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a b s t r a c t

We propose a multiscale computational model to couple molecular dynamics and peri-
dynamics. The multiscale coupling model is based on a previously developed multiscale
micromorphic molecular dynamics (MMMD) theory, which has three dynamics equations
at three different scales, namely, microscale, mesoscale, and macroscale. In the proposed
multiscale coupling approach, we divide the simulation domain into atomistic region and
macroscale region. Molecular dynamics is used to simulate atom motions in atomistic
region, and peridynamics is used to simulate macroscale material point motions in
macroscale region, and both methods are nonlocal particle methods. A transition zone is
introduced as a messenger to pass the information between the two regions or scales. We
employ the “supercell” developed in the MMMD theory as the transition element, which
is named as the adaptive multiscale element due to its ability of passing information from
different scales, because the adaptive multiscale element can realize both top-down and
bottom-up communications. We introduce the Cauchy–Born rule based stress evaluation
into state-based peridynamics formulation to formulate atomistic-enriched constitutive
relations. To mitigate the issue of wave reflection on the interface, a filter is constructed by
switching on and off the MMMD dynamic equations at different scales. Benchmark tests of
one-dimensional (1-D) and two-dimensional (2-D) wave propagations from atomistic
region to macro region are presented. The mechanical wave can transit through the in-
terface smoothly without spurious wave deflections, and the filtering process is proven to
be efficient.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Computer technology has been transforming scientific and engineering researches. The ever powerful computer and
advanced computational algorithms open up opportunities to help us model materials in great details and in unprecedented
precisions. For example, the state-of-the-art computational theory and technology, such as ab initio computations and
molecular dynamics, e.g. Hohenberg and Kohn (1964), Car and Parrinello (1985), Kohn and Sham (1965), enable us to
simulate and predict motions of electrons and atoms with indomitable resolution. Compared with experimental study,
computer simulation is fast, cheaper, more efficient, and both informative and flexible, which greatly expands the frontier of
researches in many disciplines including materials science, biology, chemistry, etc. The state-of-the-art exascale super-
computer is now capable of handling a molecular system up to sub-millimeter with 110 billion (1.1�1011) atoms (Hou et al.,
2012). However, the simulation of a molecular system of macroscale size with 6.022�1023 atoms and above is still out of
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reach by even the largest and the faster computers, not to mention the common purpose computers. First principle cal-
culation is even more limited in spatial and time scales because of the calculation of electronic structures. Another challenge
is how to analyze and extract useful information from large amount of data that is generated from computer simulations. In
engineering research and developments, phenomenological models based finite element analysis and finite difference
analysis provide useful tools of simulating continuum objects at macroscopic scale. By virtue of interpolation and dis-
cretization of continuum fields, requirements on computer capacity are greatly alleviated. However, macroscale material
models usually employ homogenized field variables and adopt empirical assumptions, such as phenomenological con-
stitutive relations, in which some detailed physical information may be lost, making it difficult to understand multiscale
physical behaviors of materials, for instance, microscale and mesoscale material defect evolutions.

The limitation of computational model in each scale has motivated the development of various multiscale simulations,
concurrent or hierarchical. The goal of a multiscale model is to combine physical theories or mathematical models from
different scales in a single framework, so that we can solve the multiscale problem in either a distinctive scale or si-
multaneously concurrent scales depending on the problems of interest. The possibility of scale division is based on two
factors. First, physical nature of materials manifests itself in multiple scales in space and time. Materials defects and flaws
are typical multiscale phenomena. For example, microscopic dislocation largely determines the macroscale strength of the
material; highly localized region around the crack tip that is characterized by bond breaking and strong discontinuity, but
the region where is away from the crack tip may only have moderate or uniform deformation. Second, reliable coupling
techniques are required to transfer information among different scales. Cross-scale communication is one of the most
challenging issues in both multiscale theory and computer simulations, because quantities in different scales have distinct
properties, and a perfect match between them is often difficult. For examples, force in microscale may be described in terms
of nonlocal interaction between two or many particles interaction, whereas in macroscale it is often described in terms of
local interaction among immediate adjacent particles; and temperature is a concept in macroscale, and its corresponding
microscale phenomenon is the random motion of particles.

Several multiscale models have had some success in practice. Among them, the macroscopic, atomistic, ab initio dy-
namics (MAAD) (Abraham et al., 1998; Broughton et al., 1999) method is one of the earlier works, which spans three scales
from quantum mechanics to continuum mechanics. It has been applied to solve dynamical fracture problem of silicon. On
the other hand, the issue of numerical wave reflection at interscale boundary can be observed in this method. The quasi-
continuum method (Tadmor et al., 1996; Shenoy et al., 1998, 1999; Knap and Ortiz, 2001) is another widely recognized
model, in which only representative atoms are being simulated instead of conducting all atom calculations, and it has been
successful in solving some quasi-static problems such as nano indentation.

However, MAAD method has interscale boundary impedance mismatch problem, and the quasi-continuum method is
restricted to static and quasi-static problems without characterization of dynamics. Moreover, the mismatch of the im-
pedance at the inter-scale boundary forces to introduce a so-called “ghost force”. To resolve the inter-scale boundary
mismatch problem, the bridging scale method (Wagner and Liu, 2003; Park et al., 2005a, 2005b; Liu et al., 2006) provides a
procedure that can realize the scale transition by a process of projection with minimizing least square error, and it in-
troduces an impedance force that may largely alleviated the inter-scale boundary wave reflection. The coupled atomistic and
discrete dislocation (CADD) (Shilkrot et al., 2002, 2004) is advantageous to simulate dislocation-type of defects, and it may
involve a priori knowledge of slip systems for dislocation detection and passing through interfaces. The recently proposed
Multiscale Crystal Defect Dynamics (MCDD) (Li et al., 2014) employs a similar idea by using information of the lattice
microstructure to construct multiscale methods. Other prominent multiscale methods include concurrent atomistic con-
tinuum (CAC) method (Chen and Lee, 2005; Xiong et al., 2011), and the perfectly matched multiscale simulation (PMMS)
method (To and Li, 2005; Li et al., 2006), among others.

Theoretically speaking, an ideal multiscale method would need to have a two-way cross-scale information passage: the
bottom-up and the top-down. This is what is lacking in existing multiscale methods. The bottom-up approach is relatively
straightforward, where information from microscale is properly collected and interpreted to describe macroscale phe-
nomena. For example, a macroscale displacement field is the averaged or homogenized field from atomistic displacements,
and stress and temperature fields can be calculated from atomistic forces and random velocities according to statistical
mechanics. On the other hand, the top-down message passing is more challenging, and requires uncanny physical insights.
In specific, we may illustrate the top-down approach through the response of a molecular system when a macroscale
boundary condition such as traction is prescribed. This procedure is not trivial, because a single-scale model cannot describe
both molecular system and macroscale boundary conditions. To resolve this issue, recently the present authors proposed a
micromorphic multiscale molecular dynamics (MMMD) model that has intrinsic multiscale structure and multiscale dy-
namics (Li and Tong, 2015; Tong and Li, 2015a, 2015b; Li and Urata, 2016), which is a new type of multiscale model that
attempts to rigorously resolve the relationship between molecular dynamics and continuum mechanics. The model is de-
rived from and equivalent to classical molecular dynamics, but macroscale quantities such as traction are incorporated into
microscale model versus multiscale structure design, and thus the top-down message passing becomes natural.

The present work is to further establish a multiscale coupling paradigm based on the previous multiscale molecular
dynamics theory (Li and Tong, 2015; Tong and Li, 2015a). By taking advantage of the previous physical multiscale theory, an
adaptive multiscale element is constructed as a messenger to translate information between regions of different scales. The
message transition is smooth due to the clearly defined top-down and bottom-up characterizations. In atomistic region,
molecular dynamics is the natural choice. In macroscopic region, several models can be employed depending on the
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problem of interest. For example, finite element method can be used in continuum field modeling, and meshfree methods
(Liu et al., 1995; Li and Liu, 2002) may be more suitable for the materials with strong nonlocal interactions. In this work, we
choose peridynamics (Silling, 2000; Askari and Silling, 2005; Silling et al., 2007; Silling and Lehoucq, 2010) in macroscale
modeling because that it is a nonlocal theory that has similar dynamical structure as molecular dynamics. The non-local
balance law provides a seamless connection to the atomistic region. To solve the problem of spurious wave reflection in the
cross-scale boundary, we introduce a filter near the interface. The procedure of filtering high-frequency wave on the in-
terface is natural and adaptive without cumbersome ad hoc treatment. Due to the intrinsic interscale coupling property of
MMMD model, mechanical quantities in different scales can be readily described and transferred among different scales
without loss. The main idealogy of the proposed multiscale coupling theory is that all the multiscale coupling properties are
inherently within the first-principle molecular dynamics, and we only need to explore the intrinsic properties of molecular
dynamics, and do not need to develop ad hoc sophisticated coupling formulations or methods at multiscale interface as
some previous multiscale methods do.

The paper is organized in four sections. Following the introduction, the framework of the multiscale computational
theory is presented in Section 2. It includes the general overview of the multiscale micromorphic molecular dynamics
formulation; a review of state-based peridynamics theory, and the main techniques of multiscale coupling model i.e. the
transition zone or multiscale adaptive element and construction of filter, etc. Numerical algorithm is discussed subsequently.
In Section 3, we present numerical examples to validate the model and find its application. The first example is an 1-D wave
propagation problem, in which the process of wave transition through the interface without spurious deflection is de-
monstrated in this example via transition element and filtering techniques. The second example of 2-D wave propagation is
then presented to further validate the multiscale coupling theory and technique. We summarize the Molecular dynamics
(MD)–Peridynamics (PD) coupling theory and formulation with some discussions in the last section.
2. Multiscale coupling model

In this work, we employ the recently developed multiscale micromorphic molecular dynamics (MMMD) to model the
material behaviors inside the transition zone. From historical perspective, one of the most well-known multiscale molecular
dynamics is the Parrinello–Rahman molecular dynamics (PR-MD) (Parrinello and Rahman, 1981), which has been recently
revisited or revised in order to connect to continuum mechanics and multiscale simulations e.g. Podio-Guidugli (2010) and
Ulz (2015). The multiscale micromorphic molecular dynamics (MMMD) is a non-equilibrium generalization of the Parri-
nello–Rahman molecular dynamics, which is a three-scale coupled dynamics, which spans from atomistic scale to mesoscale
and finally to continuum scale (Li and Tong, 2015; Tong and Li, 2015a), rigorously extending the PR-MD from an equilibrium
ensemble calculation in a unit cell to a non-equilibrium molecular dynamic simulation in a finite-size domain.

The multiscale coupling model consists of three parts: atomistic region, macroscale region and a transition zone that is
responsible for translating information between two regions, as shown in Fig. 1(a). The atomistic region is described by
classical molecular dynamics. Interatomic potential is used to derive nonlocal forces between atoms or molecules. Materials
in the macroscale region usually are required to be described by macroscale constitutive relations. Many methods can be
Fig. 1. (a) The multiscale model consists of three parts: atomistic region, macro region and transition zone. The essential part is the transition zone, which
is served as a messenger to translate information from both regions. A filter is constructed near the interface to solve the issue of high-frequency wave
reflection. (b) The adaptive multiscale element in the transition zone. This element is an assemble of atoms which has macroscale properties such as shape
and average displacement while the atomistic resolution is retained. The element is capable of carrying and translating information from different scales.



Q. Tong, S. Li / J. Mech. Phys. Solids 95 (2016) 169–187172
chosen to establish the material model in this region depending on the problem of interest. In this work, we adopt the state-
based peridynamics approach (Silling and Lehoucq, 2010), which, in principle, has similarities with molecular dynamics
modeling in the fine scale region because of their similar non-local characters. To be consistent with and faithful to the
atomistic modeling in the fine scale region, we adopt the Cauchy–Born rule approach to derive the macroscale constitutive
relation. Hence, no empirical constitutive relation is needed. The formulation will be briefly introduced subsequently.

The essential part of the multiscale model is the transition zone. To ensure a reliable passage of information between
macro and atomistic regions, several conditions need to be taken into account. First, in the bottom-up procedure, atomistic
information such as force and displacement should be sensed by transition zone and interpreted to macro domain. Spe-
cifically, macroscale only receive low-frequency waves with coarse resolution, and high-frequency atomistic vibration
should be filtered out otherwise it will reflect back to the atomistic region. Second, in the top-down procedure, macroscale
information such as stress and deformation should also be properly interpreted to atomistic domain. The MMMD for-
mulation (Li and Tong, 2015; Tong and Li, 2015a, 2015b) is employed here to characterize the top-down approach. The basic
unit “supercell” can carry both atomistic and macroscale information, which makes it a good candidate of transition ele-
ment. In this computational model, we rename it as “adaptive multiscale element”. We briefly review the theory and the
properties of “supercell” in the following subsection.

2.1. Microscale modeling: multiscale molecular dynamics

As shown in Fig. 1(a), between the fine scale molecular dynamics region and the coarse scale peridynamics region there
is a transition zone. The transition zone has atomistic resolution same as atomistic region, however, we divide atoms in this
zone into finite number of supercells. Each supercell may be viewed as a material point at macroscale, and it has a shape as
an assemble of atoms. Furthermore, each atom inside the supercell is free to move as the internal degree of freedom. Having
the same geometric property of the underline lattice structure, the supercell is able to describe both mesoscale and mac-
roscale mechanical motions such as deformation and cell-level displacement. Therefore, it is possible to apply associated
macroscale force field such as stress on the supercell. On the other hand, with the atomistic resolution, all information of
atomistic scale is retained. As a consequence, the supercell has multiscale structure and property. A detailed extensive
discussion of MMMD and how to construct the supercell size can be found in Li and Tong (2015) and Tong and Li (2015a). In
the following, we briefly summarize the basic theory and formulations of MMMD, and a detailed exposition of MMMD
theory is presented in Appendix.

In MMMD, the atomistic position ( )tri in the current configuration is composed of the following parts:

ϕ( ) = ( ) + ( )· ( ) ( )α αt t t tr r S , 1i i

where αr is the center of mass of α-th supercell calculated as,

=
∑

∑ ( )
α

∈

∈

α

α

m

m
r

r
,

2

i S i i

i S i

with mi being the mass of i-th atom inside the α-th cell, and αS is the index set of all atoms inside the α-th cell. From the
perspective of a single cell, the motion of the center of mass may represent the rigid body translation of the supercell.
However, the aggregated motion of all centers of mass of every supercells describes the coarse scale deformation at the
continuum level. In Eq. (1), ϕα is the total deformation gradient of α-th cell, and it is uniform throughout the cell. Si is the
internal degree of freedom which represents the atomistic distribution inside the cell. ϕ ·α Si is the relative position com-
paring to the center of mass. This operation is different from the uniform deformation described by the Cauchy–Born rule,
and it is a multiscale micromorphic deformation (Li and Tong, 2015). In fact, ϕα can be further decomposed to

ϕ χ( ) = ( )· ( ) ( )α α αt t tF , 3

where αF is related to macroscale continuum deformation depending on the distribution or the aggregated motion of centers
of mass of supercells (Tong and Li, 2015a); whereas χα is an independent mesoscale deformation tensor for each supercell
(or for the representative α-th supercell), which includes local stretch and local rotation. By introducing the center of mass
and deformation gradient for supercells, each supercell obtains the properties of a material point in macroscale continuum
mechanics. The internal degrees of freedom is then enable the interaction between particles from atomistic domain.

In passing, we note that Eq. (3) is a form of multiplicative decomposition of the deformation gradient into multiscale
components, and it is coined as the multiplicative multiscale decomposition (Li and Urata, 2016), which is in contrast to the
multiscale addictive decomposition proposed by Wagner and Liu (2003). It is also a reminiscence of the multiscale de-
composition in elasto-plasticity theory by Lee (1969).

We denote

ϕ≔ ( ) = + ( ) ( )α α α tR r R R S0 and 0 .i i

Note that the time variable in that variable ( )tSi has different time scale with the time variable in both ( )α tr and χ ( )t , so that
we do not need to initialize it for the computational purpose. One may further define an intermediate position or config-
uration,
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χ ϕ χ χ≔ + ( )· ( ) ( ) = ( ) ( ) = ( ) ( ) =α α α α αt t t tR S F F I, with 0 , 0 .i i

This intermediate configuration distinguishes the time scales in mesoscale and macroscale variables. A complete kinematic
relations and mappings are illustrated in Fig. 2, and readers may find more detailed discussions on different configurational
spaces in Li and Tong (2015).

To construct a discrete nonlocal deformation gradient, we first associate a compact support with each center of mass of a
supercell, say the α-th cell. Then we can construct a shape tensor for each horizon that is based on the distribution of all
centers of mass inside the compact support of the center of mass of α-th cell, i.e.

∫ ∑ω ω≔ (| |) ⊗ ≈ (| |) ⊗ Δ
( )

α α αβ αβ β
β

α αβ αβ β
∈α

dV VK R R R R R R
4SN

R

where = −αβ β αR R R , and SN is the index set for all the centers of supercells that are inside
αR . The shape tensor is basically

a moment tensor or loosely speaking a moment of inertia tensor. Note that there is no difference between αR and α .
One can then define a two point nonlocal second order tensor Nα as

∫ ∑ω ω= (| |) ⊗ ≈ (| |) ⊗ Δ
( )

α α αβ αβ β
β

α αβ αβ β
=α

dV VN R r R R r R ,
5

N

1R

where = −αβ β αr r r . At the coarse scale, we assume that the following Cauchy–Born rule is hold in each compact support of
the center of mass of the supercell (see Fig. 12),

= ( )αβ α αβr F R . 6

By substituting Eq. (6) into (5), we obtain the expression for the discrete non-local deformation gradient,

∫ ∑ω ω= = (| |) ⊗ ≈ (| |) ⊗ Δ
( )

α α α α αβ αβ β α
β

α αβ αβ β α
− −

=

−

α
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⎝
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⎞
⎠
⎟⎟dV VF N K R r R K R r R K .

7

N
1 1

1

1

R

The mechanical boundary of an MMMD supercell is shown in Fig. 1(b), and it is also shown in Fig. 13 in a more general
setting. The force fields from different scales drive the motions of each supercell. The first field is from the atomistic in-
teraction among different atoms that are within each supercell or from different supercells. The second interaction is the
external stress or traction acting on the interface exerted from the macroscale region. We characterize these two external
forces by the following potential energies:

∑ φ= ( )
( )

α
α α∈ ∉

V r
8

atom

i j
ij

,

= − ¯ · ( )α α α αV S t r 9surf 0 0

where α∈i and β∈j are indices of the atoms from different cells (α β≠ ; ϕ is the pair potential, and rij is the distance
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between i-th and j-th atoms, and αS0 is the surface exerted by the traction ¯αt0, which is in the referential configuration.
Thus the total potential energy from outside the α-cell is

= + ( )α α αV V V . 10ext atom surf

On the other hand, the potential energy inside the α-th cell, αV atom, is

∑ φ= ( )
( )

α
∈ α

V r
1
2

,
11

int

i j S
ij

,

where the indices i and j represent different atoms within the same cell, and hence there is an 1
2
factor. αS is the index set for

all the atoms inside the supercell α.
The kinetic energy can be calculated based on the multiscale kinematic decomposition (Eq. (1)) as discussed in Li and

Tong (2015) and Tong and Li (2015a),

∑ ∑ϕ ϕ= ̇ · ̇ = + + = ̇ · ̇ + ̇ ̇ + ̇ ⊗ ̇
( )

α α α α α α α α α α α
∈ ∈α α

K m K K K M mr r r r J C S S
1
2

1
2

1
2

:
1
2

: ,
12i S

i i i
rigid cell atom T

i S
i i i

where αM is the mass of the whole cell; ϕ ϕ=α α αC T is the right Cauchy–Green tensor, and = ∑ ⊗α ∈ α
mJ S Si S i i i is the moment

inertia tensor, which is approximated as a constant spherical tensor that is independent from time. The above kinetic energy
is slightly different from the original molecular dynamics kinetic energy from first principle. However, the additional terms
are dropped out because of imposed statistical constraints. Readers may find the detailed discussion in Li and Tong (2015)
and Tong and Li (2015a).

The Lagrangian for α-th supercell can then be written as,

∑ ∑ ∑

ϕ ϕ

φ φ

= −

= + + − −

= ̇ · ̇ + ̇ ̇
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i S j S
ij

, ,

0 0

The above Lagrangian has independent variables αr , ϕα (or χα) and Si. Through the standard derivation procedure (see
Appendix), the equations of motion for these variables are obtained as,

∑¨ = + ¯
( )

α α α α
∈ ∉α α

M Sr f t ;
14i S j S

ij
,

0 0

( )ϕ Ω¨ · = − ( )α α α α αJ ; 15
ext int 0

∑ ϕ· ¨ = · − ̇ · ̇
( )

α α αm mC S f C S ,
16

i i
j

ij i i

where fij is the interaction force on i-th atom from j-th atom; Ωα
0 is the volume of the supercell in the referential config-

uration, and

∑ ∑ϕ
Ω

= ⊗ − · ̇ ⊗ ̇
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.
18

ext

i j S
ij i0

,

They are defined as the internal and external first Piola–Kirchhoff (PK-I) stresses. Note that both internal and external Piola–
Kirchhoff stresses defined in Eqs. (17) and (18) are two point tensors. However, they are defined in the configuration space

( ) × ( )r Sc i S i rather than in the configuration space ( ) × ( )r Rc i R i nor in the configuration space ( ) × ( )rc i I i (see Fig. 2).
Hence

≠ ∂
∂α

= α

W
F

.int

F F

The multiscale equations of motion have the general form of ˜ ¨ = ˜Mq F. The general masses are αM , αJ and αm Ci for three
equations of motion, respectively. The general kinematic displacements are αr , χα or ϕα, and Si.

The driving force for the motion of the centers of mass of supercells, αr , consists of two parts: (1) from atomistic
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interaction among different supercells, and (2) from macroscale surface traction or body force. The deformation of the cell is
driven by external PK-I stress while resisted by internal PK-I stress. Internal motion is induced by atomistic interactions and
damped, if macroscale velocity ̇

αC exists. It may be noted that the MMMD formulation outlined here is not an ad hoc
multiscale numerical construction. Instead, it has rigorous molecular physics and statistical mechanics foundation. To help
readers to understand MMMD formulation, a detailed derivation of MMMD formulation is provided in Appendix.

The adaptive nature of the supercell is due to its capability of carrying information or transporting boundary flux at
different scales. The atomistic interaction influences motions of all scales including rigid body motions, deformation and
internal degree of freedom fluctuation as seen in Eqs. (14)–(16), while macroscale information such as traction and average
displacement can be readily applied to Eq. (14). Moreover, we can apply an equilibrium stress state on a supercell by
replacing α

ext in Eq. (15) with a prescribed value ¯ α
ext . Therefore, the adaptive multiscale element is a good candidate as a

messenger in transition zone for the multiscale model.

2.2. Macroscale modeling: peridynamics

Peridynamics (Silling, 2000; Askari and Silling, 2005; Silling et al., 2007; Silling and Lehoucq, 2010) is a nonlocal
computational formulation of continuummechanics. Frommultiscale perspective, it may be viewed as a coarse grain model.
Different from classical continuum mechanics, in peridynamics, the interaction between material points is nonlocal, i.e. for a
fixed material point αr in the current configuration, it can interact with neighboring particles βr within a compact support
called as horizon, which is similar to the concept of cutoff range in molecular dynamics. Here we denote the material point of
interest as α to be consistent with the center of mass in an adaptive multiscale element, and all other particles in the horizon
as β = … N1, 2, , . The uppercase is used to denote the quantities in the referential configuration. αR is used to denote the
horizon. Interactions from material points outside the horizon are set to zero. The deformation state of a material point is
characterized by discrete nonlocal deformation gradient tensor ( )α α tF R , , which is adopted the coarse scale deformation
gradient for the centers of mass of the supercells defined in Eqs. (4)–(7).

Considering the state-based peridynamics, we denote the force state at material point α as 〈 − 〉α β αT R R . Assume that
there exists a macroscale free-energy density at the material point α, i.e. Ψ ( )αX . Then the virtual work or the variation of the
free energy density may be written as,

∫ ∫δΨ δ ω δ δ( ) = = (| |) ⊗ = 〈 − 〉·
( )

α
α α α αβ αβ αβ β α α β α αβ β

−
α α

dV dVR P F P R r R K T R R r: : ,
19

1

R R

which leads to the force state expression (see Silling and Lehoucq, 2010) that is determined by the local stress state at the
given material point α, i.e.,

ω〈 − 〉 = (| |) · ( )α β α α α αβ α
−T R R R P R K , 201

where αP is the coarse scale first Piola–Kirchhoff stress at the material point α.
To find the local stress, we employ the atomistic potential of the underline solid and the Cauchy–Born rule. Since this is

the coarse scale calculation, we assume that each peridynamics point is associated with an atomistic unit cell (see Fig. 3). For
illustration purpose, we assume that the elastic energy density at each peridynamics point may be expressed as a pair
potential in a Bravais lattice,

∑
Ω

φ= ( )
( )=

W r
1

2
,

21k

N

k
0 1

b

where Ω0 is the volume of the unit cell, and inside Ω0 there are total Nb number of bonds connecting to the center atom.
φ ( )rk is the atomistic potential of k-th bond, and rk is the atomistic bond length in the deformed configuration. k¼1,…,Nb,
Fig. 3. The Cauchy–Born rule based multiscale peridynamics.
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with Nb being the number of bonds in a unit cell. Based on the Cauchy–Born rule, we can calculate the first Piola–Kirchhoff
stress by taking derivative of elastic energy density with respect to deformation gradient,

∑
Ω

φ= ∂
∂

= ′( ) ⊗
( )
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= =α
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r

r
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22k

N

k
k k

kF F 0 1

b

where rk and Rk are bond vectors in the current and the referential configurations, respectively. The Cauchy–Born rule
implies that = ·αr F Rk k. Therefore, if the deformation gradient is given, we can calculate the first Piola–Kirchhoff stress at the
macroscale material point α. Different from Eqs. (17) and (18), the Piola–Kirchhoff stress expressed in Eq. (22) is defined in
the macroscale counterpart of the configurational space ( ) × ( )r Rc i R i .

The Cauchy–Born rule based stress evaluation avoids the empirical constitutive relations introduced in macroscale
continuum mechanics. Therefore, less artifacts are expected in the proposed multiscale model.

After determining the stress state at every peridynamics particles, we can establish a unified equation of motions for
peridynamics based on the so-called state-based peridynamics formulation. Considering the balance of linear momentum at
the material point αr , we have the following nonlocal balance equation:

ρ ρ¨ = ( ) + ( ) ( )α α α α αtr L R b R, 23

where

∫( ) = ( 〈 − 〉 − 〈 − 〉)
( )α α β α β α β β

α
t dVL R T R R T R R,

24

is the nonlocal stress divergence vector acting on the α-th material point by neighboring macroscale points β. Its coun-
terpart in classical continuum mechanics is ∇ · αPR , which is a local divergence term. Again, here αP is the first Piola–Kirchhoff
stress tensor in continuum mechanics. Mathematically, the requirements on the solution of an integral equation are much
less than that of a differential equation. To solve Eq. (24), one mainly need to evaluate the nonlocal force density vector or
the nonlocal divergence vector ( )α tL R , . In computation implementation, since the domain is discretized into many material
points, the integral can be replaced or approximated by the following summation,

∑( ) = ( 〈 − 〉 − 〈 − 〉)Δ
( )

α
β

α β α β α β β
=

t VL R T R R T R R, .
25

N

1

2.3. Construction of the filter

A common issue of multiscale methods is the reflection of high-frequency waves at the multiscale interface. Due to the
larger discretization spacing in the macroscale region, high-frequency wave components cannot be captured, and, as a result
of energy conservation, high-frequency signals will be reflected back to the atomistic region. The issue of reflection is
demonstrated in Fig. 4. When the wave passes the multiscale interface, the low-frequency wave transits through smoothly,
whereas the high-frequency wave cannot, and its reflection back to the fine scale region can be clearly observed. Note that
high and low frequencies are relative concepts compared with lattice spacings of both atomistic and macro domain. The
Fig. 4. Illustration of wave reflection at multiscale interface. Due to the large discretization spacing, the macro region cannot capture the high-frequency
incident wave. If the total energy is conserved without releasing, these high-frequency wave components will reflect back to the atomistic region.



Fig. 5. Construction of the filter. Step I: The filter has the same function as transition element, where all wave components propagate into the element. Step
II: Homogenization. Displacements are averaged inside the filter. In practice, we set the internal variable Si to its initial value Si

0, which produces a uniform
total deformation.

Q. Tong, S. Li / J. Mech. Phys. Solids 95 (2016) 169–187 177
term low frequency used here means that the associated wavelength is larger than the discretization spacing of the coarse
scale region, while the high frequency means that the associated wavelength is in between the intrinsic lattice spacing in
fine scale region and the discretization spacing of the macroscale domain.

To resolve the issue of the discretization-induced spurious reflection, we introduce a filter in the transition zone near the
surface of macro domain as demonstrated in Fig. 1(a). The filter is similar as transition element in shape, and it is also an
assemble of atoms. The construction of the filter includes two steps as shown in Fig. 5. First, we allow all wave components
enter the filter. In this step, the filter is basically the same as transition element, where atoms in the filter are free to move as
any transition element. The motion is controlled by original dynamical equations (14)–(16). The second step is a process of
homogenization. The atomistic positions are set to an average value. The microscale fluctuation Si is to be replaced by its
chosen initial value Si

0. Thus the homogenized atomistic position becomes,

ϕ= + · ( )α αr r S . 26i i
0

The replacement is effective in Eqs. (14)–(15), and Eq. (16) is eliminated. It is equivalent to freeze the internal degrees of
freedoms, and only macroscale motions are allowed, i.e. motions of particles are adhered on the macroscale deformation of
the supercell. This process may be understood as an energy release process. The interesting fact of the adaptive multiscale
element is that we can lock any of the three scale variables to meet the need of different resolutions. The treatment of
directly sweeping the high frequency components is brute but effective. When the waves pass the filter, a “smooth” wave
with narrow bandwidth replaces the broadband incident waves. Theoretically, all high-frequency waves are expected to be
filtered out while the low-frequency components are transmitted to the macro domain. We will demonstrate the process in
the numerical examples.

2.4. Numerical implementation

We now introduce the transition zone that is designed to transfer information between two different scales or regions. In
a mechanical system, force-stress and displacement-strain are two basic sets of quantities. As discussed in the last section,
the adaptive multiscale element is capable of carrying all these information from both scales or both regions. Thus the
message translation can be made seamless passing through adaptive multiscale element with little numerical distortion. In
the following, we briefly discuss the two options of message passing on the multiscale interphase as follows:

(1) Traction-force match: In this case, the transition zone is a separated interphase that joins atomistic region and
macroscale region together. The traction from macroscale domain acts on the center of mass of the transition elements,
while at the same time the stress developed in the transition elements will exert the force on the material particles at
boundary of the macroscale domain as a form of applied traction or reaction.

Both action and reaction have the form of macroscale traction, which are incorporated in Eq. (14). On the other side,
atomistic domain interacts with transition zone by exerting atomistic forces. The procedure is concurrent in time, i.e.
particle motions in three different domains evolve at the same time.

(2) Displacement match: In this case, the transition zone can be treated as an overlap of both macro and atomistic
domains. In MD updates, the transition elements are parts of atomistic domain, and the centers of mass of the supercells are
automatically updated due to the global motion of the assemble (element). The updated centers of mass are then passed to
the macro domain as displacement boundary condition. Similarly, the updated macroscale displacements are used by
transition elements as centers of mass, while the shape and internal variables are still free to move, as governed by Eqs.
(15)–(16). Meanwhile, the atomistic region updates based on the new atomic positions in transition zone.

An appropriate integration scheme is needed for updating the quantities and facilitating exchange of information. The
advantage of the multiscale structure is not only in space but also in time. An efficient strategy is choosing larger time steps
for macroscale and smaller steps for atomistic scale. There are two levels of computational cycles. The microscale and
macroscale regions are on the first level. Based on different approaches of force-traction or displacement interchange,
parallel and serial algorithms can be used separately (see Tong and Li, 2015a). On the second level, three kinematic
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quantities are in the adaptive multiscale element in transition zone: αr , ϕα and si. Therefore, we have five variables at
different scales, whose combinations may provide some flexibility for choosing step sizes during time integration. Both
parallel and serial algorithms are applicable on the second level based on different conditions and requirements. The ve-
locity Verlet method (Verlet, 1967) and the predictor–corrector method (Gear, 1971) are among the most popular integrators
in time integration. In this work, we employ both of them in the multiscale time integration. The velocity Verlet method is
used in calculating displacement fields in atomistic region, macroscale region, and for the centers of mass αr in transition
elements. The predictor–corrector method is used to update ϕα and si in transition elements. As an example, the MD update
is formulated as follows:
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In the second step, we need to evaluate force field based on the new position +ri
n 1. For the centers of mass of the transition

element and the macroscale material points, we may simply replace ri by αr in the above equations. However, the size of the
time step and magnitude of the mass should be changed accordingly.

We summarize the general procedure of implementation in the following table:

Table 1. Multiscale computation algorithm (flow chart).
• Determine the specific problem of interest, e.g. wave or crack propagation, etc.
• Set up parameters of the system, e.g. material, model dimension, time steps, etc.
• Initialize the whole system: initial displacement, velocity, boundary condition, etc.
• Select the type of communication: force-traction/displacement.
• Update atom motions in atomistic region: the velocity-Verlet by Eqs. (27)–(29).
• Update atom motions in transition zone:

○ Velocity-Verlet for αr in Eq. (14);
○ Predictor–corrector for ϕα and si in Eqs. (15)–(16);

• Update particle motions in macroscale region: Velocity-Verlet by Eqs. (27)–(29).
• Exchange of information:

○ Force-traction: ⇌ ⇌atomic forces transition elements macroscale traction
○ Displacement: → →atomistic displacements transition zone macro displacements

→ →transition zone atomistic displacements
3. Numerical examples

In this section, we present the results of two numerical tests to validate the proposed multiscale coupling method, which
are 1-D and 2-D wave propagation problems. The pairwise Morse potential is used to model the interaction force between
atoms, which is given as,

φ ( ) = ( − ) ( )α α− ( − ) − ( − )r D e e2 30r r r r2 0 0

The pair force is derived as

ϕ α( ) = − ∂ ( )
∂

= ( − ) ( )
α α− ( − ) − ( − )f r

r
r

D e e2 31
r r r r2 0 0

where the constants D¼0.0965 eV, α¼2.71/Å and r0¼2.878 Å.

3.1. 1-D wave propagation

In the 1-D example problem, aluminumwith an atomic weight of 26.98 u is selected as the material under studying. The
lattice space is a0¼2.878 Å. Each adaptive multiscale element has 5 atoms, and each peridynamic material point is chosen
the same size of the multiscale element. The atomistic region consists of 475 atoms. Five multiscale elements are located in
the transition zone. A total 150 material points are assigned to the macro region. The model is shown in Fig. 6. An initial
Gaussian displacement is applied as
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Fig. 6. 1-D model setup with a Gaussian initial displacement of magnitude 0.01. From left to right: atomistic domain ( ≤ <x0 1367), transition zone
( ≤ <x1367 1439) and macro domain ( ≤ <x1439 3598). All units are in angstrom.
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with A¼0.01, s¼200, b¼0.08, and H¼s/2, in angstrom. The initial displacement is truncated at σ=L 4c . The exponential
term in Eq. (32) is the low-frequency wave which is expected to pass through the transition zone to the macro region. The
cosine term is the high-frequency component, which should be appropriately filtered, and the associated energy should be
released. Time steps for atomistic and macro regions are Δ =t 0.001a and Δ =t 0.006m , respectively. For the transition ele-
ments, time steps are chosen as Δ =t 0.001s , Δ =ϕt 0.002 and Δ =t 0.002r . All units are in picosecond. The above selection of
time step sizes is just an example. Practically, different combinations can be considered as long as they are fully tested to
avoid rush or lag in time between different regions. During the updates, each scale or region includes several sub-steps. The
numbers of other sub-step values have been tested to ensure smooth transition.

Fig. 7(a) and (b) show the history of wave propagation without filter in transition zone. Within 2250 macroscale time
steps, the entire wave motion is in the atomistic domain, and we can clearly distinguish the low- and high- frequency
components of the wave. When the wave propagates to the macro domain, the low-frequency wave has almost entirely
been transmitted. However, without filter, the high-frequency component is reflected back to the atomistic domain since the
mismatch of impedances at the multiscale boundary.

As mentioned in the previous section, constructing a filter is straightforward, because it is simply an element with frozen
fine scale motions. In this example, we choose a set of three multiscale elements in the transition zone as filters. Fig. 8 shows
the location of the wave at = Δt t5000 m, when filter is turned on. Comparing with Fig. 7(b), one may find that the reflection
Fig. 7. Displacement at (a) t¼2250 and (b) t¼5000 with units of macroscale step size Δtm. No filter is placed in the transition zone.



Fig. 8. Displacement at = Δt t5000 m with filter in the transition zone.

Fig. 9. Evolution of energy in each domain.

Q. Tong, S. Li / J. Mech. Phys. Solids 95 (2016) 169–187180
of high-frequency component is largely mitigated. We may increase the size of the filter to further tune up the result.
To better exam the passage of information in the procedure, we plot the normalized energy of each region in macroscale

time steps. Fig. 9(a) shows the evolution of elastic energy in the atomistic region with and without filter, respectively. When
the macro time steps are between 2300 and 4300, the wave transits from atomistic and macro domain. Ideally, total energy
in atomistic domain should be damped off after 4300 macro time steps, as shown in the energy profile with filter. However,
when the filter is turned off, we only find a small amount of residual energy trapped in the fine scale zone, which is not
physical. The filter is capable of removing more than 90% residual energy. The comparison of energy evolutions of both
regions is shown in Fig. 9(b). When a solitary wave passing through the transition zone, energy in atomistic region decreases
but increases in macro region. Before and after the transition, energy levels in both zones are all constant with normalized
value of 0 and 1.

3.2. 2-D wave propagation

In the 2-D example problem, we choose the basal plane of the hexagonal close-packed (HCP) lattice as the model. The
material is aluminum with an atomistic weight of 26.98 u same as the 1-D model. The lattice constant is a0¼2.878 Å. The
same Morse potential is used for 2-D lattice. The shape of the multiscale elements in transition zone and material points in
macro region is shown in Fig. 10. Each multiscale element includes 9 atoms. The distance from the center of each element to



Fig. 10. Shape of the multiscale elements in transition zone and material points in macro region.

Fig. 11. Initial 2-D model setup: Inside is the atomistic region with rectangular shape, and a larger macro region surrounds the atomistic region. The initial
wave profile is a Gaussian wave function with an amplitude magnitude of 0.01.
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the nearest neighbor is 3a0. The 2D model has a rectangle shape as shown in Fig. 11. An atomistic region is located at the
center with 150�150 atoms. The size is calculated as × a150 75 3 0

2 according to the lattice pattern. The transition zone
surrounding the atomistic domain has a thickness of 5 multiscale element, in which a 2-element thickness is assigned as
filter. Outside the atomistic region and the transition zone, a macro region with 160�160 material points or an area of the
size × a480 240 3 0

2, except the fine scale center region, is constructed. Similar to the 1-D problem, the transient motion of a
wave with initial shape of the Gaussian distribution in polar coordinate is examined,
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where A¼0.01, s¼80, b¼0.08, and H¼s/2, in angstrom. The truncation distance is given as σ=L 3c . Multiple-time-step
integration algorithm is used in numerical integration of the simulation. Time integration step sizes for atomistic and macro
regions are Δ =t 0.001a and Δ =t 0.008m in picosecond. Time integration step sizes for the transition elements are:
Δ =t 0.001s , Δ =ϕt 0.001 and Δ =t 0.001r . Numbers of other sub-step size are tested before simulation, in order to achieve the
optimal results.

Fig. 12 shows the history of the wave propagation from atomistic region into the macroscale region. Fig. 12(a) is the initial
wave profile (in terms of color contour) as mentioned above. Fig. 12(b) is the snapshot when the whole wave is still inside
the atomistic domain. Two separate rings are formed with higher amplitude of the inner (the second) ring and lower
amplitude of the outer (the first) ring. Subsequently, the outer ring passes through the interface where the multiscale



Fig. 12. History of wave propagation. The unit of time is in macroscale step size Δtm.
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elements are located to aid the transition. As shown in Fig. 12(c), the interface does not cause any visible mismatch or
discontinuity, and the outer ring is smoothly distributed on both sides of the interface. Fig. 12(d) is the time instance when
the inner ring is passing through the interface. We can see that even with the high magnitude and abrupt slope, the inner
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ring still passes through without obvious interface scattering or diffraction. When the whole wave passes through the
interface, as is shown in Fig. 12(e), small residual fluctuations are observed in the atomistic domain with sharp profiles at the
corners near the interface. Note that the amplitude of the cylindrical wavefront will gradually die out when they propagate
away as their radius expand, because of energy conservation. In Figs. 12(c), (d), (e) and (f), one can find that the first ring
gradually disappeared first, and subsequently, the second ring is further propagating and also gradually disappeared in the
macro region leaving a few hardly visible ripples inside as well as outside the fine scale region.
4. Summary and discussions

In this work, based on the multiscale micromorphic molecular dynamics theory, we proposed a multiscale computational
model that couples Molecular Dynamics with Peridynamics. Instead of using prescribed multiscale interface conditions like
many existing multiscale methods, we utilize the intrinsic multiscale characters of the molecular dynamics to construct a
multiscale interphase zone that enables a seamless two-way message passing at multiscale boundary. By taking the ad-
vantage of multiscale structure in the interphase transition zone, we introduce an adaptive multiscale element to serve as a
messenger on the interphase or transition zone that is responsible for exchanging information between different regions
(scales) back and forth. Using MMMD formulation to construct the filter near the interface provides a simple way to smooth
out high-frequency wave without sophisticated or ad hoc numerical treatment; thus the issue of reflection is greatly mi-
tigated. By doing so, we have successfully realized both the bottom-up and the top-down message passings simultaneously,
or concurrently, such that we can incorporate macroscale quantities such as traction and macroscale deformation into
atomistic systems while extrapolating statistical Virial stress from microscale, which makes the proposed multiscale model
capable of exchanging both atomistic and macro scale information through different regions in different scales.

The proposed multiscale model is based on fundamental physical principles rather than ad hoc numerical techniques,
which renders the subsequent mathematical structure simple and straightforward. More importantly, it provides profound
insights and understandings on multiscale mechanics and physics. A major numerical artifact in many existing multiscale
methods is the assumption of uniform lattice deformation at the multiscale interface. This is tolerable in regular de-
formation such as wave propagation. However, it cannot capture inhomogeneous deformation such as phase transition or
materials defect passing, which are often the cases on boundaries and interfaces. It has shown in this work that the pro-
posed method can easily do that, because of the adaptive nature of the multiscale element, which can relax the internal
motions of supercells, so that particles are free to move instead of being frozen in given positions and to seek the pattern or
distribution in an optimal energy state.

As a multiscale method, we used the Cauchy–Born rule to calculate stress in macroscale peridynamics formulation such
that we obtain the non-local macroscale constitutive relation through atomistic potentials, and it then avoids to use em-
pirical or phenomenological constitutive relations to describe materials behaviors. Moreover, this work reports a particular
coupling between molecular dynamics and peridynamics. To the best knowledge of the authors, it may be the first technical
report on such coupling technique for two important particle methods. This may have a major consequence and devel-
opment in the future.

To validate the proposed multiscale coupling method, we have implemented and analyzed test examples of 1-D and 2-D
wave propagations. The numerical results in the 1-D example show that low-frequency wave can be smoothly transmitted
through the interface, and the high-frequency wave can be filtered. The energy evolution is monitored and observed in
regions of different scales, which provided solid evidence on the important role that the filter played. The 2D example has
further demonstrated the efficiency of the proposed multiscale method by examining the detailed message passing process
through the interface. The numerical results have clearly shown the advantage and the capability of the proposed method
handling coupling of two different particle methods at ease.
Appendix. Derivation of multiscale micromorphic molecular dynamics

In this Appendix, for the sake of self-containedness, we provide the derivation of the governing equations of the Mul-
tiscale Micromorphic Molecular Dynamics, i.e. Eqs. (14)–(16).

The basic idea of the Multiscale Micromorphic Molecular Dynamics is to divide a finite molecular dynamics simulation
region into finite number of supercells see Fig. 13. For the detailed discussions and physical background of such domain
decomposition and associated multiscale decomposition, the readers are referred to Li and Tong (2015) and Tong and Li
(2015a). For a representative supercell α, we have the following multiscale Lagrangian, i.e. Eq. (13),
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which has three independent variables: ϕα αr , , and Si, and αS is the atom number index set for the supercell α.
Note that there is very subtle point in this derivation. That is the Lagrangian defined in Eq. (34) is not addable, i.e. the

total Lagrangian inside the whole solid, m is not equal to the sum of the Lagrangian in each supercell, i.e.



Fig. 13. Schematic illustration of supercell domain decomposition of MMMD.
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where αS is the index set for all supercells. This is because α has already contained all the interaction energy with adjacent
supercells. More precisely speaking, there is no 1/2 factor in front the term ∑ ∈ ∉α αi S j S, .

It is noted that the total deformation tensor has a multiscale micromorphic decomposition,

ϕ χ= ·α α αF ,

where χα is the true independent kinematic variable, whose physical meaning is the microscale or mesoscale deformation
tensor of the supercell; whereas αF is the macroscale deformation tensor, which can be determined by the spatial dis-
tribution of the supercell centers of mass i.e. αr , and it may be determined by Eq. (7), making it consistent with the mac-
roscale peridynamics.

Then the equations of motion for αr , ϕα and Si can be derived by deriving the Euler–Lagrange equations,
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where α ∈ SN , ∈ αi S , and SN is the index set for all the supercells.
Before deriving the above equations, we observe the fact that the coarse scale deformation gradient depends on the

relative displacements of all centers of mass, which is,

= ({ }) ( )α α βF F r , 38

where { }βr represent a set of all centers of mass. Then we have

̇ = ({ } { ̇ }) ( )α α β βF F r r, . 39

From Eq. (38), we also have,
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From Eq. (39), we can derive,
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On the other hand, from Eq. (40), the relation is,
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Comparing Eqs. (43) and (44), and using relation (41), we obtain,
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Recall that the total deformation ϕ χ= ·α α αF , then the time derivative is,

ϕ χ χ̇ = ̇ · + · ̇ ( )α α α α αF F . 45

By knowing the fact that χα is an independent variable, and using relations (42) and (45), we have
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First, we can calculate the dynamic equations for αr ,
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and
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0

Considering the relations in Eqs. (47), (48) and (36), last two terms in Eqs. (49) and (50) are canceled when they are
substituted into Eq. (35), we have finally derived Eq. (10), i.e.

∑¨ = + ¯
( )

α α α α
∈ ∉α α

M Sr f t ,
50i S j S

ij
,

0

where φ= ′( ) | |rf r r/ij ij ij ij .
Moreover, it is straightforward to show that

ϕ
ϕ ϕ∂

∂
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α α α
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⎞
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d
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d
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J J ,
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and
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By considering the fact that
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The dynamics equation for ϕα can be written as,
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ϕ Ω¨ · = ( − ) ( )α α α αJ , 55ext int 0

where
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ext

i S j S
ij ij0

,

which are exactly the same as Eqs. (15), (17) and (18).
Last, we consider the dynamic equations for Si,

∂
∂ ̇ = ( · ̇) = ̇ · ̇ + · ¨
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which lead to the microscale dynamic equation,

∑ ϕ· ¨ = · − ̇ · ̇
( )

α α αm mC s f C S .
60

i
j

ij i i

Eq. (60) is exactly Eq. (16). Note that in Eqs. (59) and (60) the summation ∑j denotes the sum of all other atom j in the whole
domain of the solid that is under study, which are not just those atoms inside the supercell α.
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