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Abstract The peridynamics theory is a reformulation of
nonlocal continuum mechanics that incorporates material
particle interactions at finite distances into the equation of
motion. State-based peridynamics is an extension of the orig-
inal bond-based peridynamics theory wherein the response
of an individual particle depends collectively on its inter-
action with neighboring particles through the concept of
state variables. In this paper, the more recent non-ordinary
state-based Peridynamics formulations of both the total (ref-
erential) Lagrangian approach aswell as the updated (spatial)
Lagrangian approach are formulated. In doing so, relations of
the state variables are defined through various nonlocal dif-
ferential operators in bothmaterial and spatial configurations
in the context of finite deformation. Moreover, these nonlo-
cal differential operators aremathematically and numerically
shown to converge to the local differential operators, and they
are applied to derive new force states and deformation gra-
dients.

Keywords Continuum mechanics · Deformation
gradient · Finite elasticity · Nonlocal theory · State-based
peridynamics · Updated Lagrangian

1 Introduction

Peridynamics is a nonlocal reformulation of continuum
mechanics theory that was first developed in Silling [25]. The
peridynamic equation of motion introduces a nonlocal inte-
gral operator that utilizes a pairwise force density to replace
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the stress divergence term in classical continuummechanics.
This force density relies on the stretch and initial positions
of a network of particle bonds within the compact support of
a given point in space, termed as the horizon. The nonlocal
peridynamic equation ofmotion allows for singular displace-
ment fields such as cracks to form spontaneously in portions
of a given body where they did not previously exist.

A major shortcoming of the initial formulation of peri-
dynamics (also termed bond-based peridynamics) is that
each individual bond deforms independently based on a pair
potential that can only describe the state of the two particles
connecting to that bond. It was shown in Silling [25] that
this shortcoming constrains the Lamé parameters λ and μ

to be equal, which thus requires the Poisson ratio ν to be
0.25 in the case of linear isotropic elasticity. In Fact, Fin-
nis and Sinclair [10] found that in molecular dynamics the
pair potential based stress-strain relation can only produce
an equilibrium solution if the two Lamé parameters λ and
μ are identical, which is a special case (isotropic case) of
the well-known Cauchy relation, e.g. [12]. In Silling et al.
[26], an alternative version of peridynamics termed state-
based peridynamics was developed using the concept of state
variables, such as the force and deformation states. State
variables are functions of the undeformed and deformed par-
ticle bonds that can describe non-linear and discontinuous
fields in a horizon. Force states were introduced to replace
the force density functions in the equation of motion. More-
over, [26] also introduced a specific form of the state-based
theory, namely the non-ordinary state-based peridynamics,
with force states that are derived directly from the principle
of virtual work through constitutive relations of conventional
continuum mechanics [31]. The force states in non-ordinary
state-based peridynamics obtain their directionality through
parameters such as stress, and they are not necessarily in
parallel to the direction of a given bond that connects two
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Fig. 1 Schematic illustration of
the kinematics of finite
deformation: The referential
(material) configuration and the
spatial (current) configuration,
where � : �0 → �t is the
motion and F is the deformation
gradient

particles. Deformation states were also introduced in the
general state-based peridynamics theory. In addition, a peri-
dynamic deformation gradient was derived as a function of
the collective deformation states within a given horizon in
the referential configuration. The stress of a given point is
defined by specified constitutive relations that are a function
of the deformation gradient of its horizon.

In the subsequent developments of non-ordinary state-
based peridynamics, the theory is extended and related to
the stress divergence in continuum mechanics. For example,
it is shown in Silling and Lehoucq [28] that the peridynamic
equivalent of the first Piola-Kirchhoff stress tensor converges
to the corresponding value of its counterpart in classi-
cal continuum mechanics as the horizon radius approaches
zero, i.e. as the neighboring interactions of each particle
become increasingly dense and localized. It has also been
shown that in the same limit, the material divergence of
the first Piola-Kirchhoff stress tensor also converges to its
corresponding value in the equation of motion in classical
continuum mechanics. In Silling and Lehoucq [29], several
other aspects of the relation between state-based peridynam-
ics and continuum mechanics were introduced. Examples
include peridynamic balance laws, and constitutive relations,
just to name a few.

The main objective of peridynamics is to resolve the dis-
continuity in field variables such as displacements (strong
discontinuity) and temperature. Since its initial publication,
peridynamics has been successfully implemented in vari-
ous computer simulations to capture discontinuities such as
fracture and crack propagation in solids, e.g. [1,5,6,11,13–
15,20,27,30] among many others.

In actual material and structural failures, the material
defects are always accompanied by finite deformations.
The computational nonlinear continuum mechanics has two
Lagrangian approaches in the context of finite deformation:
the Total Lagrangian approach and theUpdated Lagrangian
approach. There approaches formulate the balance laws for a

physical object according to the spatial domain that it is occu-
pying, which corresponds to either a referential (material)
configuration or a spatial (current) configuration respectively,
as shown in Fig. 1. The current form of state-based peridy-
namics is formulated in the referential configuration only,
and hence it is a total Lagrangian formulation. In the context
Galerkin finite element method, one may find the detailed
discussions on the updated Lagrangian method as well as
the total Lagrangian method in the literature, e.g. [2,3].
In fact, both approaches, i.e. the updated Lagrangian for-
mulation and the total Lagrangian formulation, have been
extensively applied to solve nonlinear solid mechanics prob-
lems in nonlinear Galerkin finite element method. However,
they are distinctively different approaches in meshfree par-
ticle methods. In fact, the current state-based peridynamics
adopts the total Lagrangian appraoch; whereas both Molec-
ular Dynamics and the Smoothed Particle Hydrodynamics
(SPH) adopt the updated Lagrangian approach, which is
essential to computational failure mechanics and computa-
tional fluid dynamics.

The main objective of this work is to extend the non-
ordinary state-based peridynamics formulation of nonlocal
continuum mechanics to include both referential (material)
and spatial (current) descriptions in the context of finite defor-
mations. In addition, we generalize the notion of the nonlocal
derivative of non-ordinary state-based peridynamics by for-
mulating various discrete nonlocal differential operators
with respect to different configuration spaces.

In the next section, we briefly outline the concept of non-
ordinary state-based peridynamics. In the third section, the
nonlocal differential operators are introduced, and new force
states and a deformation gradient are derived. We conclude
the paper in Sect. 4 with a simple numerical example of
elastic bar with a nonlinear uniaxial deformation to numeri-
cally illustrate the differences between the total Lagrangian
approach and the update Lagrangian approach, and to study
the convergence of the proposed nonlocal operators.
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2 Non-ordinary state-based peridynamics

For a self-containedness of the presentation, we first review
and outline non-ordinary state-based peridynamics, which is
largely based on [29] and [22]. However, we adopt a slightly
different definitions and terminologies.

Consider a reference domain �0 ⊂ R
d of dimension d

composed of a discretized set of particles. Suppose each
particle with reference position X A ∈ R

d is influenced by
neighboring forces from other particles within a “sphere of
influence” denoted as its horizon HA, with radius δA ∈ R

+.
Each neighboring particle has a reference position X B ∈ R

d ,
and forms a bond with particle A defined as

ξ AB := X B − X A, ∀ XB ∈ HA

where A, B are particle indices.
Figure 2 illustrates the configuration of a peridynamic

horizon and undeformed bonds. These bonds enable long-
range particle interactions, even at finite distances. In addi-
tion, the force state and deformation state are defined as the
energy conjugate pair that replaces the standard stress-strain
approach of classical continuum mechanics. State variables
are underlined and notated by indicating their point in space
and time in brackets, and the variable that they map in angled
brackets. Unlike their classical continuum mechanics coun-
terparts, state variables in peridynamics have the ability to
describe fields that are discontinuous across the horizon [26],
thus providing a means of determining stresses and strains
on the surface of a discontinuity, such as a crack.

The deformation state is defined as

Y AB[xA, t]〈ξ AB〉 := x(X B, t)−x(X A, t), ∀ XB ∈ HA,

(1)

which is the relative position vector of the two particles in the
current configuration. Each individual vector of the deforma-
tion state is called the deformedbondvector. Thedeformation
state at a given point describes the current configuration of
the horizon of particle A based on the interaction with its
neighboring particles. By standard convention in continuum
mechanics, the lowercase position vectors are used to indi-
cate the position vectors in the current configuration of the
deformed domain, �; whereas the uppercase position vec-
tors are used to indicate the position vectors in the referential
configuration of the undeformed domain, �0.

These spatial positions, notated as xA := x(X A, t), xB :=
x(X B, t) are both a function of time and the reference posi-
tion. These dependent variables will be assumed for the
remainder of the paper.

Fig. 2 Long-range interactions within the horizon of a given particle
in the reference domain

For a hyperlastic material, the force state of particle A is
a vector-valued function in Rd that is defined as

T AB[xA, t]〈ξ AB〉 := ∇Y AB

[
W (Y AB)

]
, ∀XB ∈ HA (2)

where W (Y AB) is the strain energy density per unit volume,
which is selected to represent the constitutive properties of
a given material. The force state is the conjugate measure
of the deformation state, both of which are defined in the
current configuration of the deformed body. The force state
represented in Eq. (2) is the force per unit volume squared
that particle A imposes onto particle B.

By definition, the force state that is imposed on particle A
by B operates on bond ξ BA and is defined T BA[xB, t]〈ξ BA〉
(see Fig. 3). One can assert that

T BA[xB, t]〈ξ BA〉 = −T BA[xB, t]〈ξ AB〉 (3)

due to the property that each undeformed and deformed bond
can be reversed. It is noted that the above assumption only
holds for a specific class of elastic materials, namely ones
that are of the following form

T AB[xA, t]〈ξ AB〉 = Cξ AB, C ∈ R
d×d

T AB[xA, t]〈Y AB〉 = ĈY AB, Ĉ ∈ R
d×d (4)

where C and Ĉ are second order tensors with respect to the
action vectors ξ AB and Y AB , respectively. This type of mate-
rial response is typical for uses in non-ordinary state-based
peridynamics, and it is assumed as the standardmodel for the
remainder of this paper. Readers are referred to Silling and
Lehoucq [29] and [26] for discussions of other force state
definitions, such as those of bond-based materials.
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Fig. 3 Schematic illustration of the force state

Denoting ρ0(X A) as the density in the referential configu-
ration and B(X A, t) as the body force per reference volume,
the balance of energy in the context of the state-based peri-
dynamics is expressed by using a Lagrangian potential of the
following form,

L
[
u(xA, t), u̇(xA, t)

] =
∫

�0

[
1

2
ρ0(X A) u̇(xA, t) · u̇(xA, t)

−
∫

HA

(
W (Y AB) + W (Y BA)

)
dV B

+ B(X A, t) · u(xA, t)

]
dV A. (5)

The integral term over the horizon of the particle A is the
total strain energy density of all the bonds within HA. The
velocity and displacement of particle A, u and u̇ respectively,
are defined as

{
u(xA, t) := xA − X A = u(xB, t) + ξ AB − Y AB〈ξ AB〉
u̇(xA, t) := ẋA = u̇(xB, t) − Ẏ

AB〈ξ AB〉
,

(6)

The potential function shown in Eq. (5) can be used to form
an action functional,

S[u(xA] :=
∫ t2

t1
L
[
u(xA, t), u̇(xA, t)

]
dt, (7)

whose stationary condition is called the Hamiltonian princi-
ple, which yields the following Euler-Lagrange equations,

d

dt

∂L

∂ u̇(xA, t)
− ∂L

∂u(xA, t)

=
∫

�A
0

[
ρ0(X A) ü(xA, t) + ∇u(xA,t)

∫

HA

([
W (Y AB)

]

+ [
W (Y BA)

])
dV B − B(X A, t)

]
dV B

=
∫

�A
0

[
ρ0(X A) ü(xA, t) −

∫

HA

(
∇Y AB

[
W (Y AB)

]

−∇Y BA

[
W (Y BA)

]
)
dV B − B(X A, t)

]
dV B

=
∫

�A
0

[
ρ0(X A) ü(xA, t) −

∫

HA

(
T AB〈ξ AB〉

−T BA〈ξ BA〉
)
dV B − B(X A, t)

]
dV B = 0, (8)

where the chain rule and the reversibility of the bonds as
stated in Eq. (3) are used to obtain the second integral formula
in Eq. (8). The principle of the least action therefore corre-
sponds to solving the following integro-differential equation,

∫

HA

[
T AB〈ξ AB〉 − T BA〈ξ BA〉] dV B + B(X A, t)

= ρ0(X A) ü(xA, t), ∀ XB ∈ HA, XA ∈ �0 (9)

which is defined as the peridynamics equation of motion.
The integral of the force states over HA is the peridynamics
equivalent of the stress divergence used in classical contin-
uum mechanics. In fact the expression of Eq. (9) closely
resembles that of classical continuum mechanics, i.e.

∇X · P(X, t) + B(X, t) = ρ0(X)ü(x, t).
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As was discussed in [7], the specific form of the peridy-
namic divergence operator corresponds to the mathematical
notion of a nonlocal derivative that can be used to define
nonlocal boundary-value problems.

lim
δA→0

[ ∫

HA

[
T AB〈ξ AB〉 − T BA〈ξ BA〉] dV B

]

= [∇X · P(X, t)]∣∣X=X A .

Thus it shows that the nonlocal peridynamics equation of
motion converges to its localized counterpart in classical con-
tinuum mechanics as the horizon radius approaches zero.

3 Nonlocal differential operators

Non-ordinary state-based peridynamics was developed in
[26], and it uses the concept of state variables to define
measures that correlate to classical continuum mechanics.
Common examples used in modeling Peridynamics elastic
materials include the deformation gradient, and stress diver-
gence. In this section, we illustrate that these two measures
are intimately related through a nonlocal equivalent of a dif-
ferential operator.

3.1 Total Lagrangian approach

In classical continuum mechanics, the total Lagrangian for-
mulationdescribesfield variables by theirmaterial derivative,
which is defined as the derivatives with respect to the ini-
tial configuration of an undeformed body. Based on this
approach, we propose the following nonlocal equivalent of a
material gradient:

Definition 3.1 (Nonlocal Material Differential Operators)
For any N-dimensional field function G(X) ∈ R

ni×...nN , ni
∈ Z

+ that satisfies the following properties:

1. Locally analytic at points A;
2. Integrable within the entire horizon HA, and
3. Exist a set of symmetric horizons that forms a cover for

the physical domain �0.

the nonlocal material gradient of G(X) as a function of the
average undeformed bonds < ξ AB > at point A is defined
as,

LX [G(X A)](< ξ AB >X )

:=
[ ∫

HA
ω(ξ AB) 
GAB(X) ⊗ ξ AB dV B

]
K−1, (10)

where ξ AB = ‖ξ AB‖2, and the nonlocal material gradient of
G(X) as a function of the average deformed bonds Y AB at
point A is defined as

LX
[
G(X A)

](
< Y AB >X

)

:=
[ ∫

HA
ω(ξ AB) 
GAB(X) ⊗ Y AB dV B

]
N−T , (11)

A nonlocal material divergence operator is constructed in
a similar fashion as a function of the average undeformed
bonds

MX
[
G(X A)

](
< ξ AB >X

)

:=
∫

HA
ω(ξ AB) 
GAB(X) · (

K−1ξ AB)
dV B (12)

and accordingly, as a function of the average deformed bonds

MX
[
G(X A)

](
< Y AB >X

)

:=
∫

HA
ω(ξ AB) 
GAB(X) · (

N−1Y AB)
dV B . (13)

In the above equations,
(·) is defined as adifferenceoperator
in Rni×...nN , i.e.


GAB(X) := G(XB) − G(XA).

Here ω(ξ AB) is a window function (also referred to as the
influence function) that is a scalar-valued positive function. It
has twomain purposes: first it helps to regularize the nonlocal
integration, and second it imposes the following normaliza-
tion condition,

∫

HA
ω(ξ AB)dV B = 1.

For simplicity, in this paper, the argument of the window
function is chosen as ξ AB = ‖ξ AB‖2, which is the length of
the bond between particles A and B. Without further indica-
tion, it is assumed in this paper that the window function is
carefully chosen so that no regularity issue will arise.

To explain the notation used in Eqs. (10)–(13), the argu-
ments in these equations are defined as,

< ξ AB >X :=
∫

HA

ω(ξ AB)ξ ABdV B, and

< YAB >X :=
∫

HA

ω(ξ AB)YABdV B .

Besides reinforcing the the normalization condition, the
window function can also be used as an agent to selectively
modify bonds that are in voids, bonds between different
materials, bonds that have exceeded their critical length,
and numerous other scenarios including representation of
uncertainty or statistical distribution of material strength.
For simplicity, in this paper the window function is assumed
to possess radial symmetry. Readers may consult [26] for
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more elaborate discussions on the window function in peri-
dynamics, and [19] for a general explanation of the window
functions in nonlocal continuum or particle methods.

Assume thatHA ⊂ �0 ⊂ R
d . K is commonly referred to

as the shape tensor or moment tensor inHA × HA ([4,21]),
and it is defined as,

K (X A) :=
∫

HA
ω(ξ AB) ξ AB ⊗ ξ AB dV B . (14)

The individual components of the shape tensor are a measure
of the particle distribution inside the original horizon. As
shown in [26], this tensor is symmetric and positive definite.

Assume that the deformed horizon HA(t) ⊂ �(t) ⊂ R
d .

The N tensor is a two-point shape tensor inHA(t) ×HA(0)
(We use shorthanded notation HA = HA(0) without caus-
ing confusion) with bases in both the reference and current
configurations. It is formally defined as

N
(
xA, X A) =

∫

HA
ω(ξ AB) Y AB〈ξ AB〉 ⊗ ξ AB dV B . (15)

In this paper, the above tensor is referred as the two-point
tensor, because that Y AB ∈ �(t) and ξ ∈ �0. This tensor
is not necessarily symmetric nor positive definite because it
depends on both the undeformed and deformed bond vectors.
Note that at a given position A, both the shape tensor K
and the N tensor are constants in the nonlocal differential
operators shown in Eqs. (10)–(13) because they are definite
integrations over the domain of the horizon.

Theorem 3.1 The nonlocal gradient operators defined in
Eqs. (10) and (11) converge to the localized gradient opera-
tor as the horizon radius approaches zero.

lim
δA→0

LX [G(X A)] = [∇XG(X)
]
X=X A . (16)

Proof We begin by proving the above limiting case for
Eq. (10). Since G(X) is analytic at the point A, it can be
expressed through a convergent Taylor expansion as

G(X) = G(X A) + [∇XG(X A)
]
X=X A · (X − X A)

+O
(
‖X − X A‖22

)
(17)

Substituting X with X B ∈ HA, we have

G(X B) − G(X A) = 
ABG(X)

= [∇XG(X)
]
X=X A · ξ AB+O

(
‖ξ AB‖22

)
.

(18)

We introduce the following notation for brevity

U � V :=
∫

HA
ω(ξ AB) U ⊗ V dV B, (U, V ) ∈ R

d ,

and

U • V :=
∫

HA
ω(ξ AB) U · V dV B, (U, V ) ∈ R

d .

Inserting the finite difference operator 
G(X) into the non-
local differential operator of Eq. (10),

LX
[
G(X A)

](〈ξ AB〉X
)

=
[([∇XG(X)

]
X=X A · ξ AB + O(‖ξ AB‖22)

)
� ξ AB

]
K−1

(19)

Note that G(X) is a tensorial fields in general, and the sym-
bolO(‖ξ AB‖22) should be understood asO(‖ξ AB‖22)I, where
unit tensor I has the dimension of [∇XG(X)]X=XA · ξ AB .

The nonlocal gradient has a second order remainder,
which can be expanded in terms of the higher order terms.
Thus, Eq. (19) may be further written as,

LX [G(X A)](〈ξ AB〉X ) = [∇XG(X)
]
X=X A · ξ AB

+
(1
2
∇X

[∇XG(X)
]
X=X A : (ξ AB ⊗ ξ AB)

)
� ξ ABK−1

+
(1
6
∇X

[
∇X

[∇XG(X)
]
]

X=Xη

...(ξ AB ⊗ ξ AB ⊗ ξ AB)
)

� ξ ABK−1, (20)

where Xη = ηXA + (1 − η)XB, 0 ≤ η ≤ 1. In above
expression, the term consisting of (ξ AB ⊗ ξ AB) � ξ AB is
evaluated as an integral of an antisymmetric function over a
symmetric domain, and hence it is zero. Therefore, the last
term in Eq. (20) is the resulting truncation error. Noting that

‖(ξ AB ⊗ ξ AB ⊗ ξ AB) � ξ AB‖2 ∼ O(||ξ AB ||42) and

‖K‖2 ∼ O(||ξ AB ||22),

the truncation error of (20) is of order O(||ξ AB ||22). This
can be easily evaluated by considering a one-dimensional
example with a constant window function ω̃. Replacing ξ AB

with a one dimensional bond X ε − X A, X A ≡ constant , the
truncation term becomes,

1

6
G

′′′
(Xη)

∫ X A+δε

X A−δε

ω̃(X ε − X A)4 dX ε

×
[ ∫ X A+δε

X A−δε

ω̃(X ε − X A)2 dX ε

]−1

= 1

10
G

′′′
(Xη)(δ

ε)2

(21)

where X A − δε < Xη < X A + δε , will converge to zero
at a rate proportional to the square of the horizon size. Here
it is assumed that the window function ω is chosen such
that it ensures convergence of the above expression, as is
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discussed in [7]. It is also important to consider the practical
implications for the above limit in the discrete case. Since it
was assumed that the horizon is symmetric, this implies that
as the horizon is refined, the particle density must remain the
same for the entire horizon sequence.

Since the truncated terms (and thus the interpolation error)
vanish in the limit as the horizon approaches zero, the limit
in the above equation implies the validity of Eq. (16) when
computing the nonlocal gradient by using Eq. (10).

The proof of the material gradient as a function of the
deformed bonds follows the same procedure as above, simply
replacing the differential operator with Eq. (11),

LX [G(X A)](< Y AB >X ) =
[[∇XG(X)

]
X=X A · ξ AB

+
(1
2
∇X

[∇XG(X)
]
X=X A : (ξ AB ⊗ ξ AB)

)

+
[
1

6
∇X

[
∇X

[∇XG(X)
]]

X=Xη

...(ξ AB ⊗ ξ AB ⊗ ξ AB)
)]

�YABN−T , (22)

where Xη := ηXA + (1 − η)XB, 0 ≤ η ≤ 1.
Aswill be discussed in the next Section, an approximation

of the deformed bonds are obtained through a linear mapping
of the undeformed bonds

Y AB = F Aξ AB + O(||ξ AB ||22), F A ∈ HA(t) × HA(0).

F A is constantwithin the horizon of A.With this assumption,
the second term in the right-hand side of Eq. (22) will be
zero, due to the antisymmetry of the integral. Therefore, the
highest order remainder will be of order O(||ξ AB ||22).

As a side remark, the analyticity of the function G(X) at
points A and B requires the function to be infinitely differen-
tiable and continuous at these points. This inherently means
that all higher order derivatives, and thus the truncation error,
are bounded. If the deformation field is not continuous and/or
smooth at any specific point, the convergence may not nec-
essarily obey the properties formulated above. Readers are
referred to recent studies inMengesha andDu [23] that exam-
ine convergence properties of nonlocal differential operators
with minimal constraints on continuity. ��

Using the same procedures done above, one can easily
show that the nonlocal material divergence operator con-
verges to its local counterpart. This leads to the following
proposition.

Theorem 3.2 The nonlocal divergence operators defined in
Eqs. (12) and (13) converge to the localized divergence oper-
ator as the horizon radius approaches zero.

lim
δA→0

MX [G(X A)] = [∇X · G(X)
]
X=X A (23)

Proof Inserting the exact differential in Eq. (18) into the non-
local divergence operator that acts on the undeformed bonds
in Eq. (12), we obtain the following expression,

MX [G(X A)](< ξ AB >X )

=
[([∇XG(X)

]
X=X A · ξ AB+O(‖ξ AB‖22)

)
• K−1ξ AB

]

= [∇XG(X)
]
X=X A : I +

(
O(‖ξ AB‖22)

)
• K−1ξ AB

= [∇X · G(X)
]
X=X A +

(
O(‖ξ AB‖22)

)
• K−1ξ AB (24)

Similarly, inserting the exact differential into the divergence
operator that acts on the deformed bonds

MX [G(X A)](< Y AB >X )

=
[([∇XG(X)

]
X=X A · ξ AB+O(‖ξ AB‖22)

)
• N−1Y AB

]

= [∇XG(X)
]
X=X A : I +

(
O(‖ξ AB‖22)

)
• N−1Y AB

= [∇X · G(X)
]
X=X A +

(
O(‖ξ AB‖22)

)
• N−1Y AB (25)

Following an identical procedure aswas done for the gradient
operators, the first remainder term is zero due to the antisym-
metry of the integral for both nonlocal divergence operators
in Eqs. (12) and (13), assuming continuity and smoothness
for points A and B. The truncation error is therefore of order
O(||ξ AB ||22), thus proving the above Proposition. ��

The nonlocal differential operators can be viewed in a
broader sense as weighted directional integral operators or
nonlocal directional derivative. For instance, a generalized
nonlocal gradient operator can have the following form

L̃X [G(X A)](< 
w >X )

=
[ ∫

HA
ω(ξ AB) 
G(X) ⊗ 
w dV B

]

×
[ ∫

HA
ω(ξ AB)
w ⊗ ξ AB dV B

]−T

,

where 
w ∈ R
d (26)

with the vector difference 
w := wB − wA denoting the
directional vector; and the term,


w

[ ∫

HA
ω(ξ AB) 
w ⊗ ξ AB dV B

]−T

,

defines a the weighted directional vector.
The above formulation also satisifies the convergence

properties shown in this section. The selection of the weight
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function as the material positions will generate a differen-
tial of the undeformed bonds, and thus the above formula
is equivalent to Eq. (10). Likewise, selecting the differen-
tial of the weight function as the deformed bonds, we obtain
Eq. (11).

It is worthy noting that the relation between this gen-
eral formulation and the weighted nonlocal adjoint operator
obtained in [8] can be expressed as

D∗
ω(u)(X) =

∫

HA
ω(ξ AB)(uA − uB) ⊗ α(X A, X B) dV B

(27)

The general weight function α used in [8] is defined as an
anti-symmetric vector in R

d . If it is defined as the negative
contraction of the undeformed bond vector with the shape
tensor α = −ξK−1, one obtains Eq. (10). Similarly, select-
ing the weight function as the negative contraction of the
deformed bond Y with the N tensor, Eq. (11) is obtained.
Note that the gradient operator that acts on the deformed
bonds does not obey the antisymmetry of the weight func-
tion α that is assumed in the nonlocal differential operator
shown above. Even with this key distinction, the differential
operator in Eq. (11) retains an identical convergence rate to
its antisymmetric counterpart in Eq. (10).

In fact, the nonlocal material differential operator can be
understood as,

∇X ⊗
(
•
)

→ lim

X→0

1


X

(

(•)

)

:= lim
δA→0

[ ∫

HA
ω(ξ AB)

(

(•)

)
⊗ ξ AB dV

]
K−1 (28)

where δA is the radius of HA. It should be noted that the
above limit process is such that the particle density inside
the horizon will remain the same as δA → 0.

Adopting this notation, we can also define a nonlocal
material divergence operator as

∇ ·
(
•
)

→ lim

X→0

Tr
( 1


X

(

(•)

))

:= lim
δA→0

[ ∫

HA
ω(ξ AB)

(

(•)

)
· ξ AB dV B

]
K−1 (29)

Since K−1 is symmetric, Eq. (29) may be rewritten as

∫

HA
ω(ξ AB)

(

(•)

)
· (K−1ξ AB) dV B (30)

This formulation of the gradient and divergence operators
has been briefly discussed in Ren et al. [24].

3.1.1 Deformation gradient

Traditional continuum mechanics incorporates a two-point
tensor called the deformation gradient as a means of map-
ping localized differential tangent vectors from the reference
(material) configuration to the current (spatial) configuration.
Non-ordinary state-based peridynamics utilizes a similar
approach whereby a “deformation gradient” F is introduced
as a mapping mechanism based on the deformed horizon as

Y AB〈ξ AB〉 = F A
(
xA, X A) · ξ AB + O

(
‖ξ AB‖22

)
, (31)

where the subscript in F A indicates the dependency on the
collection of deformed and undeformed bonds in the hori-
zon of particle A. As in classical continuum mechanics, the
deformation gradient in peridynamics is a second-order two-
point tensor in �(t) × �0. Furthermore, in the context of
nano-mechanics or physics, the homogeneous deformation
that satisfies Eq. (31) is referred as the local deformation that
obeys the the Cauchy-Born rule e.g. [9,32].

Proposition 3.3 Given a point XA ∈ �0 with neighbors
XB ∈ HA that undergo a deformation field that satisfies the
requirements of the nonlocal gradient operators, a deforma-
tion gradient is constructed as a function of the undeformed
bonds as

FA := F
(
xA, X A)〈ξ AB〉 = N

(
xA, X A) · K−1(X A), (32)

or, alternatively, as a function of the deformed bonds as

F̂A := F̂〈Y AB〉 = M
(
xA) · N−T (

xA, X A)
. (33)

Proof The peridynamic deformation gradient is essentially
a nonlocal gradient of the current position of particle A with
respect to its reference position. It can therefore be derived
utilizing the nonlocal material gradient in Eq. (10) with the
nonlocal differential of the current position

FA = F
(
xA, X A)〈ξ AB〉

=
[ ∫

HA
ω(ξ AB)
x ⊗ ξ AB dV B

]
K−1(X A)

=
[ ∫

HA
ω(ξ AB)Y AB ⊗ ξ AB dV B

]
K−1(X A)

= N
(
xA, X A) · K−1(X A) (34)
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An alternative deformation gradient can also be constructed
as a mapping function of the deformed bonds

F̂A = F
(
xA, X A)〈Y AB〉

=
[ ∫

HA
ω(ξ AB)
x ⊗ Y AB dV B

]
N−T (

xA, X A)

=
[ ∫

HA
ω(ξ AB)Y AB ⊗ Y AB dV B

]
N−T (

xA, X A)

= M
(
xA) · N−T (

xA, X A)
(35)

where M is the deformed shape tensor that is defined as

M
(
xA) :=

∫

H A(t)
ωt (Y

AB)Y AB ⊗ Y AB

dvB :=
∫

H A
ω(ξ AB)Y AB ⊗ Y ABdV B (36)

where Y AB := ‖YAB‖2, and M describes a measure of the
shape of the particle distribution inside the horizon in the
current configuration �(t). ��

We note in passing that in general ωt (Y AB) �= ω(ξ AB).
We post a condition on the window function,

ωt (Y
AB)dvB = ω(ξ AB)dV B → ωt (V

AB) = J−1ω(ξ AB),

so that the window function is understood as an equivalent
density distribution function, i.e. ρt ∼ ωt (Y AB) and ρ0 ∼
ω(ξ AB). Various fundamental properties that hold for the
shape tensor of the undeformed configuration K also hold
for M.

Lemma 3.4 The deformed shape tensor M is symmetric,
thus obeying the transpose property,

M = MT .

Proof The proof is fairly trivial. The transpose of the
deformed shape tensor is performed by switching the first
and second entries of the outer product

MT =
[ ∫

HA(t)
ωt (Y

AB)Y AB ⊗ Y AB dvB
]T

=
∫

HA(t)
ωt (Y

AB)Y AB ⊗ Y AB dvB

= M. (37)

��
The deformed shape tensor is also diagonalizable, with

real eigenvalues λi , i = 1, . . . , d and eigenvectors vi . The
eigenvalues are also positive because they represent the

deformed bonds squared in the configuration of the eigen-
vectors. Therefore, one can easily show that M is positive
definite by utilizing the spectral decomposition theorem

w · Mw = w ·
[ d∑

i=1

λi vi ⊗ vi

]
w ≥ 0, ∀w ∈ R

d . (38)

In contrast with the standard deformation gradient in clas-
sical continuum mechanics, the peridynamics deformation
gradient is a nonlocal measure, because it takes into account
bonds at finite distances within a given horizon. The nonlo-
cal gradient operator as defined in the previous sections only
assumes local analyticity at points A and B. In the discrete
setting, there is no restriction on the continuity require-
ments on the horizon domain that excludes points A and B,
HA\ {

X A, X B
}
. As a direct result, the deformation gradient

as expressed above can be non-singular in the presence of
strong discontinuities withinHA\ {

X A, X B
}
.

The limit in Eq. (16) implies that as the horizon radius
approaches zero, the value of the nonlocal deformation gra-
dient approaches the local one. In otherwords, as the radius of
the horizon decreases, the accuracy of the deformation gradi-
ent increases, and the approximated deformed bond vectors
Y ′ that are mapped by the deformation gradient of Eqs. (32)
and (33) will approach the actual values of the deformed
bond vectors Y , as illustrated in Fig. 4. One can also reduce
the approximation errors by formulating a deformation gra-
dient based on higher order nonlocal differential operators.
As was shown in Li et al. [18], higher order approximations
will, in general, reduce the error. However, they will also
require higher computational effort and costs.

As a side remark, according to Eq. (16), the both defor-
mation gradients that act on the undeformed and deformed
bondswill converge at the same rate, because their truncation
errors are equivalent in order.

Proposition 3.5 Given an affine deformation field, such as
a uniform stretch and/or a rigid translation C(t)

Y AB(t) = F A(t) · ξ AB + C(t), ∀XB ∈ HA (39)

The nonlocal deformation gradient is equivalent to its local-
ized counterpart F AB in classical continuum mechanics.

Proof In this case, the exact deformation gradient acts as a
linear operator. If we use the deformation gradient that acts
on the undeformed bond,

FA =
[ ∫

HA
ω(ξ AB) Y AB ⊗ ξ AB dV B

]

×
[ ∫

HA
ω(ξ AB) ξ AB ⊗ ξ AB dV B

]−1
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Fig. 4 The Mapping mechanism of the peridynamics deformation gradient

=
[ ∫

HA
ω(ξ AB) (F A·ξ AB) ⊗ ξ AB dV B

]

×
[ ∫

HA
ω(ξ AB) ξ AB ⊗ ξ AB dV B

]−1

= F A ·
[ ∫

HA
ω(ξ AB) ξ AB ⊗ ξ AB dV B

]

×
[ ∫

HA
ω(ξ AB) ξ AB ⊗ ξ AB dV B

]−1

= F A. (40)

This proof coincides with what was presented in [26]. As an
extension, one can show that the deformation gradient that
acts on the deformed bonds also satisfies the above proposi-
tion,

F̂A =
[ ∫

HA(t)
ωt (Y

AB) Y AB ⊗ Y AB dvB
]

×
[ ∫

HA
ω(ξ AB) ξ AB ⊗ Y AB dV B

]−1

=
[ ∫

HA
ω(ξ AB) (F A·ξ AB) ⊗ (F A·ξ AB) dV B

]

×
[ ∫

HA
ω(ξ AB) ξ AB ⊗ (F AB·ξ AB) dV B

]−1

= F A ·
[ ∫

HA
ω(ξ AB) ξ AB ⊗ ξ AB dV B

]

· (
(F A)T (F A)−T )

×
[ ∫

HA
ω(ξ AB) ξ AB ⊗ ξ AB dV B

]−1

= F A. (41)

��

3.1.2 Nonlocal material stress divergence

The force state introduced into the equation of motion in
Sect. 2 acts as a vector quantity that when integrated within

the horizon of a given particle, which represents an approx-
imation to the divergence of the stress field in the current
configuration basis.

Proposition 3.6 Given a point XA ∈ �0 and neighbors
XB ∈ HA that contain a non-zero stress and satisfy the
conditions of Definition (3.1), the nonlocal material diver-
gence of the first Piola-Kirchhoff stress tensor is expressed
as a function of the deformed bonds as

MX [P(xA, t)](< ξ AB >X )

= −
∫

HA
ω(ξ AB)

(
T BA〈ξ BA〉 + T AB〈ξ AB〉) dV B,

(42)

where the force state T 〈ξ〉 is defined as

T AB[xA, t]〈ξ AB〉 := P
(
xA, t

) · K−1(X A)ξ AB

T BA[xB, t]〈ξ BA〉 := P
(
xB, t

) · K−1(X A)ξ BA (43)

The material stress divergence as a function of the deformed
bonds is expressed as

MX [P(xA, t)](< Y AB >X )

= −
∫

HA
ω(ξ AB)

(
T BA〈Y BA〉 + T AB〈Y AB〉) dV B

(44)

where the force state T 〈Y 〉 is defined as

T AB[xA, t]〈Y AB〉 : = P
(
xA, t

) · N−1(xA, X A)Y AB

T BA[xB, t]〈Y BA〉 : = P
(
xB, t

) · N−1(xA, X A)Y BA. (45)

Proof To formulate a nonlocal analog of the material diver-
gence of the first Piola-Kirchhoff stress tensor P as a function
of the undeformed bonds, Eq. (10) can be applied to a differ-
ential in the stresses for a given particle A and its neighbors
XB ∈ HA
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MX [P(xA, t)](< ξ AB >X )

=
∫

HA
ω(ξ AB) 
P(x, t) · (

K−1(X A)ξ AB)
dV B

=
∫

HA
ω(ξ AB)

(
P(xB, t) − P(xA, t)

)

· (
K−1(X A)ξ AB)

dV B

= −
∫

HA
ω(ξ AB)

(
T BA〈ξ BA〉 + T AB〈ξ AB〉) dV B .

(46)

The proof of the nonlocal stress divergence of the first
Piola-Kirchhoff stress tensor in terms of the deformed bonds
follows an identical procedure as above, simply by utilizing
the differential operator in Eq. (11),

MX [P(xA, t)](< Y AB >X )

=
∫

HA
ω(ξ AB) 
P(x, t) · (

N−1(xA, X A)Y AB)
dV B

=
∫

HA
ω(ξ AB)

(
P(xB, t) − P(xA, t)

)

· (
N−1(xA, X A)Y AB)

dV B

= −
∫

HA
ω(ξ AB)

(
T BA〈Y BA〉 + T AB〈Y AB〉) dV B .

(47)

��

Proposition 3.7 Given that balance of linear momentum is
locally satisfied for each point A in the reference domain �0

∫

�0

[∇X · P(xA, t) + B(X A, t)
]
dV

=
∫

�0

ρ0(X A)ü(X A, t) dV, ∀XA ∈ �0 (48)

the nonlocal balance of linear momentum will also be satis-
fied in the limit as the horizon radius approaches zero, thus
yielding the equation of motion for each point A given as a
function of the undeformed bonds as

−
∫

HA
ω(ξ AB)T BA〈ξ BA〉 dV B + B(X A, t)

= ρ0(X A, t)üA(xA, t), ∀XA ∈ �0, XB ∈ HA (49)

and as a function of the deformed bonds as

−
∫

HA
ω(ξ AB)

(
T AB〈Y AB〉

+ T BA〈Y BA〉) dV B + B(X A, t) = ρ0(X A, t)üA(xA, t),

∀XA ∈ �0, XB ∈ HA. (50)

Proof We start with the proof of Eq. (49). The stress at point
A is held constant in the integral in Eq. (46). This implies that
the force state T AB is an odd function because the following
condition is satisfied,

T AB〈ξ AB〉 = −T AB〈−ξ AB〉.

If it is assumed that both the horizon and the influence func-
tion are symmetric, one can use the property shown above to
show that
∫

HA
ω(ξ AB)T AB〈ξ AB〉 dV B

= P
(
xA, t

) · K−1(X A)

∫

HA
ω(ξ AB)ξ AB dV B = 0,

(51)

as was assumed in deriving the convergence of the force
state in Silling and Lehoucq [28]. Thus, if we replace the
local divergence of the first Piola-Kirchhoff stress in Eq. (48)
with the nonlocal material divergence, i.e. Eq. (42), Eq. (49)
follows automatically.

Strictly speaking, Eq. (49) only holdswhenHA ⊂ �0. For
uniform particle distribution and uniform horizon size, it is
impossible to have this condition satisfied near the boundary
of the domain, i.e. dis{X, ∂�0} < δA. Therefore, in practi-
cal computation, we still recommend the following discrete
dynamic equations as the governing equations of the total
Lagrangian peridynamics formulation,

ρ0üA =
NHA∑

B=1

ω(ξ AB)
(
P(xB, t) − P(xA, t)

)

×K−1(XA)ξ AB
V B

+B(XA, t), A = 1, 2, . . . , N . (52)

Hence, one can readily show that the equation of motion
(50) follows trivially by replacing the local divergence of the
Piola-Kirchhoff stress in Eq. (48) with the nonlocal stress
divergence defined in Eq. (44). The equation of motion using
the force state expressed in Eqs. (43) and (45) will converge
to the equation of motion of classical continuum mechanics
as the horizon radius approaches zero if the horizon is a sym-
metric domain. This result is in agreement with the results
in Silling and Lehoucq [28] where it was shown that the
term involving force states in the peridynamics equation of
motion converges to the stress divergence of classical con-
tinuum mechanics as the horizon approaches zero for any
general elastic peridynamic material.

It is noted that the original generalized equation of motion
in Silling et al. [26] includes the term T AB〈ξ AB〉, though this
term is opposite in sign to the one presented in Eq. (42). In
the case of a symmetric domain, both equations of motion
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are equivalent due to the antisymmetry of the expression in
Eq. (51). Though the discrepancy between signs is insignifi-
cant in symmetric domains for Eq. (49), it retains significance
in the stress divergence term that acts on the deformed bonds
(Eq. (50)), because antisymmetry of the deformed bonds can-
not generally be assumed. ��
Proposition 3.8 Given the relations between the nonlocal
force state and the first Piola-Kirchhoff stress tensor (Eq. (43)
with respect to the undeformedbondandEq. (45)with respect
to the deformed bond), the symmetric condition of theCauchy
stress tensor σ ,

σ = σ T ,

implies the balance of the nonlocal angular momentum

∫

HA
ω(ξ AB)T AB ×Y AB dV B = 0, ∀XB ∈ HA,XA ∈ �0

(53)

at each point XA ∈ �0.

Proof The proof has two parts. First, using the force state
that acts on the undeformed bonds, the nonlocal balance of
angularmomentum for each pointXA ∈ �0 can be expressed
in indicial notation as follows ([26]),

∫

HA
ω(ξ AB)T AB〈ξ AB〉 × Y AB dV B

= ei j

∫

HA
ω(ξ AB)PA

i AK
−1
ABξ AB

B Y AB
j dV BE

= ei j P
A
i AK

−1
ABNBjE

= ei j P
A
i AF

T
Aj 〈ξ AB〉E

= ei jσ
A
i j JE

= 0, (54)

where lowercase and uppercase subscripts denote indices in
the reference and current configuration, respectively, and E

is the coordinate basis in the referential configuration.
In the above equation, we have used the relation Jσ =

PFT , where the Jacobian is defined as J = det[F] as it is
defined in classical continuum mechanics. The last line of
the above equation uses the property that the Cauchy stress
tensor is symmetric.

Similarly, the nonlocal balance of angular momentum in
terms of the force state acting on the deformed bonds is
expressed as

∫

HA
ω(ξ AB)T AB〈Y AB〉 × Y AB dV B

= eik

∫

HA
ω(ξ AB)PA

i AN
−1
Aj Y

AB
j Y AB

k dV BE

= eik P
A
i AN

−1
Aj M jkE

= eik P
A
i AFAk〈Y AB〉E

= eikσ
A
ik JE

= 0. (55)

In passing, we note that the nonlocal global balance of angu-
lar momentum is expressed formally, ∀XA ∈ �0,

∫

HA

(MX
[
P(xA, t)

] + B(X A, t)
) × Y AB dV A

=
∫

HA
ρ0(X A)ü(X A, t) × Y AB dV A. (56)

The nonlocal stress divergence term also involves the stress at
point B, which is a function of the variable dV B . Therefore,
angular momentum using T BA will not result in the same
balance as expressed in Eqs. (54) and (55). We have proved
that in the limit of an infinitesimal horizon, the balance of
linear momentum (as well as the stress divergence term) will
approach the value of their classical continuum mechanics
counterparts. Therefore, with the assumption that the cauchy
stress tensor is symmetric, Eq. (56) will also be valid in the
limit of an infinitesimal horizon. ��

3.2 Updated Lagrangian approach

For the updated Lagrangian approach, the equations of
motion are formulated in the current configuration, which
is assumed to be the new reference configuration. Thus the
updated Lagrangian formulation uses spatial derivatives that
are defined as the derivative with respect to the current con-
figuration of a deformed body. Based on this approach, we
propose the following nonlocal equivalent of a spatial gradi-
ent:

Definition 3.2 (Nonlocal Spatial Differential Operators)
For any N-dimensional composite field function Ĝ(x) :=
(G ◦ x)(X) = G[x(X)], Ĝ(x) ∈ R

ni×...nN , ni ∈ Z
+

defined at point A that satisfies the following properties:

1. Locally analytic at points A;
2. Integrable within the entire horizon HA(t), and
3. Contain a set of symmetric horizons that provides a cover

for the physical spatial domain �t .

The nonlocal spatial gradient as a function of the undeformed
bonds is expressed as

L̂x
[
Ĝ(x)

](
< ξ AB >x

)

:=
[ ∫

HA(t)
ωt (Y

AB) 
Ĝ(x) ⊗ ξ AB dvB
]
N−1(x, X A)

,

(57)
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where Y AB = ‖YAB‖2, and N is the two-point correlation
tensor.

The nonlocal spatial gradient of Ĝ(x) is defined as a func-
tion of the deformed bonds at point A as

L̂x
[
Ĝ(x)

]
(< Y AB >x )

:=
[ ∫

HA(t)
ωt (Y

AB) 
Ĝ(x) ⊗ Y AB dvB
]
M−1(xA)

,

(58)

where M is the shape tensor for the spatial horizon.
The nonlocal spatial divergence operator is constructed

in a similar fashion as an implicit function of the average
undeformed bonds

M̂x
[
Ĝ

(
xA)](

< ξ AB >x
)

:=
∫

HA(t)
ωt (Y

AB)
Ĝ(x) · (N−T (
xA, X A)

ξ AB)
dvB,

(59)

and likewise as an implicit function of the average deformed
bonds

M̂x
[
Ĝ

(
xA)](

< Y AB >x
)

:=
∫

HA(t)
ωt (Y

AB)
Ĝ(x) · (M−1(xA)
Y AB)

dvB

(60)

where ωt (Y AB) = J−1ω(ξ AB).

The variable of integration in the nonlocal spatial gradient
and divergence operators is based on the coordinates in the
current configuration, notated as dvB . The bounds of integra-
tion are on the deformed horizon at time t denoted asHA(t).
Note that the variable of integration in the current configura-
tion is related to the variables in the reference configuration
via the JacobiandvB ≡ JdV B = det[F]dV B . The Jacobian
is assumed to be constant because the deformation gradient
is constant throughout the horizon as well. This assumption
ensures the symmetry of the integration domain in the current
configuration.

The mathematical meaning of the definition of a nonlocal
spatial gradient operator may be understood as,

∇x ⊗
(
•
)

→ 1


x

(

(•)

)

:=
[ ∫

HA(t)
ωt (Y

AB)
(

(•)

)
⊗ Y AB dvB

]
M−1. (61)

Following the same notation, we can understand the non-
local spatial divergence operator as

∇x ·
(
•
)

→ Tr
( 1


x

(

(•)

))

:=
[ ∫

HA(t)
ωt (Y

AB)
(

(•)

)
· Y AB dvB

]
M−1. (62)

Since M−1 is symmetric, Eq. (62) can be rewritten as

∫

HA(t)
ω(Y AB)

(

(•)

)
· (M−1Y AB) dvB . (63)

These nonlocal operators share the sameproperties as their
nonlocal material counterparts presented in the previous sec-
tion, as will be shown below.

Theorem 3.9 The nonlocal spatial gradient operators
defined in Eqs. (57) and (58) converge to the localized gra-
dient operator as the horizon radius approaches zero,

lim
δA→0

L̂x [Ĝ(xA)] = [∇x Ĝ(x)
]
x=xA . (64)

Proof By using Eq. (57), the proof follows a similar proce-
dure as was done in proving the convergence of Eq. (10).
Expanding Ĝ(x) at point A via Taylor series, we have

Ĝ(x)= Ĝ
(
xA)+ [∇x Ĝ

(
x)

]
x=xA ·

(
x−xA) +O

(
‖x−xA‖22

)

(65)

Substituting x with xB yields,


Ĝ(x) = Ĝ(xB) − Ĝ(xA)

= [∇x Ĝ
(
x)

]
x=xA · Y AB + O

(
‖Y AB‖22

)
(66)

Inserting the finite difference 
Ĝ(x) into the nonlocal dif-
ferential operator in Eq. (57),

L̂X [G(X A)](< Y AB >X )

=
[(

[∇x Ĝ(x)
]
x=xA · Y AB+O(‖Y AB‖22)

)
�̂ξ AB

]
N−1

= [∇x Ĝ(x)
]
x=xA + [O(‖Y AB‖22)

]
�̂ξ ABN−1 (67)

where the operator �̂ is defined as

U�̂V :=
∫

HA(t)
ωt (Y

AB) U ⊗ V dvB , (U, V ) ∈ R
3

U •̂V :=
∫

HA(t)
ωt (Y

AB) U · V dvB, (U, V ) ∈ R
3.

Following the sameassumptionof the last section, the leading
remainder is of order O(||YAB ||22

)
.
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A similar calculation can be carried out for the gradient
operator in Eq. (58) by swapping the differential operators.
The remainderwill vanishes as the horizon radius approaches
zero. ��

Theorem 3.10 The nonlocal spatial divergence operators
defined in Eqs. (59) and (60) converge to the localized gra-
dient operator as the horizon radius approaches zero.

lim
δA→0

M̂x [G(xA)] = [∇x · G(x)
]
x=xA (68)

Proof Inserting the exact difference 
Ĝ(x) into the spatial
divergence operator that acts on the undeformed bonds, we
obtain the following expression,

M̂x [Ĝ(xA)](< ξ AB >x )

=
[([∇x Ĝ(x)

]
x=xA · Y AB + O(‖Y AB‖22)

)
•̂N−T ξ AB

]

= [∇x Ĝ(x)
]
x=xA : I +

(
O(‖Y AB‖22)

)
•̂N−T ξ AB

= [∇x · Ĝ(x)
]
x=xA +

(
O(‖Y AB‖22)

)
•̂N−T ξ AB . (69)

Similarly, inserting the exact difference into the spatial diver-
gence operator that acts on the deformed bonds, we have,

M̂x [Ĝ(xA)](< ξ AB >x )

=
[([∇x Ĝ(x)

]
x=xA · Y AB+O(‖Y AB‖22)

)
•̂M−1Y AB

]

= [∇x Ĝ(x)
]
x=xA : I +

(
O(‖Y AB‖22)

)
•̂M−1Y AB

= [∇x · Ĝ(x)
]
x=xA +

(
O(‖Y AB‖22)

)
•̂M−1Y AB . (70)

Using the antisymmetry condition of the integral of the high-
est order remainder term, the resulting truncation error of the
nonlocal spatial divergence operators isO(||YAB ||22), which
converges to zero in the limit as the horizon radius approaches
zero. ��

3.3 Nonlocal spatial gradient as the inverse of
deformation gradient

Comparing with the nonlinear continuum mechanics [16],
we may use the nonlocal spatial gradient operator to define
the inverse of the deformation gradient,

F−1 := ∂X
∂x

↔ F̂−1
A := NT M−1

=
(∫

HA
t

ωt (Y
AB)ξ AB ⊗ YABdvB

)

M−1. (71)

Moreover, from Eq. (33), one can clearly see that

(
F̂−1
A

)−1 =
(
NTM−1

)−1 = MN−T = F̂A.

On the other hand, Assume that inside the horizon HA the
Cauchy-Born rule applies, i.e.

ξ AB = F−1
A (t)YAB(t). (72)

Substituting (71) into (72) yields,

F̂−1
A = F−1

A (t) → F̂−1
A = F−1

A ,

by virtue of Eq. (40).

3.3.1 Nonlocal divergence of spatial stress distribution

In the updated Lagrangian approach, the equation of motion
is formulated entirely in the current configuration of a
deformed nonlocal medium,

∇x · σ (x, t) + b(x, t) = ρ(x, t)ü(x, t) (73)

where σ is the Cauchy stress tensor defined as the force per
unit area in the current configuration. b and ρ are defined as
the body force and density in the current configuration.

The nonlocal equivalent to the spatial stress divergence in
Eq. (73) is presented in the following proposition.

Proposition 3.11 Given a point xA ∈ �(t) and neighbors
xB ∈ HA(t) that contain a non-zero stress and satisfy the
conditions of Definition 3.2, the nonlocal spatial divergence
of the Cauchy stress tensor is expressed as a function of the
undeformed bonds as

M̂x [σ (xA, t)](< ξ AB >x )

= −
∫

HA(t)
ω(ξ AB)

(
T AB

σ 〈ξ AB〉 + T BA
σ 〈ξ BA〉) dvB

(74)

where the force states as functions of theCauchy stress acting
on particle A and B are defined as

T AB
σ

[
xA, t

]〈ξ AB〉 = σ
(
xA, t

) · N−T (
xA, X A)

ξ AB

T BA
σ

[
xB, t

]〈ξ BA〉 = σ
(
xB, t

) · N−T (
xA, X A)

ξ BA (75)

The spatial divergence as a function of the deformed bonds
is expressed as

M̂x [σ (xA, t)](< Y AB >x )

= −
∫

HA(t)
ω(ξ AB)

(
T AB

σ 〈Y AB〉 + T BA
σ 〈Y BA〉) dvB

(76)
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Fig. 5 2D Discretized domain of particles subjected to a non-linear 1D deformation along the X1 axis

where the force states introduced above are defined as:

T AB
σ [xA, t]〈Y AB〉 = σ (xA, t) · M−1(xA)

Y AB

T BA
σ [xB, t]〈Y BA〉 = σ (xB, t) · M−1(xA)

Y BA (77)

Proof The spatial divergence of the Cauchy stress tensor in
terms of the undeformed bonds can be derived by using the
nonlocal differential operator in Eq. (59) as follows,

M̂x
[
σ
(
xA, t

)](
< ξ AB >x

)

=
∫

HA(t)
ωt (Y

AB)
σ (x, t) · (
N−T (

xA, X A)
ξ AB)

dvB

=
∫

HA(t)
ωt (Y

AB)
(
σ (xB, t) − σ (xA, t)

)

× (
N−T (

xA, X A)
ξ AB)

dvB

= −
∫

HA(t)
ωt (Y

AB)
(
T AB

σ 〈ξ AB〉 + T BA
σ 〈ξ BA〉) dvB .

(78)

The spatial stress divergence in terms of the deformed bonds
is formulated through the use of Eq. (60),

M̂x [σ (xA, t)](< ξ AB >x )

=
∫

HA(t)
ωt (Y

AB)
σ (x, t) · (
M−1(xA)

Y AB)
dvB

=
∫

HA(t)
ωt (Y

AB)
(
σ (xB, t) − σ (xA, t)

)

· (
M−1(xA)

Y AB)
dvB

= −
∫

HA(t)
ωt (Y

AB)
(
T AB

σ 〈Y AB〉 + T BA
σ 〈Y BA〉) dvB .

(79)

��

Proposition 3.12 Given that balance of linear momentum is
locally satisfied for each point A in the spatial domain �

∫

�

[∇x · σ (xA, t) + b(xA, t)
]
dv

=
∫

�

ρ(xA, t)ü(xA, t) dv, ∀xA ∈ �(t) ∈ � (80)

the nonlocal balance of linear momentum will also be satis-
fied in the limit as the horizon radius approaches zero, thus
yielding the equation of motion for each point A given as a
function of the undeformed bonds expressed as

−
∫

HA(t)
ωt (Y

AB)
(
TAB

σ 〈ξ AB〉+T BA
σ 〈ξ BA〉

)
dvB+b(xA, t)

= ρ(xA, t)ü(xA, t). (81)

Alternatively, it may be expressed as a function of the
deformed bonds as

−
∫

HA(t)
ωt (Y

AB)T BA
σ 〈Y BA〉) dvB + b(xA, t)

= ρ(xA, t)ü(xA, t). (82)

Proof In the updated Lagrangian approach, Eq. (81) is
obtained by replacing the local stress divergence in Eq. (73)
with its nonlocal counterpart in Eq. (74). Noting that because
in the updated Lagrangian approach, the horizon HA(t) is
constructed in a symmetric shape, thus the shape of H(0) is
not symmetric nor isotropic in general. Therefore, in general

∫

HA(t)
ωt (Y

AB)TAB
σ 〈ξ AB〉dvB

=
∫

HA
0

ωt (ξ
AB)TAB

σ 〈ξ AB〉dV B �= 0 !
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On the other hand, since HA(t) is symmetric,

∫

HA(t)
T AB

σ 〈YAB〉dvB

= σ (xA, t)M−1(xA)

∫

HA(t)
YABdvB = 0, (83)

because the first moment of a symmetric shape vanishes.
Thus, we can eliminate this term as mentioned in Eq. (79).
Subsequently, Eq. (82) is also obtained by replacing the local
stress divergence with its nonlocal counterpart,

In the current configuration, the particle positions are
constantly changing. Even though the horizon shape is sym-
metric, the changing particle distribution cannot maintain
a symmetric distribution. Thus the discretized version of
Eq. (83) cannot be hold. In practical computation, we still
recommend to use the following updated Lagrangian peridy-
namics equation of motion,

ρA
t üA =

NHA∑

B=1

ω(ξ AB)
(
σ B − σ A

)
· M−1(xA)ξ AB
V B

+b(xA, t). (84)

��
Proposition 3.13 Given the nonlocal spatial divergence of
the Cauchy stress tensor given by Eqs. (74) and (76), and
assuming the symmetry of the Cauchy stress tensor,

σ = σ T ,

the nonlocal balance of angular momentum expressed as

∫

HA(t)
ωt (Y

AB)T AB
σ × Y AB dvB = 0, ∀xB ∈HA, xA∈�,

(85)

which is satisfied for each point xA in the spatial domain �.

Proof We begin by analyzing the stress divergence in
Eq. (74). The balance of angular momentum is formulated
as follows
∫

HA(t)
ωt (Y

AB)T AB
σ 〈ξ AB〉 × Y AB dvB

= eik

∫

HA(t)
ωt (Y

AB)σ A
i j N

−1
j A ξ AB

A Y AB
k dvBe

= eikσ
A
i j N

−1
j A NAk Je

= eikσ
A
i j δ jk Je

= eikσ
A
ik Je

= 0. (86)

Table 1 Nonlocal field variables in different configuration spaces

Deformation gradient F〈ξ〉 = NK−1 F〈Y 〉 = MN−T

Total Lagrangian stress
divergence

T 〈ξ〉 = PK−1ξ T 〈Y 〉 = PN−1Y

Updated Lagrangian stress
divergence

Tσ 〈ξ〉 = σN−T ξ Tσ 〈Y 〉 = σM−1Y

where e is the basis vector of the coordinate in the current
configuration.

The angular momentum balance using the stress diver-
gence as a function of the deformed bonds is expressed as

∫

HA(t)
ωt (Y

AB)T AB
σ 〈Y AB〉 × Y AB dvB

= eim

∫

HA(t)
ωt (Y

AB)σ A
i j M

−1
jk Y

AB
k Y AB

m dvBe

= eimσ A
i j M

−1
jk Mkm Je

= eimσ A
i j δ jm Je

= eimσ A
im Je

= 0. (87)

��
We summarize the nonlocal field variables derived in this

paper in the following Table 1.
The updated Lagrangian approach essentially treats its

current configuration as a “new” reference configuration,
thus updating each variable with time. This is in contrast
to the total lagrangian whereby the reference configuration
is fixed based on the initial positions X and only updates
the time-dependent variables. As will be shown in the next
section, the nonlocal total and updated lagrangian equations
of motion both yield identical values, and hence, identical
convergence rates.

4 Numerical examples

In this Section, we present two numerical examples. The
first example is a fundamental study that examines the
convergence rate of the nonlocal equations of motion and
deformation gradients to their local counterparts in classical
continuum mechanics. In the second example, we employ
both the total Lagrangian peridynamics approach and the
updated Lagrangian peridynamics approach to simulate a
uniaxial tension of three-dimensional hyperelastic bar.

4.1 Numerical example I: convergence of the nonlocal
differential operators

We consider a 2D domain consisting of a meshless grid of
particles that are evenly spaced in increments denoted as
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Table 2 Convergence test cases

Case Horizon radius Variables

1a 
X F〈ξ〉, T 〈ξ〉, JTσ 〈ξ〉
1b 
X F〈Y 〉, T 〈Y 〉, JTσ 〈Y 〉
2a 2
X F〈ξ〉, T 〈ξ〉, JTσ 〈ξ〉
2b 2
X F〈Y 〉, T 〈Y 〉, JTσ 〈Y 〉


X . Since the field variables are defined at the particle coor-
dinates, each integral expression is only analyzed at these
discrete points. Therefore, integrals are evaluated as finite
sums over the set of all particle points within the integration
bounds

∫

HA
(•) dV B =

∑

B∈HA

(•) 
V B,

where the equality holds when the nodal integration is exact.
We consider a linear elastic constitutive model with Lamé
parameters of λ = 100 and μ = 50. In addition, the defor-
mation is imposed on all of the particles via the nonlinear
mapping of the following form

x1 = (X1)
4

x2 = X2 (88)

The convergence of the deformation gradient and force state
will be analyzed assuming that the grid spacing 
X is

decreased at the same rate as the horizon radius δ. We exam-
ine the convergence by varying the horizon radius using the
cases listed in Table 2.

The configuration of themapping for each case is depicted
in Fig. 9.

As shown in Fig. 6, the convergence slope for all cases
in the L∞-norm exhibits a second order accuracy. There-
fore, as the horizon radius approaches zero, the nonlocal
measures approach their localized counterparts at a rate of
δ2. The nonlocal material stress divergence and the nonlo-
cal spatial stress divergence factored by the Jacobian nearly
match in value for each subcase. This illustrates that the
nonlocal total and updated lagrangian approaches are equiv-
alent, as they are in classical continuum mechanics. In case
2, the horizon contains more neighbors and thus incorpo-
rates a higher level of nonlocality. These cases are shown to
converge consistently to the classical continuum mechanics
values at the same rate as case 1. However, the magnitude
of the errors in case 2 are higher than their counterparts
in case 1 by a constant. It is noted that only interior por-
tions of the domain are included in the convergence study,
because boundary particles will contain additional errors
due to particle deficiencies within the horizon. Errors due
to particle deficiencies is a known issue that is addressed
in various literature, notably [19] in the context of parti-
cle methods and [8] in the context of nonlocal differential
operators. For illustrative purposes,we show the “finest” non-
local stress divergence (from case 1), as well as the classical
continuum mechanics values in Fig. 7. Figure 8 shows the
exact values of the stresses, which match with both cases 1
and 2.

Fig. 6 L∞-norm of the error in the nonlocal deformation gradient (left) and stress divergence operator (right) for cases 1 and 2
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Fig. 7 Comparison of the nonlocal stress divergence to its local counterpart for case 1 using the smallest horizon radius

Fig. 8 Stress contours shown on the undeformed (top) and deformed
(bottom) configuration

4.2 Numerical example II: uniaxial tension of a
hyperelastic bar

In the second example, we employ both the total Lagrangian
peridyunamics and the updated Lagrangian peridynamics
formulations to simulate the uniaxial tension of a three-
dimensional bar made of a hyperelastic material.

The dimension of the bar is set as 0.1 × 0.1 × 1.0 (see
Fig. 8a). The non-dimensional reduced unit is used, i.e
we first choose a basic unit set of length, mass, and time
[L0,m0, t0] as reference measure. The computed variables
are related to real physical variables by the formula L∗ =
L/L0; v∗ = (vt0)/L0; t∗ = t/t0; ρ∗ = ρ/(m0/L3

0); σ ∗ =
σ/(m0/(L0t20 ), etc.

We performed a uniaxial tensile test with a total of 1075
peridynamics particles (Fig. 10). The column is modeled as
a St. Venant-Kirchhoff elastic material,

S = λTr(E) + 2μE, and E = 1

2

(
FTF − I

)

where S is the second Piola-Kirchhoff stress, and E is the
Green-Lagrangian strain. The material parameters used in
the numerical test are: λ = 200, and μ = 20. Density of the
column is set as ρ0 = 1.4 such that the longitudinal wave
speed is around 10.0. The bottom of the column is fixed with
zero displacement in the vertical direction, and the top of the
column is prescribed with a tensile traction τz = 14.

For the total Lagrangian peridynamics, we employ the
dynamics equations,

ρ0üA =
NHA∑

B=1

ω(ξ AB)
(
P(xB, t) − P(xA, t)

)

·K−1(XA)ξ AB
V B

+B(XA, t), A = 1, 2, . . . , N ,

FA = N(xA,XA)K−1(XA); (89)

and for the update Lagrangian peridynamics approach, we
adopt the dynamics equations,

ρA
t ü

A =
NHA∑

B=1

ω(ξ AB)
(
σ (xB, t) − σ (xA, t)

)

·M−1(xA)YAB
V B

+b(XA, t), A = 1, 2, . . . , N ;
F̂A = M(xA)N−T (xA,XA). (90)

Figure 8 shows the original configuration and the deformed
shape of the stretched bar. The deformed configuration sim-
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Fig. 9 Comparison of the total Lagrange approach and the updatedLagrange approach: a The initial configuration,bThe total Lagrange calculation,
and c the updated Lagrange calculation (The color contour is S33). (Color figure online)

Fig. 10 Comparison of the
time history of of elongation of
an hyperelastic bar under
uniaxial tension load via the
total Lagrange and the update
Lagrange computations. Case I
Total Lagrange Method, and
Case II Updated Lagrange
Method

ulated by the total Lagrangian peridynamics and by the
updated Lagrangian peridynamics are compared in Fig. 8b
and c. The color contour is the second Piola-Kirchhoff stress
component Szz . The vertical displacements at the top col-
umn surface are measured and compared to the analytical
result. In Fig. 9, we plot the time history of the top sur-
face displacement for (a) analytical result for static solution
(0.01), (b) the dynamics solution for the total Lagrangian

peridynamics solution, which converges to 0.01024, and
(c) the dynamics solution for the updated Lagrangian peri-
dynamics solution, which converges to 0.00982. During
the simulation, the adaptive dynamic relaxation (ADR)
method ([17]) is used in order to get the static result.
These results clearly indicate that both cases may con-
verge to the corresponding analytical solution, as is being
anticipated.
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5 Conclusions

In this work, we study both the total Lagrangian and the
updated Lagrangian formulations of stated-based peridy-
namics. It may be noted that these two formulations are
related because the updated Lagrangian perdynamics for-
mulation may be expressed in terms of the undeformed
bonds mapped onto the spatial configuration, and whereas
the total Lagrangian peridynamicsmay be expressed in terms
of deformed bondsmapped into the referential configuration.
Through these alternative formulations, we hope to motive
a more broad use of peridynamics in nonlocal continuum
mechanics that encompasses both solids and fluids.

The existing non-ordinary state-based peridynamics is a
total Lagrangian formulation, the current total Lagrangian
peridynamics formulation is only being formulated in terms
of the undeformed bonds. Sometimes, the material constitu-
tive relation may rely on deformed bonds, and this important
issue has been ignored in the current peridynamics literature
and we have discussed this problem in this paper.

Lastly, we have introduced various nonlocal differential
operators in the context of nonlinear continuum mechan-
ics, and we have discussed their connections to the local
form of those differential operators in classical continuum
mechanics. Most of these nonlocal differential operators are
generalized from the form of the deformation gradient or
force states of non-ordinary state-based peridynamics.More-
over, in this paper, we have introduced new force states and
new representation of the deformation gradient based on
the proposed nonlocal differential operators/It is shown both
numerically and mathematically that these nonlocal defor-
mation measures converge to their local counterparts as the
radius of the horizon approaches zero.
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