
Comp. Part. Mech.
DOI 10.1007/s40571-016-0116-5

Parallel peridynamics–SPH simulation of explosion induced soil
fragmentation by using OpenMP

Houfu Fan1 · Shaofan Li1

Received: 4 September 2015 / Revised: 3 May 2016 / Accepted: 23 May 2016
© OWZ 2016

Abstract In this work, we use the OpenMP-based shared-
memory parallel programming to implement the recently
developed coupling method of state-based peridynamics and
smoothed particle hydrodynamics (PD-SPH), and we then
employ the program to simulate dynamic soil fragmentation
induced by the explosion of the buried explosives. The paper
offers detailed technical description and discussion on the
PD-SHP coupling algorithm and how to use the OpenMP
shared-memory programming to implement such large-scale
computation in a desktop environment, with an example to
illustrate the basic computing principle and the parallel algo-
rithm structure. In specific, the paper provides a complete
OpenMP parallel algorithm for the PD-SPH scheme with the
programming and parallelization details. Numerical exam-
ples of soil fragmentation caused by the buried explosives
are also presented. Results show that the simulation carried
out by the OpenMP parallel code is much faster than that by
the corresponding serial computer code.

Keywords Buried explosive · OpenMP · Parallel computa-
tion · Peridynamics · SPH · Soil fragmentation

1 Introduction

Simulations of the soil fragmentation induced by the buried
explosives are of great challenge in computational geo-
mechanics, owing to the complexities in representing the
massive fragments generated during the explosion process by
using conventional mesh based methods. To correctly char-

B Shaofan Li
shaofan@berkeley.edu

1 Department of Civil and Environmental Engineering,
University of California, Berkeley, CA 94720, USA

acterize the interaction between the soil and the explosive,
the particle method may be a better approach. Unfortunately,
some of the weak form-based particle methods are com-
putationally expensive, and some of the strong form-based
particle methods, e.g., SPH, have issues with accuracy and
convergence [1].

The state-based peridynamics (PD) and the smoothed par-
ticle hydrodynamics (SPH) are two popular particle methods
extensively used in the current researches and developments.
PD is a computational non-local continuum theory and for-
mulation proposed by Silling [2]. In addition to the fact that
the PD method is efficient, convergent, and accurate, there
is one unique feature of the PD method—it can seamlessly
incorporate any macroscale constitutive relations in classical
continuum mechanics framework. The PD method has been
successfully employed in simulations of many fracture or
damage processes. For instance, Foster et al. (2010) inves-
tigated a viscoplastic bar under impact [3]; Tuniki (2012)
employed state-based peridynamics to predict the fracture
processes of concrete [4], and Lai et al. (2015) simulated
the fragmentation of geomaterial induced by impluse loads
using the state-based peridynamics [5]. The SPH method is
a particle method that is designed to solve hydrodynamics
problems, which can be utilized to simulate explosion [6].
However, the SPH method has some deficiencies, such as
low accuracy [7,8], tensile instability [9], and difficulties in
enforcing the essential boundary conditions [10]. In [11],
the present authors developed the PD-SPH coupling scheme,
which incorporates the advantages of both the PD and SPH
methods, such that the theoretical and numerical issues in
soil explosions are carefully addressed.

Parallel computing is a type of computations that makes
use of multiple processing units simultaneously to solve a
large-scale problem, which is usually divided into many
smaller parts, and each part is calculated by a computing

123

Comp. Part. Mech.

processing unit. Parallel computers can be classified with
two independent dimensions of Instruction Stream andData
Stream, each of which can be either Single or Multiple [12].
For a typically MIMD (multiple instruction, multiple data)
multicore processor, several parallel programming models
are in commonuse, such as sharedmemory (without threads),
threads, distributedmemory (message passing), data parallel,
hybrid, single program multiple data and multiple program
multiple data. In this work, we are focusing on the a specific
implementation of the thread model—the OpenMP, where
a single program can have more than one command flow,
all of which operate together in the shared-memory system.
The efficiency of a computer program can be significantly
increased on a multithreaded processor if it is designed to
make the different threads cooperate well with each other.

Traditionally, parallel programming is accomplished by
the message-passing interface (MPI) library [13], which is
a language-independent communications protocol used for
programming parallel computers. It is a portable, widely
available and accepted standard for parallel programming.
However, writing parallel code using MPI can be very
challenging, as it requires the data structures be properly
partitioned to balance the load and communications between
different processors. There is no incremental path in paral-
lelizing a program by MPI—one cannot write a serial code
and parallelizes the sections as needed. For the dynamic soil
fragmentation problem with moderate size, we usually have
relatively small datasets that only requiremoderate computer
memory but fast computation. Thus, it may be advantageous
to employ OpenMP technique to speed up the computation,
because the OpenMP programming model is designed and
suitable for multithreaded programming environments, in
which the data structures are shared among threads, and thus
there is no need to copy data between execution contexts
[14]. The OpenMP programming model can help developers
make the parallel applications much easier while retaining
the overall look of serial programming. In particular, the
OpenMP parallel technique discussed here may even be used
in some desktop computers and laptops in daily academic and
research development environment to avoid the cumbersome
in developing a full parallel MPI program.

Moreover, withmost distributedmemory platforms nowa-
days consisting of symmetric multi-processor (SMP) or
non-uniform momery access (NUMA) nodes, it makes a lot
of sense to use OpenMP with MPI. SMP means a platform
of shared-memory hardware architecture where multiple
processors share a single address space and have equal access
to all resources. NUMA is often made by the linking of two
or more SMP machines, which do not have equal access
to all memories. In fact, OpenMP and MPI can perfectly
work together. OpenMP feeds the cores on each node and
MPI communicates between the nodes. This is what is called
hybrid programming.

In this work, the OpenMP parallel programming is
employed to implement a PD-SPH coupling method. The
detailed PD-SPH coupling scheme, the PD constitutive mod-
eling of the soil medium, and validation of the PR soil
model have been discussed previously in [11]. In this paper,
we are focusing on providing the programming details of
the OpenMP parallel computation of the PD-SPH coupling
scheme and possible improvements regarding the perfor-
mance of the parallelism. The paper is organized as follows.
In Sect. 2, PD, SPH methods, and their coupling scheme are
reviewed. The technical details of OpenMP programming
and implementation of the PD-SPH coupling scheme are
discussed in Sect. 3. In Sect. 4, we present the numerical
simulation results that are obtained from the numerical tests
to evaluate the performance of the parallel PD-SPH coupling
computer code. The presentation is ended with discussions
in Sect. 5.

2 Overview of the PD-SPH coupling scheme

In this section, an overview of the fundamentals of the state-
based peridynamics, the smoothed particle hydrodynamics
(SPH), and their coupling scheme are discussed.

2.1 Peridynamics theory and formulations

The state-based peridynamics theory was first introduced by
Silling [2], which is a non-local continuum theory of solid
mechanics. As shown in Fig. 1, we are considering a con-
tinuum domain �0 that is discretized into a set of material
particles XA with associated volume V 0

A and mass density
ρ0
A, where A = 1, 2, ...,∞ is the particle index. Note that in

this paper, we choose the initial configuration as the material
configuration.

Amaterial particleXA only interacts with any particleXB

within a local region, called the horizon δXA . The particles
within this local region form a familyHXA . The relative posi-
tion vector pointing from particle XA to XB in the reference
configuration is called a bond, which shall be denoted as

XA→B := XB − XA . (1)

Fig. 1 The reference configuration of a continuum domain �0 in the
theory of state-based peridynamics

123

Comp. Part. Mech.

Subjected to certain motion or deformation χ , the continuum
body deforms and the bond XA→B in the reference configu-
ration becomes

xA→B := xB − xA = Y(XA→B) (2)

whereY is a non-linear quantity called the deformation state,
similar to a tensor in classical continuum mechanics. Here,
the deformation stateYmaps an undeformed bondXA→B to
a deformed bond xA→B .

In the peridynamics theory, the balance of the linear
momentum is expressed in the form,

ρ0Aü =
∫
HXA

[
T(XA,XA→B) − T(XB ,XB→A)

]
dVXB + ρ0Ab,

(3)

where T is the force state; u is the displacement, and b is the
external body force.

The force state can be expressed in terms of the first Piola–
Kirchhoff (PK1) stress as

T(XA,XA→B) = ω(|XA→B |)PXAK
−1
XA

· XA→B, (4)

where ω(|XA→B |) is a positive scalar influence function,
|XA→B |, and KXA is the reference shape tensor, defined as

KXA =
∫
HXA

ω(|XA→B |)XA→B ⊗ XA→BdVXB . (5)

There is a corresponding deformed shape tensorNXA , defined
as

NXA :=
∫
HXA

ω(|XA→B |)xA→B ⊗ XA→BdVXB . (6)

By assuming that

xA→B = Y(XA→B) = FXA · XA→B, (7)

where FXA is a second-order tensor, which can be viewed as
the approximated deformation gradient at particle A, one can
find that

NXA = FXA ·
⎡
⎣ ∑
XB∈HXA

ω(|XA→B |)XA→B ⊗ XA→BV
0
B

⎤
⎦

= FXA · KXA . (8)

That is

FXA = NXA · K−1
XA

. (9)

In the Peridynamics and SPH coupling region, in order to
couple them together, we sometimes need to treat an SPH
particle XB ∈ HXA as a peridynamics particle. In fact, one
can directly treatXB as a peridynamics particle by construct-
ing the same influence function ω(|XA→B |), and the shape
tensorKXB ,NXB . By combiningEqs. (3)–(9),we can express
the force acting on a peridynamics particle as

fA =
∑

XB∈HXA

[
ω(|XA→B |)PXAK

−1
XA

· XA→B

−ω(|XB→A|)PXBK
−1
XB

· XB→A

]
V 0
B . (10)

For the SPH particle, the only quantity unknown is the
first Piola-Kirchhoff stress tensor (PK1) PXA , which can be
obtained by

PXB = −JB pBF
−T
XB

, (11)

where pB is the pressure, andFXB is the deformation gradient
at the particle XB and JB = det[FXB].

2.2 Basic formulation of SPH

TheSPHmethodwasfirst developed for fluid hydrodynamics
problems. There are two key ingredients in SPH methodol-
ogy: Kernel approximation and Particle approximation [16].

In the SPH method, a continuous field f (x) is approxi-
mated as

〈 f (x)〉 =
∫

�

f (y)W (|x − y|)dVy, (12)

where 〈〉 is the kernel approximation operator [17], andW is
the so-called kernel function. Using the smoothing function,
the gradient of f (x), i.e., ∇ f (x), can be written as

〈∇ f (x)〉 = −
∫

�

f (y)∇xW (|x − y|)dVy, (13)

where the minus sign results from the integration by parts,
which is standard in SPH formulation [18]. The discretized
form of Eqs. (12) and (13) are

〈 f (xA)〉 =
∑

xB∈SxA

f (xB)W (|xA − xB |)VB, (14)

and

〈∇ f (xA)〉 = −
∑

xB∈SxA

f (xB)∇xAW (|xA − xB |)VB, (15)

where SxA represents the supporting (influence) domain of
particle xA, similar to the definition of horizon HXA in the
state-based peridynamics.

123

Comp. Part. Mech.

In order to represent constant and linear fields cor-
rectly, the following corrected gradient operator is usually
employed:

∇xAW (|xA − xB |) = −M−1
xA ∇xAW (|xA − xB |), (16)

where the matrixMxA is given as

MxA =
∑

xB∈SxA

(xB − xA) ⊗ ∇xAW (|xA − xB |)VB . (17)

With these formulas, we can directly use the discretized SPH
equations of motion to simulate the explosive as

DρA

Dt
=

∑
xB∈SxA

mB(vB − vA) · ∇xBW (|xB − xA|), (18)

DvA
Dt

= −
∑

xB∈SxA

mB(
pA
ρ2
A

+ pB
ρ2
B

+�AB)∇xBW (|xB − xA|), (19)
DeA
Dt

= 1

2

∑
xB∈SxA

mB(
pA
ρ2
A

+ pB
ρ2
B

+ �AB)(vA − vB)

·∇xBW (|xB − xA|), (20)
DxA
Dt

= vA, (21)

where ρ, v, e, p are the density, velocity, internal energy, and
pressure at the correspondingparticle. D()

Dt represents the time
derivative of the quantity in the bracket. �AB is the standard
Monaghan viscosity [19]. For the detailed derivation of these
equations, the readers may consult [1,6]. The pressure of the
high explosive (TNT) is obtained from the following equation
of state of the explosive gas model for TNT:

p = (γ − 1)ρe, (22)

where the factor γ = 1.4 and initial energy e0 = 4.69×106 J
are taken from [16].

In SPH–Peridynamics coupling region, we may need to
“treat” a peridynamics particle as a SPH particle in order
to couple it with the rest of true SPH particles. Thus when
we correspond a peridynamics particle to a SPH particle, the
corresponding SPH quantities of the peridynamics particle,
such as the density ρB , velocity vB , and pressure pB are
needed, and they have to be identified in order to employ the
SPH governing Eqs. (18)–(21)). In the coupling procedure,
the particle’s SPH velocity vB is always available. Moreover,
other related variables may also be calculated, i.e, the density
can be calculated as

ρB = 1

JB
ρ0
B, (23)

and the pressure can be obtained as

pB = −1

3
tr(σ B) = − 1

3JB
tr(PXBF

T
XB

), (24)

where ρ0
B is the initial density at particle XB .

3 OpenMP Parallel programming of the PD-SPH
coupling scheme

3.1 Introduction to the OpenMP

OpenMP is an application programming interface (API) for
explicit and portable shared-memory multithreaded parallel
programming in C, C++, and Fortran [14,20,21]. In multi-
threaded programming environment, an application is broken
into subtasks or threads, which run in parallel or sequen-
tially. OpenMP is not a new programming language, but the
version that is used in this work contains a set of compiler
directives and callable runtime library routines that “deco-
rate” (extend) C, C++, or Fortran, to express shared-memory
parallelization. OpenMP simplifies the complex task of code
parallelization, allowing even novices to move directly from
serial programming styles to parallel programming. A devel-
oper who is familiar with a language (such as C, C++, or
Fortran) only needs to learn the set of compiler directives.
These directives, which tells the compiler which part of code
to parallelize and how to do it, are added to the code without
altering the logical behavior of the serial program. Thewhole
multithreaded task is then handled by the compiler.

As shown in Fig. 2, OpenMP makes use of a paral-
lel design pattern called the fork-join model. An OpenMP
program starts with the master thread running sequentially,
which branches into a specific number of threads in response
to the OpenMP directives that carry out the corresponding
work concurrently. After finishing the work in the parallel
region, these threads merge together with the only master
thread left, running sequentially again. By using theOpenMP
directives, a serial program can be gradually changed into a
parallel one. The OpenMP directives are in the form of com-
ments in C, C++, or Fortran, such that without turning on the
OpenMP parallelizing feature of a compiler, the resulting
OpenMP-based parallel program is completely equivalent to
the original serial one.

For most OpenMP directives, a structured block of code
is marked for parallelization with an entry point at the begin-
ning and an exit point at the end. The number of threads
involved in the parallel region can be left default as the envi-
ronment variable or specified by a runtime function that is
called within the program. This enables the change of the
number of threads created within different parallel regions.
In addition, nestedparallel regions are allowed, such that each

123

Comp. Part. Mech.

Fig. 2 Fork-join model: a way of setting up and executing parallel
programs such that the sequential execution branches off (“fork”) in
parallel at a specific point in the program, to merge together (“join”)
at another subsequent point and resume sequential execution. Parallel
regions can be nested

of the created thread in the original parallel region can fork
a team of threads in the parallel region of their own, with the
specific thread itself being the corresponding master thread.

3.2 How to parallel the PD-SPH coupling computation
code

In this part, we shall discuss the detailed implementation
of the PD-SPH coupling scheme by using OpenMP parallel
computation. To do so, we first implement a serial program of
the PD-SPH coupling scheme, and then we identify the most
time-consuming parts of the serial program. Subsequently,
OpenMP directives are gradually applied to, wherever possi-
ble, the corresponding source codes of these parts in the serial
program, turning it to a parallel one. The general computa-
tional structure of the PD-SPH coupling scheme is shown
in Fig. 3, based on which the serial code is first developed.
In short, the computational structure can be categorized into
three parts: Preprocess, Initialize, and Solve.

In the first step (Preprocess), reading the input file cannot
be parallelized, because the file handle can only be assigned
to one thread at any time. Allocating the calculation matri-
ces can be parallelized by using the section directive [14],
but it will not make much differences compared to a serial
code, because there are only a few number of matrices to
be allocated. In our framework of the computational parti-
cle mechanics, the particle positions, volumes, and horizon
sizes are all obtained from that of a typical FEMmesh—node
coordinates and element connectivity [23]. Computing the
particle volume and horizon size can be parallelized by using
the OpenMP directives parallel and do. However, again, it
will not help much in reducing the total computational time,

given that this part will only be executed once and there is
only a single loop over all the elements involved in the exe-
cution. Constructing the particle linklists requires a double
loop over the total number particles in the system, which can
be and should be parallelized. The second step (Initialize)
mainly aims to set the initial values of some of the allocated
matrices, which can be parallelized but will make little con-
tribution to the overall performance of the code.

Here, the main attention should be paid to those routines
in the third step (Solve), which has to be run multiple times
depending on the total simulation steps. In fact, all loops in
this step are to be parallelized to the largest extent. Without
going to the details of every single loop, the most time-
consuming parts of the third step are highlighted in Fig. 3
(thicker boxes), as documented in Table 1 in Sect. 4. These
parts all contains multiple loops over the total number of
particles in the system. Updating the SPH particle linklist
has to be done at each time step, because the SPH kernel
depends on the Eulerian kernel. Computing both the SPH
particle velocities and PD particle accelerations requires a
loop over all the particles (SPH or PD), with a nested loop
over neighboring particles in the corresponding supporting
domain or horizon. As an illustration, we shall show the par-
allelizing details for the computing of the PD acceleration,
with which the parallelization for the SPH particle velocity
can be easily replicated. Before proceeding, the formulation
for the PD acceleration are provided below. By combining
Eqs. (3) and (4), one can obtain

üA = 1

ρ0
A

NA∑
B=1,B 	=A

{
ω(|XA→B |)PXAK

−1
XA

XA→B

−ω(|XB→A|)PXBK
−1
XB

XB→A

}
V 0
B + bA. (25)

As shown in Fig. 3, the Velocity-Verlet time integration algo-
rithm is employed for the integration of the rate equations in
the system [24]. To obtain the accelerations of the peridynam-
ics particles, one needs to have the updated PK1 stress andPD
artificial viscosity ready (see Fig. 3), which is converted to a
PK1-type stress quantity in the actual implementation. The
corresponding parallelism of the stresses is omitted here, to
limit the length of presentation. With the PK1 stress and PD
artificial viscosity ready, the parallelization of the computing
the PD acceleration is shown in Fig. 4.

The initialization of the acceleration acc(ndim, totmp) is
done in the parallel region (line 15–22 in Fig. 4). totmp is the
total number of particles in the system, and ndim is the space
dimension of the problem. There are a team of num of threads
threads that work concurrently in this region. i ptype(totmp)
is an array that identifies the type of a particle; i ptype(i) = 1
and i ptype(i) = 2 indicate that particle i is an SPH and PD
one, respectively. The main part of the code is essentially a

123

Comp. Part. Mech.

Fig. 3 Flow chart for the PD-SPH coupling scheme

123

Comp. Part. Mech.

Fig. 4 OpenMP program for computation of the PD acceleration

parallel region (line 25–56 in Fig. 4) that loops over all the
PD particles in the system, with a nested parallel region (line
38–52 in Fig. 4) that loops over the particles (both SPH and
PD) within the corresponding horizon. Moreover, we would
like to emphasize one particular point regarding the argu-
ments of the clause private in each parallel region. Take the
private clause at line 25 for instance, it is easy to see that
the variable i has to be private, given that it is the iterative
index for the corresponding do loop (line 27–54 in Fig. 4)

in the parallel region. The rule to decide whether any other
variables are private or not is a variable that depends on the
iterative index i has to be private. Variables not declared by
the private clause are public variables by default (except
the iterative indices of loops). For better illustration, the key
variables used in the source code are explained here: pk1i
(pk1 j) is the PK1 stress at particle i (j); invKi (invKi)
is the inverse of the shape tensor K−1

Xi
(K−1

X j
) at the parti-

cle i (j); pat (i) (pat (j)) is the artificial viscosity-induced

123

Comp. Part. Mech.

pressure at particle i(j); piv1i (piv1 j) is the contribution
to the PK1 stress due to the PD artificial viscosity at particle
i(j); num f am and link f am provide the information of the
linklist; f orcei is the total force per unit volume applied at
particle i ; xi(eta) is the bond vector pointing from i to j in
the reference (current) configuration, respectively; bweight
is the influence function; and rhos is the density in the ref-
erence configuration.

4 Numerical examples

In this section, we first briefly discuss the constitutive equa-
tions that are used to describe the soil medium and the
corresponding time integration scheme, and then we present
the results of numerical simulations that are conducted to test
the performance of the parallel PD-SPH program.

4.1 Constitutive equations of the soil and the time
integration

In this work, the Drucker–Prager (DP) plasticity model is
employed to characterize the behavior of soil medium. The
constitutive updates for a non-linear finite deformation are
first presented,which are then expressed in the corresponding
peridynamics formulations.

Formally, the yield function of the DP model may be
expressed as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f = ‖s‖ − (A(φ′)c′ − B(φ′)p′) ≤ 0

A(φ′) = 2
√
6 cosφ′

3+β sin φ′

B(φ′) = 2
√
6 sin φ′

3+β sin φ′ , −1 ≤ β ≤ 1

, (26)

where s is the deviatoric stress tensor; φ′ represents the
effective friction angle; c′ denotes the effective cohesion
(Pa); and p′ is the mean effective stress. In Eq. (26), when
β = 1 and β = −1, f represents either the triaxial extension
(TE) corners or the triaxial compression (TC) corners of the
Mohr–Coulomb yield surface, respectively [22]. Consider-
ing a non-associative flow, wemay write the Drucker–Prager
(DP) plastic potential function as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

g = ‖s‖ − (A(ψ ′)c′ − B(ψ ′)p′)

A(ψ ′) = 2
√
6 cosψ ′

3+β sinψ ′

B(ψ ′) = 2
√
6 sinψ ′

3+β sinψ ′ , −1 ≤ β ≤ 1

, (27)

where ψ ′ represents the effective dilation angle.
The Helmholtz free energy function ρs� per unit soil vol-

ume can be decomposed into elastic part and inelastic parts
as follows:

ρs�(εe, ζ) = 1

2
εe : De : εe + 1

2
ζ · H · ζ , (28)

where εe is the elastic strain tensor, De the elastic modulus
tensor, H the hardening/softening modulus matrix, and ζ a
set of strain-like internal state variables (ISVs) associated
with plastic hardening.

From theHelmholtz free energy inEq. (28), one can derive
the rate equations of stress (σ ′) and stress-like ISVs (qζ) as

σ̇ ′ = ∂(ρs�)

∂ ε̇e
= De : ε̇e = De : (ε̇ − ε̇ p) (29)

q̇ζ = ∂(ρs�)

∂ ζ̇
= H · ζ̇ , (30)

where ε p and qζ = {c′, φ′, ψ ′}T are the plastic strain tensor
and the specific internal states variables, respectively. It is
assumed that the ISVs are to evolve under an independent,
linear hardening model, i.e.,

H =
⎡
⎣ Hc 0 0
0 Hφ 0
0 0 Hψ

⎤
⎦ , (31)

where Hc, Hφ, Hψ are the linear hardening/softening mod-
ulus for c′, φ′, ψ ′, respectively. Based on the plastic potential
function (see Eq. (27)), the evolution of plastic flow can be
described by the following equation,

ε̇ p = γ̇
∂g

∂σ ′ = γ̇

(
∂‖s‖
∂σ ′ + B(ψ ′) ∂p′

∂σ ′

)

= γ̇

(
s

‖s‖ + 1

3
B(ψ ′)I

)
, (32)

where I is the second-order identity tensor. The evolution
equations of the ISVs are given as

q̇ζ = γ̇H · h(σ ,qζ) (33)

h = − ∂ f

∂qζ
, (34)

where h is a hardening function. Using the principle of the
maximum plastic dissipation, one can obtain

h =
⎛
⎜⎝

A(φ′)
∂A(φ′)

∂φ′ c′ − ∂B(φ′)
∂φ′ p′

∂A(ψ ′)
∂ψ ′ c′ − ∂B(ψ ′)

∂ψ ′ p′

⎞
⎟⎠ . (35)

Using the consistency condition ḟ = 0, the plastic multiplier
γ̇ can be derived as⎧⎨
⎩

γ̇ = 1
χ

∂ f
∂σ ′ : De : ε̇

χ = ∂ f
∂σ ′ : De : ∂g

∂σ ′ − ∂ f
∂qζ : H · h.

(36)

123

Comp. Part. Mech.

Eqs. (29), (30) and (36) are the equations for constitutive
update of a non-linear plastic constitutive model of the soil
medium. In thiswork, the following explicit update algorithm
is adopted:

σ
′,tr
n+1 = σ ′

n + De : �ε (37)

f trn+1 = ‖str‖ −
(
A(φ′

n)c
′
n − B(φ′

n)(p
′)trn+1

)
, (38)

where the superscript tr stands for the corresponding vari-
ables at the trial phase. The trial phase calculation may be
summarized as follows:

if f trn+1 < 0, elastic phase: update σ ′
n+1 = σ

′,tr
n+1 and

qζ
n+1 = qζ

n .
if f trn+1 ≥ 0, plastic phase:

�γ = f trn+1

2μ + K B(φ′)B(ψ ′) + Hc(A(φ′))2
(39)

σ ′
n+1 = σ

′,tr
n+1 − �γ (K B(ψ ′)I + 2μn̂n+1) (40)

qζ
n+1 = qζ

n + �γH · h(σ ,qζ) . (41)

The trial stress is calculated based on Eq. (37), under the
assumption of small deformation. However, generally speak-
ing, the soil medium under blast loading shall undergo finite
deformation with large rotations. Thus, it should be replaced
by a formulation accounting for finite deformation. In this
work, the time integration suitable for non-linear finite defor-
mation is adopted, which is based on the Hughes–Winget
incrementally objective algorithm [15].

In the Hughes–Winget algorithm, an intermediate config-
uration at time step n + α is defined

xn+α = (1 − α)xn + α�u, (42)

where the scalar parameter α = 0.5. Following the deriva-
tion of the approximated deformation gradient in Eq. (9),
the deformation gradient at the configuration xn+α can be
calculated as

Fn+α = ∂xn+α

∂X

=
⎛
⎝ ∑

XB∈HXA

ω(|ξ |)(xn+α
B − xn+α

A) ⊗ XA→B

⎞
⎠ · K−1

XA
.

(43)

Meanwhile, the gradient of �u with respect to the reference
configuration can be written as

∇x�u = ∂(�u)

∂X

=
⎛
⎝ ∑

XB∈HXA

ω(|ξ |)(�uB − �uA) ⊗ XA→B

⎞
⎠ · K−1

XA
.

(44)

By using the chain rule, one can then obtain the increment
of the deformation gradient

Gn+α = ∂(�u)

∂xn+α

= ∇x�u · F−1
n+α, (45)

which can be split into the following two parts:

γ n+α = (Gn+α + GT
n+α)/2 (46)

ωn+α = (Gn+α − GT
n+α)/2. (47)

The objective effective stress increment can then be obtained
as

�σ ′ = De : γ . (48)

Finally, Eq. (37) can be replaced by the following equations:

σ ′
n+1 = σ̂

′
n + �σ ′ (49)

σ̂
′
n = 	T

n+α · σ ′
n · 	n+α (50)

	n+α = I + (I − αωn+α)−1 · ωn+α . (51)

4.2 Soil fragmentation induced by blast load

Numerical simulations are conducted to test the performance
of parallel PD-SPH program. The simulation model is cho-
sen to be a cubic soil block with a cubic TNT explosive
buried inside. Figure 5 shows the schematic of the setup. The
TNT explosive is located at very center of the soil block,
with all the surfaces parallel to those of the soil block. The
side lengths of cubic soil block and the dimension of the TNT
explosive are L = 0.03m and a, respectively. Thewhole sys-
tem is discretized into 29,791 particles. The particle positions
(nodes), associated volumes, and their corresponding hori-
zon sizes δX or smoothing lengths hx are generated from an
FEMmeshof 29,791nodes and27,000hexahedron elements.
The SPH particles represent the computational domain of
the explosive, and the peridynamics particles represent the
soil medium (see Fig. 5). Given that the explosion force pro-
duced by the explosive is so dominant, the gravitational force,
and frictions force between the peridynamics particles and
the surrounding environment may be neglected. That is, the
whole system is subjected to the PD-SPH particle interac-
tions only. The constitutive relations, material properties of
the soil medium are the same as that in [11]. The simulation
time step size is set to be dt = 5.0 × 10−8 s.

123

Comp. Part. Mech.

Fig. 5 A cubic soil block with a cubic TNT explosive embedded inside (located at the very center, with all the surfaces parallel to the corresponding
ones of the soil block): a geometrical configuration. b Discretization of the domain with 29,791 particles

Table 1 Simulation time (in seconds) cost for each part of the code. For all the three cases, the total number of particles in the system is 29,791,
and the number of SPH particles is different

No. of SPH particles Preprocess Initialize Solve Total

Linklist Others SPHlink SPH rates PD acceleration Others

343 11.24 0.52 0.19 15.87 39.60 36.29 8.55 111.55

1331 10.78 0.53 0.60 58.85 38.16 33.18 8.36 149.33

3375 10.79 0.47 1.57 153.41 37.32 31.39 7.93 240.84

The strictly non-parallel portion of the code is <0.5%

First, the program is executed with one single thread for
100 time steps, and the time spent in each section of the code
is recorded, as shown in Table 1. Three different cases of dif-
ferent explosive sizes are considered, with the side length
a = 0.004, 0.006, or 0.008 m. The corresponding num-
ber of SPH particles in the three cases are 343, 1331, and
3375. One can see that the most time-consuming parts of the
program is the compiling of the Linklist in the Preprocess
and the SPH linklist, SPH rates, and PD accelerations in the
Solve. One may also notice that as the number of SPH parti-
cles increases, the construction of the SPH linklist gradually
dominates the consumption of the total simulation time. We
would like tomention that the non-parallel portion of the code
only includes the “Preprocess–Others” and “Initialize.” The
“Solve–Others” mainly serves as an update to the velocity
and displacement arrays based on the accelerations, which
are all easily parallelized.

For afixednumber of processors N performing the parallel
fraction of the work, the potential speed-up is

Speed-up = 1

1 − P + P/N
. (52)

For instance, if 75%of the code is parallelized, themaximum
speed-up is 4 (assuming N goes to infinity), meaning that

the code can run four times as faster as than that of the code
without parallelization, from which one can see that a high
percentage of the code that can be parallelized is a crucial
factor to the possible overall performance of the parallel code.
With the data provided in Table 1, one may easily find that
for the present case, the strictly non-parallel portion of the
code is <0.5%. In parallel programming, the speed-up ratio
of a code is defined as

Sp := Time for the original code

Time for the improved code
(53)

and the parallel efficiency is defined as

Ep := Sp

N
, (54)

where N is the number of threads used in the corresponding
simulation.

To test the parallel performance of the code, a series of
simulations are conducted with number of threads (N) rang-
ing from1 to 32 in aCPUmodel of Intel(R)Xeon(R)E5-2698
of main frequency 2.3GHz. The OpenMP fortran90 code is
compiled by using the Intel Parallel StudioXE2015. Figure 6
shows the simulation times versus the number of threads par-

123

Comp. Part. Mech.

Fig. 6 Simulation times cost versus the number of threads participated

ticipated in the computations. For all the three different cases,
it can be easily seen that the simulation times decrease for
the first few number of threads (1–10) and gradually slow
down until almost reaching a plateau (16–32).

The speed-up ratio (Sp) and parallel efficiency (Ep) of
the code are also plotted with their respective ideal cases
of a strictly non-parallel portion 0.5% in Fig. 7. Note that
the parallel efficiency for the case with more SPH particles
tends to be higher than the one with smaller number of SPH
particles. This can be ascribed to the fact that the case with
lower number of SPH particles limits the number of particles
assigned for each thread, which to certain extent increases
the overhead in managing the threads.

For the three different cases, as the number of threads N
goes from 1 to 14, the actual speed-up ratios of the code
increase from 1.0 to approximately 7.01, 7.73, and 9.52
and the parallel efficiency deceases from 1.0 to 0.48, 0.53,
and 0.69, respectively. As the number of threads continuous
increases, there speed-up ratios become stagnant and the par-

allel efficiencies simply decrease linearly. There are several
reasons that can be accounted for this phenomenon. First,
N threads may have N times the computation power, but
the memory bandwidth is shared by N processors and per-
formance degradation shall be observed when they compete
for the shared-memory bandwidth. One would expect, for a
fixed number of particles, the existence of a critical num-
ber of threads (here 14), after which the increasing number
of threads participated would not help in reducing the sim-
ulation time. Second, data synchronization requires that an
upcoming process must wait until all the data it depends on
are finished computing from a previous process. In a par-
ticular computation block, some threads may have finished
their computation much earlier, but has to wait until all the
threads are done beforemoving on. For instance, all the SPH-
linklists have to be ready before the SPH-related rates are
updated; all the information on the PK1 stress and artificial
viscosity have to be in place, before the computing of the
acceleration of peridynamics particles started (see Fig. 3).
In addition, many other common problems in parallel com-
puting may also affect the overall speed-up of the code, like
memory hierarchy of the processor family, data localization,
and reutilization.

To improve the parallel performance of the current PD-
SPH program, one can computer problems of large size
(granularity) such that the fraction of code that can be paral-
lelized is larger; use a better computer to reduce the compete
for resources of the shared-memory system; and improve the
load balancing such that each thread would take approxi-
mately the same amount of time to finish their work in a
parallel region. In fact, by using the PD-SPH program, simu-
lations of a system of total 4,891,414 particles are carried out
by using 16 and 32 threads, respectively, in the same Intel(R)
Xeon(R) E5-2698 CPU. The total simulation time recorded
for the 16 threads case is around 77.5 hours and that for the 32

Fig. 7 Performance of the OpenMP parallel code of PD-SPH coupling a speed-up ratio b parallel efficiency

123

Comp. Part. Mech.

Fig. 8 Dynamic fragmentation process of a soil block due to the
embedded explosive; view from the front of a vertical cross section.
Contour color: velocity magnitude a t = 5.0µs. b t = 20.0µs. c
t = 30.0µs. d t = 40.0µs. e t = 50.0µs. f t = 60.0µs.

threads case is around 42.0 hours. If we treat the 16 threads
case as the original “serial” code, the parallel efficiency of the
32 threads case can be evaluated as (76.5/42.0)/2 = 0.91.
This further indicates that the quick decay of the parallel effi-
ciency in Fig. 7 is mainly due to the lack of computational
load in each thread.

Given that our main purpose is to present the paralleliza-
tion details and performance of the parallel PD-SPHcoupling
code, the validity of the modeling method in capturing the
explosion is not discussed here. Interested readers may con-
sult [11]. But for the sake of completeness, the dynamic
fragmentation process of the soil block due to the buried TNT
explosion is provided in Fig. 8. One can see that the soil par-
ticles around the TNT explosive gain very large momentums
at the first few steps. After hitting by the first shock wave,
the soil medium gradually expand in every directions. The
results from simulations with different numbers of threads
are the same, as what they should be.

5 Conclusions

In this work, the OpenMP-based parallel programming
is adopted to implement the recently developed PD-SPH
coupling scheme, and several numerical calculations are
conducted to evaluate its performance. We have discussed
computational or algorithmic structure of the OpenMP par-
allelization of PD-SPH coupling in details. A numerical
example of soil fragmentation caused by the buried TNT
explosive is performed by using the OpenMP parallel com-
puting. By running the simulation with number of threads
ranging from 1 to 32, the computational time, the speed-up
ratio, and parallel efficiency of the code are analyzed. In this
study, we have found that the OpenMP can improve the com-
putation efficiency of particle method computation in some
regular computers without high-performance capacities. The
OpenMP can successfully speed up the computation, owing
to the fact that it can always be employed to parallelize
the time-consuming sections of the corresponding serial
code.

Acknowledgments Thisworkwas supported by theONRMURIGrant
N00014-11-1-0691. This support is gratefully appreciated.

References

1. Li S, Liu WK (2004) Meshfree and particle methods. Springer,
Berlin

2. Silling SA, Epton M, Weckner O, Xu J, Askari E (2007) Peridy-
namic states and constitutive modeling. J Elast 88:151–184

3. Foster JT, Silling SA, ChenWW (2010) Viscoplasticity using peri-
dynamics. Int J Numer Methods Eng 81(August 2009):1242–1258

4. Tuniki BK (2012) Peridynamic constitutive model for concrete.
PhD thesis, Osmania

5. Lai X, Ren B, Fan H, Li S, Wu CT, Richard AR, Liu L (2015)
Peridynamics simulations of geomaterial fragmentation by impulse
loads. Int J Numer Analy Methods Geomech 39:189–213

6. Liu MB, Liu GR, Lam KY, Zong Z (2003) Smoothed particle
hydrodynamics for numerical simulation of underwater explosion.
Comput Mech 30(2):106–118

7. Quinlan NJ, Basa M, Lastiwka M (2006) Truncation error in
mesh-free particle methods. Int J Numer Methods Eng 66(August
2005):2064–2085

8. LiuMB, LiuGR (2006)Restoring particle consistency in smoothed
particle hydrodynamics. Appl Numer Math 56:19–36

9. Swegle JW, Hicks DL, Attaway SW (1995) Smoothed particle
hydrodynamics stability analysis. J Comput Phys 116:123–134

10. Campell PM (1989) Some new algorithms for boundary value
problems in smooth particle hydrodynamics. Technical report,
Technical Report DNA-TR-88-286

11. Fan H, Bergel GL, Li S (2015) A hybrid peridynamics-SPH simu-
lation of soil fragmentation by blast loads of buried explosive. Int
J Impact Eng 87:14–27

12. Chudik J, David G, Kotov VE, Mirenkov NV, Ondas J, Plander
I, Valkovskii VA (2013) Algorithms, software and hardware of
parallel computers. Springer, Berlin

13. GroppW, Lusk E, Skjellum A (1999) Using MPI: portable parallel
programming with the message-passing interface, 1st edn. MIT
press, Cambridge

123

Comp. Part. Mech.

14. Chapman B, Gabriele G, Van Der Pas R (2008) Using OpenMP:
portable shared memory parallel programming. MIT press, Cam-
bridge

15. Hughes TJR, Winget J (1980) Finite rotation effects in numer-
ical integration of rate constitutive equations arising in large-
deformation analysis. Int J Numer Methods Eng 15:1862–1867

16. LiuGR,LiuMB(2003)Smoothedparticle hydrodynamics: amesh-
free particle method. World Scientific, Singapore

17. Fulk DA (1994) A numerical analysis of smoothed particle hydro-
dynamics. PhD thesis, Air Force Institute of Technology

18. Rabczuk T, Belytschko T, Xiao SP (2004) Stable particle methods
based on Lagrangian kernels. Comput Methods Appl Mech Eng
193(12–14):1035–1063

19. Monagphan JJ (1994) Simulating free surface flows with SPH. J
Comput Phys 110(2):339–406

20. Chandra R (2001) Parallel programming in OpenMp. Morgan
Kaufmann, San Francisco

21. Sato M (2002) OpenMP: parallel programming API for shared
memory multiprocessors and on-chip multiprocessors. In: 15th
International Symposium on System Synthesis 2002, pp 109–111

22. Zienkiewicz OC, Chan AHC, Pastor M, Schrefler BA, Shiomi T
(1999) Computational geomechanics. Wiley Chichester, Chich-
ester

23. Ren B, Fan H, Bergel GL, Regueiro RA, Lai X, Li S (2015) A
peridynamics-SPH coupling approach to simulate soil fragmenta-
tion induced by shock waves. Comput Mech 55:287–302

24. Swope William C (1982) A computer simulation method for the
calculation of equilibrium constants for the formation of physical
clusters of molecules: Application to small water clusters. J Chem
Phys 76(1982):637

25. Bergeron D, Walker R, Coffey C (1998) Detonation of 100-
gram anti-personnel mine surrogate charges in sand-a test case
for computer code validation. Technical report, Defence Research
Establishment Suffield, Ralston ALTA (CAN)

123

