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Abstract In this work, the Eshelby tensor of a finite spherical domain is employed
to construct an interphase model to evaluate elastic properties of concrete composites.
Explicit formulations of the interphase model via multi-inclusion method for a class of
concrete composites are derived. The theoretical estimate based on an improved Hashin–
Shtrikman bounds for the Young’s modulus of two-phase concrete composite material
are used as a comparison result in the analysis, and the influence of the interfacial
transition zone (ITZ) on elastic properties of three-phase concrete composite is studied.
Moreover, the homogenization results predicted by the proposed interphase model are
compared with the published experimental data. Results obtained in this work show
that the proposed interphase model can provide a very accurate estimate of the effective
elastic properties of complex concrete composite materials.

Keywords Concrete; composite material; double-inclusion model; Eshelby tensor;
homogenization; interphase model.

1. Introduction

Concrete is a complex composite material that consists of multi-scale aggregate
particles dispersed in a porous cement paste. Macroscopic mechanical properties
and failure mechanism of concrete are determined by the microscopic components.
And the interface between aggregate and cement mortar is an important factor
that affects the failure path and macro-mechanical properties of concrete. In recent
years, concrete has been viewed as a three-phase composite material. By employ-
ing the Mori–Tanaka method [Mori and Tanaka, 1973] and the Eshelby equivalent
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eigenstrain method [Eshelby, 1957], Yang and Li [Yang and Huang, 1996a,b; Li
et al., 1999a,b] estimated the effective elastic constants of concrete materials. The
influence of the Young’s modulus and volume fraction of each of the three phases:
cement paste phase, inter-facial transition zone (ITZ), and the aggregate phase on
the effective Young’s modulus of the three-phase concrete is well established [Sime-
onov and Ahmad, 1995; Ramesh et al., 1996; Lutz et al., 1997; Yang, 1998; Sun
et al., 2007]. The Hashin–Shtrikman (H–S) bounds [Hashin and Shtrikman, 1963]
were also used to assess the significance of transition zone on the overall elastic
moduli of cement composites [Nilsen and Monteiro, 1993; Simeonov and Ahmad,
1995].

However, these models are based on classical Eshelby tensors that adopt special
assumptions on how the inclusions (aggregate) interact with the matrix (cement
paste). For instance, the Mori–Tanaka model assumes a perfect bonding and conti-
nuity between the inclusion and matrix. The double-inclusion model developed by
Hori and Nemat-Nasser [Hori and Nemat-Nasser, 1994; Nemat-Nasser et al., 1996] is
essentially a three-phase composite model consisting of an inclusion embedded in a
second inclusion phase, which is further embedded in an infinitely extended (matrix)
medium. The double inclusion method may serve as an interphase model. However,
if both inclusions are co-axial similar ellipsoids, the interphase effect disappears.
In this work, mortar is considered as a composite material in which sand particles
are embedded in a matrix of hardened cement paste, and the transition zone is
around the sand particles. By employing the finite Eshelby tensors for a spherical
inclusion in a finite spherical domain, the double-inclusion theory is extended to
a general interphase model that can be used to better approximate the effective
elastic properties of concrete composites.

The paper is organized into six sections. In Sec. 2, the concrete composite mod-
els are introduced. In Sec. 3, the finite Eshelby tensors for a spherical inclusion in a
finite spherical domain are briefly summarized. In Sec. 4, the interphase models via
multi-inclusion method, the improved H–S bounds, and their estimates for effective
elastic properties of the concrete composite materials are derived. In Sec. 5, a com-
parison is made between the theoretical results and published experimental data.
Finally, in Sec. 6, we close our presentation by making a few remarks.

2. Concrete Composite Model

In this work, a concrete element is considered as a three-phase (mortar, aggregate,
and ITZ) composite material, in which the fine aggregate is assumed to be of
spherical shape and the ITZ is treated as a uniform layer around the aggregate
(shown schematically in Fig. 1). In this way, a concrete is made up of a large number
of such basic elements due to aggregate size distributions (shown schematically in
Fig. 2). In Fig. 1, r1 denotes the radius of the aggregate, r2 − r1 the thickness of
ITZ layer, and r3 − r2 the thickness of mortar layer. Eg, Ei, Em and vg, vi, vm are
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Fig. 1. A basic concrete element.

Fig. 2. Concrete composite model.

the Young’s modulus and Poisson’s ratio of the aggregate, ITZ and mortar. The
thickness of the ITZ layer (r2 − r1) is assumed to be constant, regardless of the size
distribution of aggregates. Based on this assumption, the ITZ layer thickness can
be readily estimated [Li et al., 1999a,b].

If the graded aggregates are divided into N grades, the average radius for the ith
grade is ri (i = 1, 2, 3, . . . , N), and the aggregate volume fraction for ith grade is Vi,
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then the total surface area for aggregates in the ith grade is (no summation in i):

Sa(i) =
4πri

2

4
3πri

3
Vi. (2.1)

The total surface area for the total N grades can be written as

Sa = f1

N∑
i=1

Sa(i), (2.2)

where f1 is the volume fraction of aggregates in concrete. By assuming that every
aggregate is coated with the same thickness of ITZ, the ITZ thickness becomes

r2 − r1 =
f2

Sa
, (2.3)

where f2 is the volume fraction of ITZ. Substituting Eqs. (2.1) and (2.2) into
Eq. (2.3), the ITZ thickness can be obtained as

r2 − r1 =
f2

3f1

∑N
i=1

Vi

ri

, (2.4)

then the ITZ volume fraction, f2, can be derived as

f2 = 3(r2 − r1)f1

N∑
i=1

Vi

ri
. (2.5)

Obviously, the following relation regarding the composite’s volume fractions
holds

f1 + f2 + f3 = 1, (2.6)

in which f3 is the volume fraction of the mortar.

3. Finite Eshelby Tensors

In this section, the analytical expressions for the Eshelby tensors in finite domains
are provided. The exact solutions of the Eshelby tensors for a spherical inclusion in
a finite, spherical domain have been obtained for both the Dirichlet and Neumann
boundary value problems, and they have been further applied to the homogenization
of composites [Li et al., 2007a,b]. In the rest of the paper, we shall call the Eshelby
tensors in a finite representative volume element (RVE) as the “Finite Eshelby
tensor”. Here we consider three materials phases that occupy three non-overlapping
domains Ω1, Ω2 and Ω3, where Ω1 and Ω2 are assumed to be concentric spherical
shells embedded in the matrix Ω3 (see Fig. 3) with Ω2 denoting the interphase.

In this three-layer shell model, the RVE consists of three concentric spherical
shells, which are labeled as,

Ω1(x) = {x | |x| ≤ r1},
Ω2(x) = {x | r1 < |x| ≤ r2},
Ω3(x) = {x | r2 < |x| ≤ r3}.

(3.1)
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Fig. 3. The three-layer shell model (on the left) is combined by three different shells with different
domains and radii.

Fig. 4. The three concentric sphere model (on the left) is combined by three different overlapped
concentric spheres with different domains and radii.

The radius of the RVE is r3, and the volume fractions of each phase are as follows,

f1 =
(

r1

r3

)3

, f2 =
r3
2 − r3

1

r3
3

, f3 =
r3
3 − r3

2

r3
3

. (3.2)

Notice that, f1 + f2 + f3 = 1.
For the Eshelby tensors of each shell, three partially overlapped concentric

spheres are considered, as shown in Fig. 4, with domains defined as

ΩI(x) = {x | |x| ≤ r1},
ΩII(x) = {x | |x| ≤ r2},
ΩIII(x) = {x | |x| ≤ r3}.

(3.3)

The interior and exterior Eshelby tensors for each sphere ΩJ are expressed as

S
J,F (x) =

{
SI,F (x), ∀x ∈ ΩJ , J = I, II, III,

SE,F (x), ∀x ∈ Ω/ΩJ , J = I, II, III,
(3.4)

where the superscript represents the general boundary conditions, and the deriva-
tion and expressions for the average Eshelby tensors can be found in Li et al.
[2007a].
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In the subsequent derivation, the average of the Eshelby tensor is needed for each
shell. We first denote the average of the Eshelby tensor of the overlapping spheres,

S
Jj,F = 〈SJ,F 〉Ωj , J = I, II, III and j = 1, 2, 3, (3.5)

where the first superscript J (Roman numbers) denotes the sphere ΩJ , in which the
eigenstrain is prescribed, and the second superscript j (Arabic numbers) denotes
the shell Ωj , over which the average is taken. Similarly the average Eshelby tensors
of the three shell domains are represented as

S
ij,F = 〈Si,F 〉Ωj , i = 1, 2, 3, and j = 1, 2, 3. (3.6)

Again, the first superscript index i refers to the shell region Ωi, in which the
eigenstrains are prescribed, and the second index j denotes the shell Ωj , over which
the average is taken. The average Eshelby tensors can be written as

S
ij,F = sij,F

1 E
(1) + sij,F

2 E
(2), i, j = 1, 2, 3. (3.7)

All the coefficients of the Eshelby tensors for each shell layer are expressed in
terms of the Eshelby coefficients for solid spheres ΩI, ΩII and ΩIII, which are docu-
mented in Appendix A for a three-sphere RVE. It has been found that the so-called
Dirichlet-SD and Neumann-SN Eshelby tensors are not constant in the interior of
the inclusion even for uniformly prescribed eigenstrains. Instead, they are depen-
dent on the position inside the RVE and the volume fraction of the participating
phases. It is important to note that in the conventional double inclusion theory the
Eshelby tensors used for inclusions are with respect to an infinite matrix, and if the
two inclusions are co-axial ellipsoids, the term ∆Sα = Siα − Spα = 0, which means
that interphase effect is excluded. However, based on the finite Eshelby tensors,
the effect of the term ∆Sα is always non-zero, and the interphase effect can be
successfully incorporated for a three-phase composite embedded in a finite matrix.

4. Homogenization Model

4.1. Interphase model based on the multi-inclusion method

Conventional double-inclusion model, as shown in Fig. 5, is suitable for three-phase
concrete composites as proposed in the previous section, and the explicit expressions
of effective moduli for composites have been presented [Hori and Nemat-Nasser,
1994; Nemat-Nasser et al., 1996]. Concrete composite material is made up of a
large number of concrete elements due to aggregate size distributions, so explicit
formulations of the multi-inclusion models for different particle distributions are
demanded. In this section, the interphase model is constructed for concrete com-
posite material based on the multi-inclusion method [Lu et al., 2013].

Consider a concrete composite contains N different aggregate distributions. The
corresponding interlayer phases, finite volume fractions of mortar (matrix), aggre-
gate (particle), and ITZ (interphase) are defined as fm, fpα and fiα, respectively,
which satisfy the relation fm +

∑N
1 (fpα + fiα) = 1 as shown in Fig. 6.
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Fig. 5. Double-inclusion model.

Fig. 6. Multi-inclusion model.

The elastic tensors in the phases are denoted as Cm, Ciα and Cpα, with the sub-
script m, i and p representing the mortar (matrix), ITZ (interphase) and aggregate
(particle), respectively. The global strain concentration tensors of the interphase
and the particle phase for the αth filler can be obtained as,

A
iα
g = A

iα
dil :

[
fmI +

N∑
α=1

(
fiαA

iα
dil + fpαA

pα
dil

)]−1

, (4.1)

A
pα
g = A

pα
dil :

[
fmI +

N∑
α=1

(
fiαA

iα
dil + fpαA

pα
dil

)]−1

, (4.2)
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where

A
iα
dil = I + S

iα : Φiα +
fpα

fiα
∆Sα : (Φpα − Φiα), (4.3)

A
pα
dil = I + S

pα : Φpα + ∆Sα : Φiα (4.4)

are the dilute strain concentration tensors of the interphase and the particle phases
for the αth filler. In the two equations above, ∆Sα = Siα − Spα, Siα and Spα are
finite Eshelby tensors, which are obtained in Sec. 2, for both the interphase and the
particle region corresponding to the αth filler, respectively. Φpα and Φiα are two
fourth-order tensors that are given as follows:

Φpα = −
[
(Spα + A

pα) + ∆Sα :
(

S
pα + A

pα − fpα

fiα
∆Sα

)

:
(

S
iα + A

iα − fiα

fiα
∆Sα

)−1
]−1

, (4.5)

Φiα = −
[
∆Sα + (Spα + A

pα):
(

S
pα + A

pα − fpα

fiα
∆Sα

)−1

:
(

S
iα + A

iα − fiα

fiα
∆Sα

)]−1

, (4.6)

where Apα = (Cpα − Cm)−1 : Cm and Aiα = (Ciα − Cm)−1 : Cm.
The corresponding effective moduli of the multi-inclusion concrete composite

are thus given by

C̄ = C
m +

N∑
α=1

[fiα(Ciα − C
m) : A

iα
g + fpα(Cpα − C

m) : A
pα
g ]. (4.7)

Similarly, the effective moduli of concrete composites with aligned coaxial and sim-
ilar inclusions can be evaluated as

C̄ = C
m + [fi(Ciα − C

m) : A
i
g + fp(Cp − C

m) : A
p
g]. (4.8)

Using the Voight notation, the elastic tensor of the matrix are

C̄ =




c̄11 c̄12 c̄13 0 0 0

c̄21 c̄22 c̄23 0 0 0

c̄31 c̄32 c̄33 0 0 0

0 0 0 c̄44 0 0

0 0 0 0 c̄55 0

0 0 0 0 0 c̄66




. (4.9)

For randomly distributed particles, the effective mechanical properties of the
composites are isotropic, and there are only two independent effective material
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constants. Therefore, the matrix of the effective elastic tensor can be expressed as

C̄3D =




¯̄λ + 2¯̄µ ¯̄λ ¯̄λ 0 0 0
¯̄λ ¯̄λ + 2¯̄µ ¯̄λ 0 0 0
¯̄λ ¯̄λ ¯̄λ + 2¯̄µ 0 0 0

0 0 0 ¯̄µ 0 0

0 0 0 0 ¯̄µ 0

0 0 0 0 0 ¯̄µ




, (4.10)

where the effective Lame constants ¯̄λ and ¯̄µ can be expressed as,

¯̄λ =
1
15

(c̄11 + 6c̄22 + 8c̄12 − 10c̄44 − 4c̄55), (4.11)

¯̄µ =
1
15

(c̄11 + c̄22 − 2c̄12 + 5c̄44 + 6c̄55). (4.12)

The effective material constants, such as the effective Young’s modulus Ē, bulk
modulus κ̄, shear modulus µ̄, Poisson’s ratio ν̄, that usually used in engineering
applications can be expressed in terms of the effective Lame constants:

Ē =
¯̄µ(3¯̄λ + 2¯̄µ)

¯̄λ + ¯̄µ
, κ̄ = ¯̄λ +

2
3

¯̄µ, µ̄ = ¯̄µ, ν̄ =
¯̄λ

2(¯̄λ + ¯̄µ)
. (4.13)

4.2. Interphase model via the improved H–S bounds

In this section, we shall present an interphase model based on the H–S bounds
[Hashin and Shtrikman, 1963]. One of the useful homogenization methods for
concrete composite materials is the H–S variational bounds, which have been
extensively used for estimating effective material properties. In the procedure of
deriving the variational bounds, the Eshelby tensor is needed in order to estimate
the disturbance strain field due to stress polarization or to estimate the disturbance
stress field due to the eigenstrain distributions. Since the classical Eshelby tensor
is obtained for an inclusion solution in an unbounded region, in principle, it cannot
be directly applied to the derivation of the variational bounds of a composite with
finite volume. A modified H–S method that uses the finite Eshelby tensors obtained
in Sec. 2, is proposed to improve the conventional H–S bounds. We now consider
an isotropic two-phase composite, with k2 > k1 and µ2 > µ1. For the effective
bulk modulus, the following bound under the prescribed displacement boundary
condition (Dirichlet-SD) can be obtained as [see: Li et al., 2007a,b]:

k1 +
f2

1
k2−k1

+ s22,D
1
k1

≤ k̄ ≤ k2 +
f1

1
k1−k2

+ s11,D
1
k2

. (4.14)
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Similarly, the bounds for the effective shear modulus can be obtained as

µ1 +
f2

1
µ2−µ1

+ s22,D
2
µ1

≤ µ̄ ≤ µ2 +
f1

1
µ1−µ2

+ s11,D
2
µ2

. (4.15)

Consider a three-phase isotropic composite denoted by Ω1, Ω2 and Ω3, with
Ω1 denoting the inclusion phase, Ω2 denoting the interphase, and Ω3 denoting the
matrix. The volume fractions of the matrix, interphase and particle are donted
by f1, f2, f3, respectively, which satisfy the relation f1 + f2 + f3 = 1. Following
the standard procedure of optimization in the H–S bound derivation e.g., Li and
Wang [2008], the stationary value of stress polarization in each phase pi is obtained
through the system of equations derived in Li et al. [2007b]. To obtain the lower
bound, by choosing k3 > k2 > k1, µ3 > µ2 > µ1, k0 = k1 and p1 = 0, one can then
obtain p2 and p3 as follows,

p2 = 3ε̄p
2
, p3 = 3ε̄p

3
, (4.16)

p
2

=
1

∆l1

(
s33,D
1 − 0.5s32,D

1

κ1
+

1
κ3 − κ1

)
, (4.17)

p
3

=
1

∆l1

(
s22,D
1 − 0.5s23,D

1

κ1
+

1
κ2 − κ1

)
, (4.18)

where

∆l1 =

(
s22,D
1

κ1
+

1
κ2 − κ1

)(
s33,D
1

κ1
+

1
κ3 − κ1

)
− s32,D

1 s23,D
1

4κ2
1

. (4.19)

Similarly, one can solve equation for the stationary values of p1 and p2 for the upper
bound by setting k0 = k3 and p3 = 0, i.e.,

p1 = 3ε̄p1, p2 = 3ε̄p2, (4.20)

p1 =
1

∆u1

(
s22,D
1 − 0.5s21,D

1

κ3
+

1
κ2 − κ3

)
, (4.21)

p2 =
1

∆u1

(
s11,D
1 − 0.5s12,D

1

κ3
+

1
κ1 − κ3

)
, (4.22)

where

∆u1 =

(
s11,D
1

κ3
+

1
κ1 − κ3

)(
s22,D
1

κ3
+

1
κ2 − κ3

)
− s12,D

1 s21,D
1

4κ2
3

. (4.23)

Substituting the stationary values pi into the H–S variational inequalities, the
explicit variational bounds of the bulk modulus for three-phase composites can
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be found as follows,

κ ≥ κ1 −
[

f2p
2
2

κ2 − κ1
+

f3p
2
3

κ3 − κ1

]
+ 2

(
f2p2

+ f3p3

)

− 1
κ1

(
f2p

2
2
s22,D
1 + f2p2

p
3
s32,D
1 + f3p2

p
3
s23,D
1 + f3p

2
3
s33,D
1

)
, (4.24)

κ ≤ κ3 −
[

f1p
2
1

κ1 − κ3
+

f2p
2
2

κ2 − κ3

]
+ 2 (f1p1 + f2p2)

− 1
κ3

(
f1p

2
1s

11,D
1 + f1p1p2s

21,D
1 + f2p1p2s

12,D
1 + f2p

2
2s

22,D
1

)
. (4.25)

Similarly, for the variational bounds of the shear modulus we have:

µ ≥ µ1 −
[

f2τ
2
2

µ2 − µ1
+

f3τ
2
3

µ3 − µ1

]
+ 2 (f2τ2 + f3τ3)

− 1
µ1

(
f2τ

2
2s

22,D
2 + f2τ2τ3s

32,D
2 + f3τ2τ3s

23,D
2 + f3τ

2
3s

33,D
2

)
, (4.26)

µ ≤ µ3 −
[

f1τ
2
1

µ1 − µ3
+

f2τ
2
2

µ2 − µ3

]
+ 2 (f1τ1 + f2τ2)

− 1
µ3

(
f1τ

2
1s

11,D
2 + f1τ1τ2s

21,D
2 + f2τ1τ2s

12,D
2 + f2τ

2
2s

22,D
2

)
, (4.27)

where

τ2 =
1

∆l2

(
s33,D
2 − 0.5s32,D

2

µ1
+

1
µ3 − µ1

)
, (4.28)

τ3 =
1

∆l2

(
s22,D
2 − 0.5s23,D

2

µ1
+

1
µ2 − µ1

)
, (4.29)

τ1 =
1

∆u2

(
s22,D
2 − 0.5s21,D

2

µ3
+

1
µ2 − µ3

)
, (4.30)

τ2 =
1

∆u2

(
s11,D
2 − 0.5s12,D

2

µ3
+

1
µ1 − µ3

)
, (4.31)

and

∆l2 =

(
s22,D
2

µ1
+

1
µ2 − µ1

)(
s33,D
2

µ1
+

1
µ3 − µ1

)
− s23,D

2 s32,D
2

4µ2
1

, (4.32)

∆u2 =

(
s11,D
2

µ3
+

1
µ1 − µ3

)(
s22,D
2

µ3
+

1
µ2 − µ3

)
− s12,D

2 s21,D
2

4µ2
3

. (4.33)
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For two-phase and three-phase improved H–S Bounds mentioned above, sij,D
1 ,

sij,D
2 , i, j = 1, 2, 3 can be found in Appendix A. The effective Young’s modulus can

be obtained as

Ē =
9k̄µ̄

3k̄ + µ̄
. (4.34)

5. Results and Discussions

In this section, numerical results are presented to verify the proposed interphase
model and to study the ITZ effect on the effective properties of concrete. In the
calculations, experimental data [Anson and Newman, 1966] for the Young’s mod-
ulus and Poisson’s ratio of mortar and concrete with different aggregate volume
fractions are used as the benchmark example. The experimental data for mortar
with water/cement ratio w/c = 0.5, Em = 28.3GPa, νm = 0.171 and for gravel
with Eg = 69GPa, νg = 0.14 are selected to compare with the theoretical results.
The volume fraction of aggregate varies from 0.18 to 0.40.

5.1. Two-phase model results comparison with experimental data

Here, the concrete is considered as a two-phase composite without considering ITZ
effect. The overall Young’s modulus and Poisson’s ratio of the two-phase concrete
are calculated from Eq. (4.13). Table 1 lists the average theoretical results, exper-
imental data and the improved two-phase model H–S bounds are calculated from
Eqs. (4.14), (4.15) and (4.34). It can be seen that the theoretical improved H–S
bounds can characterize the main trend of the experimental data for a two-phase
composite. But most of the calculated Young’s modulus are higher than the exper-
imental results (see Table 1). Thus, it might be necessary to consider the influence
of ITZ on the Young’s modulus of concrete, and further study is needed.

5.2. Three-phase model results comparison with experimental data

In this section, we consider the concrete as a three phase composite with the ITZ
effect. The influence of ITZ on the elastic properties of concrete depends mainly on
the volume fraction and modulus of elasticity of ITZ. It is found that the average
thickness of ITZ layer in typical concrete material is about 0.05 mm [Li et al.,
1999a,b]. Assuming that the term r2 − r1 in Eq. (2.4) is about 0.05 mm, and the
ITZ volume fraction, f2, can be derived as

f2 = 0.15f1

N∑
i=1

Vi

ri
. (5.1)

According to Lutz et al. [1997], the elastic modulus of ITZ is about 40% of
the elastic modulus of mortar, so that the Young’s modulus of ITZ in phase 2 is
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(a) (b)

(c) (d)

Fig. 7. Effective material properties of the concrete as a function of the aggregate volume with
different Ei/Em.

Ei = 0.4Em. The Poisson’s ratio of ITZ νi is 0.171, same as that of the mortar phase.
The overall elastic Young’s modulus and Poisson’s ratio of the three-phase concrete
are also calculated from Eq. (4.13). Table 2 displays the average theoretical results,
experimental data and the improved three-phase model H–S bounds calculated from
Eqs. (4.24) through (4.27) and (4.34). It can be seen that for different fractions of
different phases, both the Young’s modulus and the Poisson’s ratio obtained from
the three-phase model are very close to that of the experiment results. In addition,
the mix proportions have only a little effect on Poisson’s ratio. These results suggest
that the proposed interphase models can be used to estimate the effective elastic
modulus of concrete.

Figures 7 and 8 show the effect of ITZ/mortar Young’s modulus ratio (Ei/Em =
10, 5, 0.5, 0.1) and ITZ thickness (r2 − r1 = 0.01, 0.05, 0.07, 0.09mm) on the effec-
tive Young’s modulus and effective Poisson’s ratio of concrete with respect to the
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(a) (b)

(c) (d)

Fig. 8. Effective material properties of the concrete as a function of the aggregate volume with
different ITZ thicknesses.

volume fraction of the aggregate. Two types of aggregates are considered: One is a
common aggregate with Eg = 69GPa, and the other is a lightweight aggregate with
Eg = 10GPa. For concrete composed of common aggregates, the effective Young’s
modulus of the concrete increases as the volume fraction of the aggregate increases.
For concrete composed of lightweight aggregates, the effective Young’s modulus of
the concrete decreases as the volume fraction of the aggregate increases, thus the
effect of the aggregate concentration on elastic modulus is opposite to common
belief. This result indicates that using a densely graded aggregate is an efficient
way of increasing the effective Young’s modulus of concrete.

Figure 7 shows that for Ei/Em > 1, i.e., the ITZ is harder than the mortar,
and the effective Young’s modulus of concrete are higher than that for Ei/Em < 1.
This result indicates that strengthening the bonding between mortar and aggre-
gate, i.e., increasing the Young’s modulus of ITZ(Ei) is very effective for enhancing
the effective Young’s modulus of concrete materials. In addition, the theoretical
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estimate of Poisson’s ratio is very insensitive to the ITZ/mortar Young’s modulus
ratio.

Figure 8 shows that the effective Young’s modulus of the concrete increases as
the ITZ thickness decreases. This result indicates that decreasing the water/cement
ratio or incorporating silica fume are efficient ways of increasing the effective
Young’s modulus of concrete. In addition, the theoretical estimate of Poisson’s
ratio is also very insensitive to the ITZ thickness.

6. Conclusions

Concrete is a composite material that is made up of a large number of inhomoge-
neous elements due to aggregate distributions. In this work, by considering a basic
concrete element as a three-phase (mortar, aggregate, and ITZ). To evaluate elastic
properties of concrete composites, the finite Eshelby tensors for a spherical inclu-
sion in a finite spherical domain are employed to construct the interphase models,
and the explicit formulations of the interphase models via multi-inclusion method
for concrete composites are derived. Different estimations for effective mechanical
properties of the concrete composite materials are presented. To improve the con-
ventional H–S method, a modified H–S model is given as a function of properties
and volume fraction of the composite materials. The effective material properties
predicted by the interphase models are compared with the experimental results
[Anson and Newman, 1966]. First, the concrete is modeled as a two-phase compos-
ite without any ITZ effect, the results show that the experimental data follow the
main trend of the theoretical estimate of the improved H–S bounds for a two-phase
composite, but most of the measured Young’s moduli stay below the calculated
results. Then the influence of ITZ on the Young’s modulus of concrete is consid-
ered, and the concrete is modeled as a three-phase composite with the ITZ effect.
A reasonable agreement is found between the theoretical predictions and the exper-
imental results. These results suggest that the proposed interphase models can be
used to estimate the effective elastic modulus of concrete.
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Appendix A: Table of Coefficients of Eshelby Tensors
for a Three-Layer Spherical RVE

In this Appendix, we provide a complete list of the coefficients for the average
Eshelby tensors of a three-sphere phase RVE.

sI1,D
1 =

(1 + ν)(1 − f1)
3(1 − ν)

,

sI1,N
1 =

(1 + ν) + 2(1 − 2ν)f1

3(1 − ν)
,

sI1,D
2 =

2(4 − 5ν)(1 − f1)
15(1 − ν)

− 21γu[f1](1 − f
2/3
1 ),

sI1,N
2 =

2(4 − 5ν)(1 − f1) + (7 − 5ν)f1

15(1 − ν)
− 21γt[f1](1 − f

2/3
1 ),

sI2,D
1 = − (1 + ν)(1 − f1)

3(1 − ν)
,

sI2,N
1 =

2(1 − 2ν)f1

3(1 − ν)
,

sI2,D
2 = −2(4 − 5ν)(1 − f1)

15(1 − ν)
+ 21γu[f1]

(
1 − (f1 + f2)5/3 − f

5/3
1

f2

)
,

sI2,N
2 =

(7 − 5ν)f1

15(1 − ν)
+ 21γt[f1]

(
1 − (f1 + f2)5/3 − f

5/3
1

f2

)
,

sI3,D
1 = − (1 + ν)(1 − f1)

3(1 − ν)
,

sI3,N
1 =

2(1 − 2ν)f1

3(1 − ν)
,

sI3,D
2 = −2(4 − 5ν)f1

15(1 − ν)
+ 21γu[f1]

(
(f1 + f2)(1 − (f1 + f2)2/3)

f3

)
,

sI3,N
2 =

(7 − 5ν)f1

15(1 − ν)
− 21γt[f1]

(f1 + f2)
(
1 − (f1 + f2)2/3

)
f3

,

sII1,D
1 =

(1 + ν)f3

3(1 − ν)
,

sII1,N
1 =

(1 + ν) + 2(1 − 2ν)(f1 + f2)
3(1 − ν)

,

sII1,D
2 =

2(4 − 5ν)f3

15(1 − ν)
− 21γu[f1] (f1 + f2) (1 − f

2/3
1 ),
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sII1,N
2 =

2(4 − 5ν) + (7 − 5ν)(f1 + f2)
15(1 − ν)

+ 21γt[f1 + f2](1 − f
2/3
1 ),

sII2,D
1 =

(1 + ν)f3

3(1 − ν)
,

sII2,N
1 =

(1 + ν)2(1 − 2ν)(f1 + f2)
3(1 − ν)

,

sII2,D
2 =

2(4 − 5ν)f3

15(1 − ν)
− 21γu[f1 + f2]

(
1 − (f1 + f2)5/3 − f

5/3
1

f2

)
,

sII2,N
2 =

2(4 − 5ν) + (7 − 5ν)(f1 + f2)
15(1 − ν)

+ 21γt[f1 + f2]

(
1 − (f1 + f2)5/3 − f

5/3
1

f2

)
,

sII3,D
1 = − (1 + ν)(f1 + f2)

3(1 − ν)
,

sII2,N
1 =

2(1 − 2ν)(f1 + f2)
3(1 − ν)

,

sII3,D
2 = −2(4 − 5ν)(f1 + f2)

15(1 − ν)
+ 21γu[f1 + f2]

(
(f1 + f2)(1 − (f1 + f2)2/3)

f3

)
,

sII3,N
2 =

(7 − 5ν)(f1 + f2)
15(1 − ν)

− 21γt[f1]
(f1 + f2)

(
1 − (f1 + f2)2/3

)
f3

,

sIII3,D
1 = 0, sIII3,N

1 = 1,

sIII3,D
2 = 0, sIII3,N

2 = 1,

sIII1,D
1 = 0, sIII1,N

1 = 1,

sIII1,D
2 = 0, sIII1,N

2 = 1,

sIII2,D
1 = 0, sIII2,N

1 = 1,

sIII2,D
2 = 0, sIII2,N

2 = 1,

where

γu[x] =
x(1 − x2/3)

10(1 − ν)(7 − 10ν)
,

γt[x] =
4x(1 − x2/3)

10(1 − ν)(7 + 5ν)
,

where the superscript D indicates that the RVE is subjected to the Dirichlet bound-
ary condition or displacement boundary condition; whereas the superscript N indi-
cates that the RVE is subjected to the Neumann boundary condition, or the traction
boundary condition. The superscripts with the roman numericals I, II and III indi-
cate the different phases I, II and III.
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