rj � Rj � Rj � Rj

rj
: ð12Þ
Note that from Fig. 3 one may find that the stress tensor calculated based on the above Cauchy–Born rule depends on each
grain’s lattice orientation.

4.3. Bubble mode and benchmark test

In MCZM, the same atomistic potential is used to construct constitutive relations for different types of elements, but
different types of elements may have different kinematic and constitutive constrains. i.e. the bulk element only supports
uniform deformation, which is modeled by the first-order Cauchy–Born rule. Non-uniform deformation is assumed to be
confined in the cohesive zone elements, which is modeled by the second or third order Cauchy–Born rule. To have a
quantitative view on the difference of the constitutive relations between the bulk and cohesive elements, a benchmark test
is performed. Fig. 4 shows the schematic of a cohesive element sandwiched by two triangular bulk elements. The first-order
Cauchy–Born rule and the second-order Cauchy–Born rule are used to model the bulk and cohesive zone element,
respectively. The benchmark test is an uniaxial test: an external load is gradually applied at the top nodes of two bulk
elements, during which the relative displacement between the two nodes is measured.

Given that the shape functions of the four-node bilinear quadrilateral element (Q4) only contains bilinear polynomials,
and it does not have the majority of the second order derivatives. A bubble mode N5ðXÞ is added into the Q4 element to
support non-linear deformation that is required in the constitutive equation modeled by the second-order Cauchy–Born rule.
The four-node bilinear quadrilateral element shape functions with the bubble mode are given as follows,
cite this article in press as: Lyu D et al. A hierarchical multiscale cohesive zone model and simulation of dynamic fracture in metals.
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Fig. 4. Schematic illustration of the benchmark test setting.
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Please
Engng
N1ðn;gÞ ¼ 1
4 ð1� nÞð1� gÞ � 1

4N5ðn;gÞ
N2ðn;gÞ ¼ 1

4 ð1þ nÞð1� gÞ � 1
4N5ðn;gÞ

N3ðn;gÞ ¼ 1
4 ð1þ nÞð1þ gÞ � 1

4N5ðn;gÞ
N4ðn;gÞ ¼ 1

4 ð1� nÞð1� gÞ � 1
4N5ðn;gÞ

N5ðn;gÞ ¼ ð1� n2Þð1� g2Þ;

and the element interpolation field becomes
uðXÞ ¼ N1ðXÞu1 þ N2ðXÞu2 þ N3ðXÞu3 þ N4ðXÞu4 þ N5ðXÞu5; ð13Þ

where the interpolation field is within the 1st order cohesive zone.

There are different ways to determine the nodal displacement of the bubble node. Without introducing new degrees of
freedom, we adopt the following two different approaches.

(a) Case 1: the displacements of the bubble mode equal the average displacements of the four nodes in the cohesive zone
element, i.e.
u5 ¼ 1
4

X4
i¼1

ui;
(b) Case 2: the displacements of the bubble mode equal the average displacements of the six nodes of the bulk and the
cohesive zone element, i.e.
u5 ¼ 1
6

X4
i¼1

ui þ u6 þ u7

 !
:

In the computations, the first order Cauchy–Born (CB) rule is used in two triangular bulk elements, whereas in the cohe-
sive zone element (the red1 one) either the first order CB rule is used or the second order CB rule is used. The load-deflection
curves are plotted in Fig. 5. As can be seen, the peak value based on the first-order CB rule is higher than that of the second-order
CB rule for Case 2, which implies that the cohesive zone element is relatively weaker than the bulk element, and thus in
simulations the cohesive zone will always fail or break first. However, for Case 1, which treats the average displacement of
the four nodes of the cohesive zone element as that of the bubble mode, the peak values calculated based on the first and
second-order Cauchy–Born rules are almost the same. The reason is that under the kinematic assumption of Case 1 the bubble
mode effect is canceled out, and the deformation in the cohesive zone element is a linear homogeneous displacement field
which has no difference in stress value prediction when using the first-order and second-order Cauchy–Born rule to calculate
stress. The results of the benchmark test clearly show that the higher order strain gradient used in a constitutive model, the
lower strength of the constitutive model.
interpretation of color in Fig. 4, the reader is referred to the web version of this article.
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Fig. 5. Constitutive behaviors of the first order (bulk) and second order (cohesive) cohesive zones: (a) Case 1 and (b) Case 2.

8 D. Lyu et al. / Engineering Fracture Mechanics xxx (2016) xxx–xxx
5. FEM implementations

In this Section, we discuss the related multiscale finite element formulation, and its implementation.
The total energy of the polycrystalline solid is
Please
Engng
K ¼
Z
X

1
2
q _u � _udV ð14Þ
where q is the mass density, _u is the velocity field in the continuum. The internal free energy of crystal continuum can be
expressed as
W int ¼
Z
X
WðF;G;HÞdV ð15Þ
where Wð�Þ is the strain gradient energy density. To derive finite element formulation, we consider Hamilton’s principle, in
which adopted in terms of displacement variation between the fixed time interval from t0 to t1,
d
Z t1

t0

ðWext þW int �KÞ ¼ 0 ð16Þ
where Wext is the external potential energy. The variation of kinetic energy is,
dK ¼
Z
X
q _u � d _udV ð17Þ
Via integration by parts, we have
Z t2

t1

q _u � d _udt ¼ q _u � du
���t2
t1
�
Z t2

t1

q€u � d _udt ¼ �
Z t2

t1

q€u � d _udt ð18Þ
The first variation of the internal energy is
dW int ¼
Z
X

Pð/Þ : dFþ Q ð/Þ...dGþ Uð/Þ :: dH
� �

dV ð19Þ
where the symbols :; ..
.
and :: denote tensor dot product operators. They represent double contraction, triple contraction and

the fourth contraction, which are used for second-order, third-order and fourth-order tensor dot product calculations,
respectively. In particular, an equivalent indicial notation for the last term in (19) is
U :: dH ¼ Uijk‘dHijk‘:
The first variation of the external potential energy is calculated as
dWext ¼ �
Z
X
b � dudV �

Z
@Xt

�T � dudS ð20Þ
where b is the body force and �T is the traction vector on @Xt .
cite this article in press as: Lyu D et al. A hierarchical multiscale cohesive zone model and simulation of dynamic fracture in metals.
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The Galerkin weak-form of the MCZM can be written asZ � � Z Z
Please
Engng
X
q€u � duþ Pð/Þ : dFþ Q ð/Þ...dGþ Uð/Þ :: dH dV ¼

X
b � dudV þ

@Xt

�T � dudS: ð21Þ
Successive integration by parts for the internal energy yields
dW int ¼ �
Z
X
rX � P�rX � ðQ �rX � UÞ½ � � dudV þ

Z
@X

P�rX � ðQ �rX � UÞ½ � �Nf g � dudS

þ
Z
@X

ðQ �rX � UÞ �N½ � : dFdSþ
Z
@X
ðU �NÞ...dGdS; ð22Þ
where the term for bulk element will disappear by taking account into the inertia and body force in the cohesive zone,
rX � ðP�rX � ðQ �rX � UÞÞ þ b ¼ q€u; 8X 2 Xc: ð23Þ

Considering the assumption that the crystalline solid is surrounded by a uniformly deformed environment, that is
dF ¼ 0; dG ¼ 0; 8X 2 @V:
Then the virtual work of the internal cohesive force can be simplified as
dWcoh ¼
Z
@X

ðP�rX � ðQ �rX � UÞÞ �N½ � � duds; ð24Þ
where the divergence of the second-order and the third order stress tensors can be directly derived analytically through Eqs.
(11) and (12) as
rX � Q ¼ 1
2X0

Xnb
j¼1

ð1� vÞF 00ð�qÞq02ðrjÞ þ ð1� vÞFð�qÞq00ðrjÞ þ 1
2
v/00ðrjÞ

� �

G : ðRj � RjÞ � Rj þ 1
2
H..
.ðRj � Rj � RjÞ � Rj

� �
ð25Þ
and
rX � U ¼ 1
6X0

Xnb
j¼1

ð1� vÞF 00ð�qÞq02ðrjÞ þ ð1� vÞFð�qÞq00ðrjÞ þ 1
2
v/00ðrjÞ

� �

G : ðRj � RjÞ � Rj � Rj þ 1
2
H..
.ðRj � Rj � RjÞ � Rj � Rj

� �
ð26Þ
As shown in Eqs. (25) and (26), the divergence of the second order and the third order stress tensors are associated with the
derivative of the deformation gradient, which requires the second and third derivatives of FEM shape functions in explicit
expressions. That is exactly why a bubble mode is added into the bilinear quadrilateral element as shown in the benchmark
test.

Consider the following local FEM interpolation function in a generic element
uhðXÞ ¼
Xnnode
I¼1

NIðXÞdI ð27Þ
By substituting FEM shape function into the Galerkin weak form and considering the integration on the surface, one can
obtain the discrete equations of motion as,
M€dþ f intðdÞ þ fcoheðdÞ ¼ fext; ð28Þ

where
M ¼ Anb
elem

e¼1

Z
Be0

q0N
eTNedV

f int ¼ Anelem
e¼1

Z
Be0

BeTPeðdÞdV

fext ¼ Anelem
e¼1

Z
Be0

NeTBedV þ
Z
@tBe0

NeT�TedS

( )

fcohe ¼ Anc
elem

e¼1

Z
@Ce

o

ðP�rX � ðQ �rX � UÞÞ �N½ � �NeTdS

( )
in which A is the element assembly operator, Ne is the element shape function matrix, Be is the element B-matrix.

Remark 5.1. The Newmark-b method with b ¼ 0; c ¼ 0:5 [28] is used as the explicit time integration scheme. The traction
force T in the above equation is defined as follows:
T :¼ ðP�rX � ðQ �rX � UÞÞ �N; 8X 2 Xc;
cite this article in press as: Lyu D et al. A hierarchical multiscale cohesive zone model and simulation of dynamic fracture in metals.
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which means that it is a higher order traction force. A higher order interface cohesive zone is constructed, whose constitutive
relation may be derived form the atomistic potential by considering the lattice microstructure inside the cohesive zone [25].
6. Numerical examples

In this Section, we present several numerical simulation examples of dynamic crack propagation in polycrystalline and
crystalline solids to validate the proposed higher order multiscale cohesive zone model. The first example is the
two-scale cohesive zone modeling of dynamic fracture in a polycrystalline solid, in which only the first-order process zone
is considered in the simulation. Meanwhile, the effects of the grain size and the strength ratio on the intergranular fracture to
transgranular fracture transition are studied and discussed. In the second example, a three-scale cohesive zone model is
employed to study dynamic fracture in a single crystal, in which the first and second order process zones are used in numer-
ical simulations. We have compared the results obtained from the multiscale cohesive zone model with those obtained from
molecular dynamics simulations. The third example investigates the spall fracture in a copper plate under high-speed by
using a three-scale cohesive zone model.

6.1. Example I: Two-scale cohesive zone modeling of crack propagation

This example intends to demonstrate the effectiveness of the proposed method in simulation of the crack propagation in
polycrystalline solids by considering only the first-order process zone. As shown in Fig. 6, a rectangular plate (2 mm � 2 mm)
is subjected to unilateral tension in Y direction. Using the multi-scale cohesive zone method, this plate consists of 121 grains
and 2376 bulk elements (see Fig. 6), which ultimately contains 3484 first-order process zone elements in this model. Along
grain boundaries, a pre-crack is created in the left middle part of this plate. The simulation time step is set to be
Dt ¼ 1� 10�10 s. In this example, both the bulk and cohesive zone element adopt the same inter-atomic potential—the
12–6 Lennard-Jones potential,
Please
Engng
/ ¼ 4�
r
r

� �12
� r

r

� �6� �
ð29Þ
where � is the depth of the potential well, r is the atomistic bond length, and r is the finite distance at which the atomistic
potential is zero.

Buban et al. (2006) [29] demonstrated that grain boundaries are generally weaker than grains due to the atomic-scale
defects on grain boundaries. In this paper, strength of the process zone is characterized by both the atomistic bond strength
and its nonlinear deformation measure. To study the effects of cohesive strength, we first consider the case that the strength

of the cohesive zones inside the grains is much higher than that of the grain boundaries, for instance, 3�gbdepl ¼ � g
depl. As shown

in Fig. 7, the crack path follows exactly along the grain boundaries.

6.1.1. Effects of cohesive strength ratio on fracture pattern
In this section, the effects of cohesive zone strength along grain boundaries and in grain cells on crack path are

investigated. The cohesive strength ratio is denoted as Rs ¼ �gb=� g , where � g represents the width of the potential in the
process zones inside the grains and �gb denotes the width of the potential in the process zone along the grain boundaries.
Several cases of Rs are considered, such as 0.4, 0.5, 0.6, 0.7, 0.75, and 0.8. As shown in Fig. 8, as Rs increases to 0.75, the crack
begins to transform from intergranular fracture to transgranular fracture.

6.1.2. Effects of grain size
To investigate the effects of grain size, two additional polycrystalline microstructures with 225 and 361 grains are

generated, as shown in Fig. 9. Figs. 10 and 11 offer the simulation results at different cohesive strength ratio for 225 and
361 grains, respectively. It can be clearly seen that the grain size has influences on the fracture pattern transition in that
the transition occurs at strength ratio Rs ¼ 0:9 for 225 grains and increases to 0.95 for 361 grains. That is to say, the critical
strength ratio for the transition from intergranular fracture to transgranular fracture increases as the grain size decreases.
One possible explanation is that as the grain size decreases, the number of grain boundaries will increase. Hence it is more
likely for the crack to propagate along the grain boundary, which is consistent with the conclusion made in [30] using a
different simulation method.

Based on the numerical study, the following conclusions may be drawn:

(1) If the strength of the cohesive zone inside the grains is much higher than that of the grain boundaries, the crack path
follows along the grain boundaries (see: Fig. 7).

(2) The strength ratio Rs plays an important role in the fracture pattern. For example of the case of 121 grains, when Rs

increases to 0.8, the crack pattern begins to change from intergranular fracture to transgranular fracture.
(3) Simulation results of two additional structures with different grain sizes show that crack pattern is sensitive to the

grain size (see Figs. 10 and 11). The transition occurs at strength ratio Rs ¼ 0:8 for 121 grains, Rs ¼ 0:9 for 225 grains,
and Rs threshold increases to 0.95 for 361 grains.
cite this article in press as: Lyu D et al. A hierarchical multiscale cohesive zone model and simulation of dynamic fracture in metals.
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Fig. 6. Problem setting (Example I): uniaxial tension of a polycrystal specimen.
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6.2. Example II: Three-scale cohesive zone modeling of crack propagation

In the second example, we present a study of three-scale cohesive zone modeling and simulation of dynamic fracture in a
single crystal Copper. The bulk crystal element is treated as the zero-th order process zone, i.e. a non-defect identity; The
interphase zone is modeled as the first order process zone, and the potential void zone as the second order process zone.
The simulation specimen and its boundary condition are shown in Fig. 12.

To validate the method, the simulation results are compared with that of corresponding molecular dynamics simulation
[31]. Since the (111) plane is the most susceptible slip plane in the FCC single crystal, so that the material on (111) plane
must be weaker than that of bulk crystals. Therefore we would like to study the crack propagation within the (111) plane. As
shown in Fig. 12, a high strain rate boundary condition is prescribed to initiate mode-I fracture. The finite element mesh con-
tains the 0th (triangular element), 1st (rectangular element) and 2nd (honeycomb element) order process-zone elements,
which are shown in the zoomed region of Fig. 12. Details of process zone mesh are provided in Fig. 13. At each vertex, there
is one triangle, two rectangles and one hexagon. In this example, it is assumed that bulk elements only contain uniform
deformations, which are described by the first-order Cauchy–Born rule. The rectangular and honeycomb elements can sup-
port non-uniform deformations, which are modeled by the second-order and third-order Cauchy-born rules.

6.2.1. Embedded atom method (EAM) potential
In this example, an analytical EAM potential is adopted to describe material constitutive relation in the fracture simula-

tion, which was used before in the molecular dynamic simulations e.g. [31]. The EAM potential is explicitly given as,
Please
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W ¼ 1
X0

Xnb
i¼1

½ð1� vÞFð �qiÞ þ
1
2
v
X
j–i

/ðrijÞ�; �qi ¼
X
j–i

qðrijÞ; ð30Þ
where v is a weighting parameter between zero and one; the parameter v ¼ 1
3 is set based on the embedded atom method

[32]; Fð�qÞ is the embedded energy function; and /ðrÞ is the pairwise interaction function, whose expression can be written as
follows:
Fð�qÞ ¼ �
dðdþ 1Þ

2
e�q ln �q ð31Þ
and
/ðrÞ ¼
vwðrÞ; r < rspl

v wðrsplÞ þ @w
@r ðrsplÞðr � rsplÞ � 1

6Aðr � rmaxÞ3
n o

; rspl 6 r < rmax

0; rmax 6 r

8>><
>>: ð32Þ
where rspl is the reflection point in the potential; rmax is the cutoff distance; and the potential function can be of different
types based on specific problems. In this example, we choose
cite this article in press as: Lyu D et al. A hierarchical multiscale cohesive zone model and simulation of dynamic fracture in metals.
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Fig. 7. Crack propagates along grain boundaries: (a) t ¼ 1:5 ls; (b) t ¼ 2:0 ls; (c) t ¼ 3:0 ls, and (d) t ¼ 4:0 ls.

Fig. 8. Stress distribution of fractures in a polycrystalline solid with different strength ratios: (a)Rs ¼ 0:6 (intergranular); (b)Rs ¼ 0:75 (intergranular); and
(c)Rs ¼ 0:8 (transgranular).
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Fig. 9. Voronoi cells with different grain size: (a) Voronoi cell (225 grains, Poly 225); (b) Voronoi cell (361 grains, Poly 361).

Fig. 10. Simulated stress distributions in the fractured polycrystalline solid with different strength ratios (225 grains): (a)Rs ¼ 0:75 (intergranular);
(b)Rs ¼ 0:8 (intergranular); (c)Rs ¼ 0:9 (transgranular).

Fig. 11. Simulated stress distributions in the fractured polycrystalline solid with different strength ratios (361 grains): (a) Rs ¼ 0:75 (intergranular); (b)
Rs ¼ 0:85 (intergranular); (c) Rs ¼ 0:95(transgranular).
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Fig. 12. Schematic illustration of Example II and multiscale process zone mesh.

Fig. 13. The process of process zone tiling: (1) Yellow region: the zero-th order process zone; (2) Blue region: the 1st process zone, and (3) Green region: the
2nd process zone. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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� �12
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; ð33Þ
and the constant A in Eq. (32) is defined as
A ¼ 8 @w
@r ðrsplÞ
	 
3
9ðwðrsplÞÞ2

ð34Þ
where � is the depth of the potential well, and r0 is the equilibrium distance. The inflection point rspl can be obtained by solv-
ing the following equation
@2w
@r2

ðrsplÞ ¼ 0: ð35Þ
A solution of rspl may be found as rspl ¼ 1:244455r0. The cutoff distance is given by
rmax ¼ rspl � 3wðrsplÞ
2 @w

@r ðrsplÞ
: ð36Þ
A practical value of rmax in numerical computation is found as rmax ¼ 1:547537r0. The electron density function is given by
qðrÞ ¼
�q0

dðdþ1Þ
r2max�r2

r2max�1

� �2
0 < r < rmax

0 rmax 6 r

8<
: ð37Þ
where �q ¼PjqðrjÞ; �q0 ¼ 1=e, and d is the dimensionality.
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For easy reference, the material parameters used in this example, the depth of the potential well � and the equilibrium
distance r0 for Copper, are listed in Table 1, in which a comparison between the numerical value and the experimental
measured value [33] is made.

6.2.2. Barycentric finite element method and its quadrature rule
In finite element implementation of the second example, linear triangular shape functions are adopted for the bulk

element, bilinear quadrilateral shape functions with bubble mode are selected for the first-order process zone element,
and shape functions for the hexagonal elements are employed in the second-order process zone. Implementing the
hexagonal element and calculating the strain gradient field inside is not a trivial task. In this work, the 6-point honeycomb
Wachspress element [34] is used to model the second-order process zone. The local finite element interpolation field is as
follows:
Please
Engng
uðX;Y; tÞ ¼
X6
I¼1

NIðn;gÞuIðtÞ ð38Þ
Let Xe denote the regular hexagonal domain (see Fig. 14). The shape function Ni, corresponding to node i is given by:
Niðn;gÞ ¼ ci
kiþ2ðn;gÞkiþ3ðn;gÞkiþ4ðn;gÞkiþ5ðn;gÞ

qðn;gÞ ; i ¼ 1;2;3;4;5;6 ð39Þ
where kiþ1ðn;gÞ ¼ 0 represents the line segment connecting i and iþ 1. A circumference circle
qðn;gÞ ¼ n2 þ g2 � R2 ¼ 0 ð40Þ

encompasses the points of intersection of the extensions of the edge. The normalizing factor is defined as:
ci ¼ qðni;giÞ
kiþ2ðni;giÞkiþ3ðni;giÞkiþ4ðni;giÞkiþ5ðni;giÞ

ð41Þ
For the numerical integration of hexagonal element, the symmetric quadrature rules are adopted, which are proposed by
Lyness and Monegato [35]. As illustrated in Fig. 15, the quadrature rule is invariant under 60� rotation due to the hexagonal
symmetry of the integration region, which can be expressed:
Z

Xe

fdX ¼ x0f ð0;0Þ þ
XN
j¼1

X6
i¼1

xjf rj;aj þ pi
3

� �
ð42Þ
Table 1
Material parameters for copper.

Parameter Experiment EAM-Holian

C1111 [GPa] 169 168.2
C1122 [GPa] 122 117.5
C1212 [GPa] 75.3 83.2
� ½eV � – 0.43894774

r0 ½ _A� – 2.57110688

Fig. 14. The Washspress shape function for the honeycomb element.
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Fig. 15. Schematic illustration of the quadrature rule for the regular hexagonal element.

Fig. 16. Stress distributions in a crack propagation sequence.
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where xj denotes the weight corresponding to the Gauss point at distance rj from the center of the hexagon and angleaj þ pi
3

from the horizonal axis for 1 6 i 6 6. In this work, N ¼ 1 is chosen, which has 7 quadrature points including the point in the
center, as shown in Fig. 15
Please cite this article in press as: Lyu D et al. A hierarchical multiscale cohesive zone model and simulation of dynamic fracture in metals.
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The simulation domain is discretized into 82,212 nodes, 27,404 bulk elements, 40,873 first-order process zone elements,
and 13,470 second-order process zone elements. Comparing with the full molecular dynamics simulation, the reduction ratio
in the number of degrees of freedom is about 1-to-4. A pre-notched crack is set in the specimen, which has an initial length
30 in the reduced unit, the time increment of time integration is 0.0033, and the constant velocity applied at top and bottom
is 0.03r0=t, which is consistent with the strain rate of 1:12� 10�4 in [31]. Fig. 16 shows the simulation results of stress
distribution during crack propagation.

It is not difficult to find that at beginning the crack propagates horizontally and then it bifurcates due to the perturbation
of acoustic wave reflected from the boundary. Moreover, Fig. 17 compares the crack speed history in this present work with
that obtained in a MD simulation [31]. The agreement is very good except that process zone model predicts a slightly late
crack growth.
6.3. Example III: Three-scale cohesive zone simulation of spall fracture

To further demonstrate the effectiveness of three-scale cohesive zone modeling, another numerical example is carried
out, in which the proposed multiscale method is employed to simulate the dynamics spall fracture during high-speed impact
and penetration process. The example setting is described in Fig. 18, in which a rigid projectile is penetrating a deformable
plate under prescribed velocity. The projectile is a (0:4 mm� 0:4 mm) rigid block with the prescribed impact velocity
v ¼ 200 m/s. The target is a (2 mm� 0:4 mm) copper block clamped at the two side ends. Different from the second exam-
ple, the multiscale finite element mesh contains three level rectangular elements, which are shown in the zooming region of
Fig. 18.

Following [36], an EAM-Mishin potential is used to model the constitutive relation of the copper plate via higher order
Cauchy–Born rule. The simulation time step is chosen to be Dt ¼ 1� 10�10 s. To solve the contact problem between the
projectile and the copper plate during the impact and penetration process, the standard master–slave contact algorithm
is adopted, in which the impenetrability condition is enforced for each element during every time step of the calculation,
which is similar to the contact algorithm discussed in [37].
Fig. 17. Crack speed comparison between multiscale process zone model and molecular dynamics.

Fig. 18. Schematic illustration of Example 3 and multiscale process zone mesh.
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Fig. 19. Stress distributions in the copper plate during the contact-impact process.
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The simulation results are shown in Fig. 19, in which a time sequence of the impact and penetration is plotted. One may
find that due to the initial impact, a compressive stress wave propagates from the contact surface to the opposite boundary,
and the subsequent spall fracture of the copper plate is clearly captured by the simulation (see Fig. 19).
7. Discussions and conclusions

In this work, a hierarchical multi-scale cohesive zone model (MCZM) is developed, and then employed to simulate
dynamic fracture in crystalline and polycrystalline solids. The multi-scale cohesive model makes use of material information
at atomistic scale, such as atomistic potential, lattice structure, and grain orientation in polycrystalline solids, to characterize
constitutive relations. Thus, it is capable of capturing material inhomogeneities inside the process zone by incorporating the
higher order Cauchy–Born rule in constitutive model. To include the effect of the nonlinear deformation on constitutive
model, the higher order Cauchy–Born rules are adopted to obtain the expression of stress in the first-order and second-
order process zone elements. In addition, to capture non-linear deformation mode, a bubble mode of finite element shape
function is added into the quadrilateral element to support high order strain gradient effects, which enriches quadratic shape
function basis in the conventional bilinear quadrilateral element. Subsequently, it substantiates the higher order Cauchy–
Born rule based constitutive relations. To validate the multiscale cohesive zone model, numerical simulations of dynamics
fracture are conducted in crystalline cooper specimen by using the proposed multiscale method with an EAM potential. A
good agreement is found by comparing the simulation results of MCZM with that of the corresponding molecular dynamics
simulation. In addition, we studied the effects of micro-structures with different grain sizes, mesh densities and cohesive
zone strengthes on simulation results, and we investigated the influences of these factors on the fracture pattern when using
the multiscale cohesive zone model to simulate fracture in polycrystalline solids. At lease in one example, the numerical sim-
ulation captures the transition from intergranular fracture to transgranular fracture during the crack propagation. Moreover,
the method is successfully employed to simulate spall fracture of a copper plate under high-speed impact. In the third exam-
ple, the FEM mesh has only 2000 nodes, which forms 500 bulk elements; 931 first order cohesive zone elements, and 441
second order cohesive zone elements. In total, it only has 1872 elements, and the total calculation only takes less than a
few hours in a desktop computer depending on its speed. Therefore, MCZM can be a very efficient computational method.
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Based on the numerical study presented in this paper, we conclude that the proposed hierarchical multiscale cohesive
zone model provides a viable approach to study dynamic fracture in various crystalline solids frommicroscale to macroscale.

Last, we would like to point out that the main focus of the present work is to model the cohesive strength of crystalline
solid materials by using a hierarchical multiscale cohesive zone model. The term strength used here is not just restricted to
material tensile strength, but has a broader meaning, i.e. including both fracture toughness as well as ductility.

At macroscale, the concept of material ductility toughness implies plastic deformation. In the conventional cohesive zone
model, the toughness part is described by the cohesive law in shear, which is in fact a numerical extension of the fracture
model under small-scale yielding, i.e. the Dugdale–Barenblatt model [17,18]. On the other hand, at microscale, it is a public
consensus now that one can use molecular dynamics to simulate ductile fracture by just employing the atomistic potentials.

In this work, we use exactly the same atomistic potentials that are used in molecular dynamics to conduct a multiscale
cohesive strength modeling, which is essentially a mesoscale coarse grain approach. Therefore, it is attempting to make a
definite statement that the higher-order Cauchy–Born based multiscale method can simulate ductile fracture, or the hierar-
chical multiscale cohesive zone model can capture the material ductile toughness. However, this is a far more profound
problem than the study conducted in this work, and it is out the scope of this work.

To satisfactorily address this issue, one has to demonstrate that the proposed multiscale cohesive zone model can sim-
ulate aggregated dislocation motions, and the subsequent fracture process. In fact, we have reported some preliminary
results on using the multiscale cohesive zone model to simulate aggregated dislocation motion in [36]. Example 3 reported
in this paper is a study of ductile fracture at microscale. Based on these preliminary studies, the proposed hierarchical
multiscale cohesive zone model may have certain abilities to simulate material toughness and ductile fracture.

Appendix A

In this appendix, the third-order derivatives of the six-node honeycomb Wachspress shape function are provided. For the
first-order and second-order derivatives of the six-node honeycomb Wachspress shape function, the readers may consult
[38].
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