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Abstract

To study the connection between atomistic molecular dynamics and macroscale continuum mechanics, we partition the
Lagrangian of first-principle molecular dynamics according to its length scales. By doing so, we discover a universal three-scale
structure that is embedded in the conventional molecular dynamics formulation, which provides an intrinsic and seamless transition
from microscale to macroscale. The multiscale micromorphic molecular dynamics (MMMD) is built on a novel micromorphic
multiplicative decomposition that couples a fine scale atomistic dynamics, a mesoscale micromorphic dynamics, and a macroscale
particle dynamics of continuum mechanics together in concurrent fashion.

In this work, we discuss the relationship between MMMD and nonlinear continuum mechanics, its computational algorithm,
and how to use it to simulate phase transformation under non-equilibrium conditions.
c⃝ 2016 Elsevier B.V. All rights reserved.
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1. Introduction

The state-of-the-art computer and computation technologies have enabled Molecular Dynamics(MD) to simulate
evolutions of atomistic material systems with billions of atoms up to a second time duration. The so-called exascale
computing technology (e.g. [1]), which provides at least one exaflops 1018 s−1 computing speed, may soon allow us
to carry out first-principle based molecular dynamics simulation of the material systems with size up to cubic micron
and maybe even larger volume. With the new technology innovation, such as quantum computer, it is not a far-fetched
idea that in a near future we shall soon be able to use Molecular Dynamics in engineering design and analysis for
macroscale objects. For instance, we may soon have the computer power (speed and storage) that enable us using
Molecular Dynamics to design semiconductor thin films, integrated circuits and silicon chips, smart phones, or even
design aircraft turbine engine blades that are working under extreme conditions.
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This paper attempts to answer a fundamental and theoretical question: can we use the current form of the molecular
dynamics to design a macroscale machine or a device component, say a turbine engine blade? The answer is negative!
This is because when we design a turbine engine blade we do not (cannot) specify motions of every atom on the surface
of the blade! Instead, we design engineering components under specific thermodynamic or statistical conditions, for
instance under specific temperature, under given allowable stress or traction state—these are macroscale statistical
quantities. One of the main technical challenges of using molecular dynamics in macroscale engineering design is how
to apply macroscale boundary conditions to various molecular dynamics ensemble systems, e.g. [2–6]. It is noted that
the macroscale mechanical boundary condition is not the fine scale molecular boundary condition for specific atoms
at the boundary but the continuum scale boundary condition that we can measure by using macroscale engineering
devices.

In fact, one of the focuses of current multiscale simulation research is how to correctly set up the multiscale
boundary condition to couple the fine scale atomistic motion with the coarse scale continuum displacement field. In
recent years, various multiscale boundary conditions have been proposed e.g. “handshaking condition”, or “non-
reflection boundary condition”, e.g. [7–16] and among others. On the other hand, there have been many efforts
to formulate multiscale coarse-grained molecular dynamics. Among them, [17–21] are probably most notable
contributions. In particular, in a series work [22–24] Chen et al. proposed a multiscale micromorphic dynamics.
In fact, the classical micromorphic continuum theory is also a multiscale theory e.g. [25].

Instead of designing a compatible multiscale interface boundary, in this work, we would like to re-exam the molec-
ular dynamics system itself, which, we believed, has already contained an intrinsic multiscale structure. In early
1980s, Andersen [26] first repartitioned the conventional molecular dynamics Lagrangian, and proposed a multiscale
isoenthalpic–isobaric ensemble of molecular dynamics (MD) allowing the volume of a cubic lattice cell to vary. Sub-
sequently, Parrinello and Rahman [27,28] extended Andersen’s formalism to the anisotropic case allowing both the
volume and the shape of a molecular dynamics (MD) cell to vary, which is in fact an early form of multiscale molec-
ular dynamics. In recent years, there have been renewed interests in revising APR molecular dynamics, e.g. [29–34],
which attempted to extend APR MD to non-equilibrium condition or to macroscale simulations.

In a recent work [35–37], by following the Andersen–Parrinello–Rahman approach, the present authors have
repartitioned the Lagrangian of the first-principle atomistic molecular dynamics into different scales under the local
equilibrium assumption; by doing so, we have discovered that there exists a universal micromorphic multiscale
structure in atomistic molecular dynamics, which is an intrinsic mathematical structure of conventional molecular
dynamics. The repartitioned first principle molecular dynamics Lagrangian yields three coupled particle dynamics at
different scales. The MMMD method allows us: (1) Apply macroscale boundary conditions to finite-size molecular
dynamics systems, which usually are in the non-equilibrium condition; (2) Calculate non-uniform and inhomogeneous
distribution of macroscale field variables of the MD system under applied macroscale boundary conditions, and (3)
Bridge microscale molecular dynamics with macroscale continuum mechanics.

In the present work, we are focusing on the following three fundamental and computational issues of MMMD. First
by viewing MMMD as a multiscale dynamics from atomistic scale to continuum scale, we discuss what is the relation
between MMMD and continuum mechanics. Second, we present a detailed and complete computational algorithms
for MMMD, and we discuss the issues on how to implement it in computations. Third, we apply MMMD to simulate
the structure phase transition of finite-size crystal systems under applied boundary loadings, which are essentially
non-equilibrium boundary flux conditions.

The paper is arranged into five sections. In Section 2, a detailed multiscale partition of first-principle MD
Lagrangian and the derivation of the multiscale micromorphic molecular dynamics (MMMD) are presented, in which
we focus on the discussion of micromorphic multiplicative decomposition. In Section 3, we derive the dynamical
equations of the multiscale micromorphic molecular dynamics (MMMD). In Section 4, a few numerical examples
are presented to show how macroscale boundary is applied to simulate crystal structure phase transformation, which
validates the proposed multiscale molecular dynamics. Finally, in Section 5, we close the presentation by making few
remarks.

2. Multiscale partition of first-principle MD Lagrangian

We first partition the Lagrangian of first-principle molecular dynamics based on domain decomposition and
multiscale kinematics of the atom motion.
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2.1. Scale decomposition

The first part of multiscale partition is the domain decomposition, i.e. we divide a finite size MD simulation domain
into a finite number of supercells or local ensembles, and we choose the α-cell as the representative supercell to
illustrate formulation. In the whole simulation domain, we have α = 1, 2, . . . , N number of cells.

Assume that in the αth cell, there are Nα number of atoms. The position of the center of mass (COM) in this cell
is defined as,

rα(t) =
1

i
mi


i

mi ri (t). (1)

where ri , i = 1, 2, . . . , Nα , is the spatial position of each atom in the current cell configuration. Inversely, we can
express the spatial atomic position of i th atom in the αth MD cell as,

ri = rα + rαi , α = 1, 2, . . . , N ; i = 1, 2, . . . , Nα (2)

where rαi is the relative position for the i th atom in αth cell, and by its definition,
i

mi rαi = 0, (3)

which leads to the condition,
i

mi Siα = 0. (4)

Here we may use iα to distinguish the numbering index in different supercells. However, if without confusion, we
denote iα as i or i ∈ α in the rest of paper.

Now we introduce a so-called micromorphic multiplicative decomposition to describe the relative position of each
atom,

rαi = φα · Si , and φα := Fα · χα (5)

where φα is the total deformation gradient of the αth supercell; Si are the scaled atom position vectors for every atoms
inside the αth cell (we use Si instead of Sαi for simplicity); the second order tensor χα is the micro deformation tensor
of the αth cell, and its physical meaning may be interpreted as the shape tensor of αth cell,

χα(t)Si (t) = ξi (t)a(t) + ηi (t)b(t) + ζi (t)c(t), i = 1, 2, . . . , Nα

where a, b, and c are the MD cell edge vectors, and ξi , ηi , and ζi are the components of the local position vector Si
projecting onto the MD cell edges. They can be expressed into the following matrix form,

χα(t) =

ax (t) bx (t) cx (t)
ay(t) by(t) cy(t)
az(t) bz(t) cz(t)

 , Si (t) =

ξi (t)
ηi (t)
ζi (t)

 .

If we place the center of the supercell at the origin of the local coordinate, the components of the local position
vector of Si oscillate in the range,

−0.5 ≤ ξi (t), ηi (t), ζi (t) ≤ 0.5,

which characterizes the internal degrees of freedom of atom motions. When the total number of atoms increases,
the motion of Si may become chaotic. Therefore, we refer the local position vectors Si as the statistical variables.
Borrowing the terminology in macroscale continuum mechanics, we call the assemble of {Si } as the statistical
parametric configuration, i.e. Si ∈ BS .

The key part of the multiplicative micromorphic decomposition is the introduction of a coarse scale deformation
gradient Fα = Fα({rβ}) that is determined by the overall motion of all centers of mass of every cells, which
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Fig. 1. Schematic illustration of supercell domain decomposition; the dark points are centers of mass of supercells that may be subjected external
body force; the dark supercells are boundary cells that may be subjected external traction. The center of mass for each supercell has a support Hα

that contains some other centers of mass of adjacent supercells.

are completely determined by the spatial distribution of centers of mass (implied by the dependence of {rβ}) of
all cells.

Fig. 1 shows a schematic spatial cell division and the corresponding distribution of centers of mass. Fα together
with χα constitute the total deformation gradient φα , and Fα are determined by the distribution of {rα}. For example,
we can determine Fα by using the approach adopted in the reproducing kernel particle method [38] or the state-based
peridynamics [39].

Denote

rαβ(t) = rβ(t) − rα(t), Rα := rα(0), and Rαβ = Rβ − Rα, (6)

where the Greek subscripts are indices of the centers of mass of MD cells. As shown in Fig. 1, each supercell center
has a compact support, say Hα for the cell α. We can then construct the so-called moment matrix or shape tensor for
the cell center α by calculating following discrete sum over the other cell centers inside the support Hα (See [38]),

Mα :=

Nh
β=1

ω(|Rαβ |)Rαβ ⊗ RαβΩβ0, (7)

where ⊗ is the tensor product operator; Nh is the number of supercell centers inside Hα; Ωβ0 is the volume of the
βth cell in the referential configuration BR , and ω(|Rαβ |) is a localized positive window function.

To construct the macroscale deformation gradient tensor, we first define a two-point second order tensor by the
following discrete sum,

Nα :=

 Nh
β=1

ω(|Rαβ |)rαβ ⊗ RαβΩβ0


, (8)

where rαβ ∈ Br and Rαβ ∈ B R . Considering the Cauchy–Born rule [40], we have,

rαβ = Fα · Rαβ → Nα = Fα · Mα,

and then we can derive the coarse scale deformation gradient as

Fα =

 Nh
β=1

ω(|Rαβ |)rαβ ⊗ RαβΩβ0


· M−1

α . (9)
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where ω(|Rαβ |) is a localized positive window function, and a common choice is the Gaussian function,

ωh(x) =
1

(πh2)d/2 exp

−

x · x
h2


, (10)

here d is the number of space dimension, and h is the radius of the support. Obviously, Fα depends on the relative
positions of all other atoms in the support of the α-atom, i.e. Ωα . Note that in the configurations BR and B I the center
of the supercell occupies the same position, i.e. Rα ≡ Rα , but not for each atom, i.e. Rαi ≠ Rαi .

At the beginning of the coarse scale deformation, the initial position of the supercell center rα(0) = Rα , therefore,

Fα =

 Nh
β=1

ω(|Rαβ |)rαβ ⊗ RαβΩβ0


· M−1

α =

 Nh
β=1

ω(|Rαβ |)Rαβ ⊗ RαβΩβ0


· M−1

α = I,

where I is the unit of second order tensor.
Initially, the supercell shape tensor, χ0, which is spanned by the three edges of the MD cell, a(0), b(0), and c(0),

may be expressed as,

χ0 := χ(0) = [a(0), b(0), c(0)].

For all the atoms in a representative MD cell, say the αth cell, its referential position are defined as

Ri := Rα + Rαi , with Rαi = χ0Si . (11)

In the rest of this paper, we refer this molecular configuration as the referential configuration B R . One can find that
this definition is consistent with kinematic assumption,

ri = rα + rαi = rα + Fα · χα · Si . (12)

Based on Eq. (12), we may define an intermediate referential configuration,

Ri = Rα + Rαi = Rα + χα(t) · Si , (13)

so that the coarse scale deformation gradient is a continuum scale deformation gradient.
In the proposed multiscale method, we have introduced four different configurations in a representative cell α:

(1) The spatial configuration, i.e. Bc(r)-configuration, in which ri ∈ Ωα; (2) the intermediate equilibrium config-
uration, i.e. B I (R)-configuration; (3) the referential equilibrium configuration, i.e. B I (R)-configuration, in which
Ri ∈ Ωα0, and (4) the statistical configuration BS , in which the scaled atom coordinate Si are primary variables.
Fig. 2 shows a deformation map that connects these four configuration spaces.

Since for the monoatom systems


i mi Si = 0 and Si are oscillating in the range −0.5 ≤ Si ≤ 0.5, i.e. ∥Si∥ < 1, as
atoms oscillate around their equilibrium positions, we may interpret Si as a statistical variable. For a given macroscale
kinematic variable or point, rα(t) (the center of cell), there are many sets of {Si } corresponding to it, and this is the case
because as long as


i mi Si = 0 satisfies. Therefore, a given macroscale material point rα(t) does not correspond to a

single set of {Si } in a unique one-to-one manner, i.e. such correspondence is not unique. This makes sense because in
statistical thermodynamics a macroscale state rα corresponds to many microstates {Si }, and a microstate is determined
by the distribution of statistical variable Si .

It may be also noted that on the configuration spaces B I , B R , the center of mass coordinate are the same, i.e. Rα ,
whereas the configuration space BS is defined cell by cell, and the coordinate of the center of mass of each cell is zero.

Remark 2.1. It may be noted that in PR-MD [32], F := χ · χ−1
0 with χ0 := ⟨χ(t)⟩, which is a mesoscale variable,

i.e. it has the same time and length scales as the mesoscale variable χ(t). A shortcoming for such approach is that the
definition of χ0 is posterior. Whereas in MMMD, Fα are solely determined by the global position of the centers of
mass of supercells, therefore they are coarse scale variables.

A pictorial illustration of four physical configurations is displayed in Fig. 3, where physical interpretations of
different kinematic mappings at different scales are graphically illustrated. In passing we note that the continuum
compatibility condition is a macroscale condition, and at both microscale and mesoscale this condition is not
necessarily satisfied. For crystalline solids, this may be linked to the defect states or quasi-crystal states. Even though
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Fig. 2. Deformation map that connects four different kinematic configuration spaces: (1) statistical configuration; (2) referential configuration;
(3) intermediate configuration, and (4) current configuration.

Fig. 3. Cell Deformation in different configurations: (a) The original undeformed system which is divided into several unit cells. The atomic
positions are given by Ri . The solid circles represent the centers of mass. (b) The cells (dashed parallelograms) further undergoes microscale
deformation χα around their own center of mass separately without connection (with the cell center fixed). This is because that continuity may not
be valid at fine scale. (c) The configuration undergoes macroscale deformation Fα , i.e. now the cell centers start to move. Notice that the continuity
is a macroscale concept. Based on this concept, we can use the positions of all cell centers to construct, e.g. interpolate, a coarse scale displacement
field.

the referential configuration is not essential in the fine scale calculations, but its information is needed in coarse scale
computations. To clearly specify displacement decomposition at each scale, we consider the following atomic position
decomposition,

ri = rα + rαi ⇒ ri = rα + Fα · Rαi = rα + Fα · χα · Si , (14)

where

Rαi = χα · Si .

These relations are schematically illustrated in Fig. 4. Subsequently, we can decompose the atomistic displacement
into three different scales,

u = rα − Rα; ũi =


Fα · χα − χα


Si , and u′

i =


χα − χα0


Si , (15)
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Fig. 4. Schematic illustrations of relations among (I) statistical configuration, (II) intermediate configuration and (III) current configuration. See
the definitions of coordinations, si , ri , and rα in Eq. (14).

where u, ũi , u′

i denote macroscale, mesoscale, and microscale displacements. Apparently, three of them together
constitute the total displacement ui , which can be expressed as,

ui = u + ũi + u′

i = ri − Ri . (16)

In the scale decomposition, we select three independent kinematic variables, {Si , χα, and rα}, to represent three dif-
ferent scales. The novelty of the proposed multiscale decomposition is the Multiplicative Multiscale Decomposition,

φα = Fα · χα. (17)

This decomposition is in sharp contrast to the addictive multiscale decomposition proposed by Wagner and Liu [8].
The total deformation gradient φα consists of a macroscale deformation gradient Fα and a micromorphic (meso)
deformation gradient χα . The macroscale deformation gradient at a local position is completely determined by the
local distribution of the supercell centers, which can be quantified, for example, by Eq. (9). On the other hand, the
microscale deformation gradient, which is often called as the micro-deformation in the literature of micromorphic
theory, is an independent mesoscale field variable that quantifies the independent supercell rotation or microscale de-
formation. The macro deformation Fα may be considered to be Long-range order, whereas the micro-deformation
χα may be considered to be Short-range order.

Remark 2.2. 1. The main objective of MMMD is to study non-equilibrium molecular dynamics process. Most of
conventional molecular dynamics are intended for equilibrium canonical ensembles such as NVE, NVT, or NPH, etc.,
in which either the stress, or volume, or temperature, or enthalpy, or a given thermodynamic variable is fixed over the
whole system, by which, we mean, it is under the maximum entropy condition with certain specific thermodynamics
variable being fixed or being constant. For non-equilibrium systems, the system’s entropy is not at the maximum
value, and the evolutions of the systems are driven by the boundary thermodynamics flux, such as heat flux, linear
momentum flux (traction), or energy flux, etc. These boundary conditions can be specified by prescribed motions of
each and every atom on the boundary, or by simply specifying the statistical quantity of the flux, which we may call
it as the macroscale boundary condition. An immediate question is how? A key assumption adopted in this work is
the local equilibrium assumption (LEA), which means that a local equilibrium state may be attained in each local
micromorphic cell during a small time interval. For instance, even if the whole system, the stress is not constant, but
in an individual cell, the stress may become constant at a specific moment. This will allow us to calculate spatial stress
distribution as well as specify the stress state of every boundary cells so that we can prescribe boundary traction as a
statistical quantity of linear momentum flux in each boundary cell. 2. The micromorphic cell division is a Lagrangian
division, meaning that each cell has a fixed (controlled) number of atoms (Nα), or it is a local equilibrium NσH
or a local NSH ensemble, but not a fixed volume Eulerian cell. Moreover, it is also different from the Lagrangian
type control volume ensemble such as a local NVT cell [41,42]. It must be noted that the multiscale micromorphic
molecular dynamics proposed in this paper excludes the cases that have long range random molecular diffusion, such
as molecular Brownian motion in liquids and gases.

Both the Lagrangian division as well as MMMD formulation are derived from first principle, and it does add
additional topological constraints onto the original first-principle Lagrange. Rather, it is a device to extrapolate the
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statistical variables of a MD system in a non-equilibrium setting. Therefore, we allow cell overlap, penetration, as well
as having gaps, if that is what indeed happen in the original atomistic system. This philosophy is illustrate in Fig. 3.

2.2. Statistical conditions

Before deriving the dynamic equations of MMMD, we first exam the kinetic energy of the αth cell:

Kα =
1
2


i

mi ṙi · ṙi =
1
2


i

mi (ṙα + φ̇α · Si + φα · Ṡi ) · (ṙα + φ̇α · Si + φα · Ṡi )

=
Mα

2
ṙα · ṙα  
K1

+
1
2
φ̇

T
α φ̇α


i

mi Si ⊗ Si  
K2

+
1
2


i

mi Ṡi · C · Ṡi  
K3

+
1
2
φ̇

T
α φα


i

mi Si ⊗ Ṡi +
1
2
φT

α φ̇α


i

mi Ṡi ⊗ Si  
K4

, (18)

where Mα =


i mi is the mass of the cell, and C = φT
α φα is the multiscale right Cauchy–Green tensor.

Assuming that the spatial and temporal spaces are statistical isotropic and homogeneous, we postulate the following
statistical condition,

JS
α =


i

mi Si ⊗ Si = χ−1
α0 · Jα · χ−T

α0 = constant tensor, (19)

where

Jα =


i

mi Rαi ⊗ Rαi (20)

is a second order tensor that is similar to the moment of inertia tensor of the cell in referential space. In mechanics,
the moment of inertia tensor of a rigid body is defined as,

IEuler :=


V

ρ

∥R∥

2I(2)
− R ⊗ R


dV

where ρ is mass density, and I(2) is the second order unit tensor. It is obvious that IEuler is dependent on both the shape
and size of the rigid body. Similarly the tensor Jα is also dependent on both the shape and size of the micromorphic
MD cell. On the other hand, the second order tensor JS

α is not dependent on the MD cell size and shape. In fact JS
α

is the push-back of Jα [43], and χα0 = χ(0) is a constant second order tensor, i.e. the geometric shape tensor of the
original cell.

We can replace the discrete summation (19) with a continuous integration, i.e.

JS
α =


ω

ρS ⊗ SdωS (21)

where ω is the volume of a unit cube. Let EI be the principal axes of JS
α . We can then have the spectral decomposition

of JS
α ,

JS
α =

3
I=1


ω

ρS2
I dω


EI ⊗ EI . (22)

If we postulate that JS
α is a spherical tensor, we have

ω

ρS2
1dω =


ω

ρS2
2 dω =


ω

ρS2
3dω =: Wα. (23)
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It should be noted that the supercell is not a necessarily unit cube, and it is related to the physical shape of the
lattice representative cell. Therefore, the related Euler’s moment of inertia tensor, IEuler is in general anisotropic. On
the other hand, the moment tensor JS

α in (21) is defined in the statistical configuration. The assumption that JS
α is

a spherical tensor is based on the general ergodicity postulate that the space and time that a molecular dynamics
simulation is involved are statistical isotropic and homogeneous, which is one of the fundamental hypothesis in
statistical physics and molecular physics. Note that we are discussing a quantity in a statistical configuration BS ,
not the lattice configuration BR and B I nor the current configuration Bc. The anisotropy of a material in the lattice
space is not in conflict with the ergodic assumption stated here.

For this reason, Parrinello and Rahman [28] assumed that

K2 =
1
2

WαTrace(φ̇
T
α φ̇α). (24)

We call the expression (19) as the First statistical condition of APR-MD; and the expression (23) as the Second
statistical condition of APR-MD.

Next we consider the fourth term of the kinetic energy K4. Since we may label Si statistical variables, one may
find that JS

α is in fact a tensorial autocorrelation function of statistical positions,

JS(τ ) = ⟨Si (t) ⊗ Si (t + τ)⟩ :=


i

mi Si (t) ⊗ Si (t + τ). (25)

We can prove that the autocorrelation tensor is an even function of τ , if JS is spherical. This implies the derivation at
the origin τ = 0 is zero. Hence,

d

dτ
JS
α|τ=0 =


i

mi Si (t) ⊗ Ṡi (t) = 0, (26)

and similarly,
i

mi Ṡi (t) ⊗ Si (t) = 0. (27)

Eqs. (26) and (27) imply that K4 = 0. In fact, the Second statistical condition states that JS
α is a spherical tensor,

which implies that

JS
α(τ ) = ⟨Si (t) ⊗ Si (t + τ)⟩ =


i

mi Si (t) ⊗ Si (t + τ) =


i

mi Si (t)Si (t + τ)


EI ⊗ EI

where EI , I = 1, 2, 3 are the basis of a Cartesian coordinate. It then follows,

JS
α(−τ) = ⟨Si (t) ⊗ Si (t − τ)⟩ =


i

mi Si (t) ⊗ Si (t − τ)

=


i

mi Si (t)Si (t − τ)


EI ⊗ EI =


i

mi Si (t + τ)Si (t)


EI ⊗ EI

= ⟨Si (t) ⊗ Si (t + τ)⟩ = JS
α(τ ).

Remark 2.3. Mathematically, the Second statistical closures (26) and (27) provide six equations. Together with the
three constraint equations provided by the First statistical closure, they are the nine conditions that are needed to
ensure that the variables χα and Si are independent. Thus, we now understand why APR-MD is not an approximation
of first principle molecular dynamics, but an exact and alternative and thermodynamically partition of first principle
molecular dynamics.
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Utilizing the two statistical conditions, we can write the Lagrangian of the MMMD system as,

Lm =
1
2


β

Mβ ṙβ · ṙβ +
1
2


β

JS
β : (φ̇

T
β φ̇β)

+
1
2


β


i

mi Ṡi · Cβ · Ṡi −
1
2


β


γ


i∈β, j∈γ

V (ri j ) −


β


i∈β

bi · ri (28)

where β, γ are cell number indices, and the abbreviation i ∈ β means that the i th atom belongs to the βth cell.
Cβ := φT

β φβ is the multiscale right Cauchy–Green tensor for total deformation.
In the rest of the paper, we choose three independent field variables, rα, φα , and Si representing kinematic

variables for three scales, instead of the set of original variables rα, χα, Si , which will be equivalent each other.
Thus Lm = Lm(rα, φα, Si ). The equations of motion are stated as

d

dt

∂Lm

∂ ṙα

−
∂Lm

∂rα

= 0;
d

dt

∂Lm

∂φ̇α

−
∂Lα

∂φα

= 0, and
d

dt

∂Lm

∂Ṡi
−

∂Lα

∂Si
= 0. (29)

3. Multiscale micromorphic molecular dynamics (MMMD)

In this section, we shall derive the dynamic equations for multiscale micromorphic molecular dynamics.

3.1. Coarse scale dynamic equation

We start by deriving some relations that are needed in subsequent derivations. Considering

Fβ = Fβ({rα}) and Ḟβ = Ḟβ({rα}, {ṙα}), (30)

we can have

Ḟβ =


α

∂Fβ

∂rα

ṙα, (31)

which leads to the relation,

∂Ḟβ

∂ ṙα

=
∂Fβ

∂rα

. (32)

Moreover

F̈β =


α


d

dt


∂Fβ

∂rα


ṙα +

∂Fβ

∂rα

r̈α


, (33)

on the other hand,

F̈β =


α


∂Ḟβ

∂rα

ṙα +
∂Ḟβ

∂ ṙα

r̈α


. (34)

Comparing Eqs. (33) and (34) and utilizing (32), we obtain

d

dt


∂Fβ

∂rα


=

∂Ḟβ

∂rα

. (35)

Furthermore considering that,

φ̇β = Ḟβχβ + Fβ · χ̇β , (36)
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we can obtain,

∂φ̇β

∂ ṙα

=
∂Ḟβ

∂ ṙα

χβ +
∂Fβ

∂ ṙα

χ̇β =
∂Fβ

∂rα

χβ =
∂φβ

∂rα

. (37)

Here, we assume that ∂Fβ

∂ ṙα
= 0, according to Eq. (30).

By virtue of Eqs. (35)–(37), we have

∂φ̇β

∂rα

=
∂Ḟβ

∂rα

χβ +
∂Fβ

∂rα

χ̇β =
∂Fβ

∂rα

χ̇β +
d

dt


∂Fβ

∂rα


χβ

=
d

dt


∂φβ

∂rα


=

d

dt


∂φ̇β

∂ ṙα


. (38)

This relation is needed in the subsequent derivation. Considering the coarse scale Lagrange equation and utilizing the
above relation, we have

d

dt


∂Lm

∂ ṙα


=

d

dt


Mα ṙα +


β

∂Lm

∂φ̇β

·
∂φ̇β

∂ ṙα



= Mα r̈α +


β

d

dt


∂Lm

∂φ̇β


·
∂φ̇β

∂ ṙα

+


β

∂Lm

∂φ̇β

·
d

dt


∂φ̇β

∂ ṙα



= Mα r̈α +


β

∂Lm

∂φβ

·
∂φβ

∂rα

+


β

∂Lm

∂φ̇β

·
d

dt


∂φβ

∂rα



= Mα r̈α +


β

∂Lm

∂φβ

·
∂φβ

∂rα

+


β

∂Lm

∂φ̇β

·
∂φ̇β

∂rα

. (39)

Furthermore,

∂Lm

∂rα

=


β≠α


i∈α, j∈β

V ′(ri j )
ri j

|ri j |
−


i∈α

bi +


β

∂Lm

∂φβ

·
∂φβ

∂rα

+


β

∂Lm

∂φ̇β

·
∂φ̇β

∂rα

. (40)

Substituting expressions (39) and (40) into the coarse scale Lagrange equation, we have

d

dt

∂Lm

∂ ṙα


−

∂Lm

∂rα

= 0 → Mα r̈α =


β≠α


i∈α, j∈β

V ′(ri j )
ri j

|ri j |
+ Bα (41)

where Bα =


i bi . Note that −V ′(ri j )
ri j
|ri j |

= fi j is the pair force between atoms i and j . If one would like to include
the macroscale traction boundary condition as indicated in Fig. 1, one needs to add another term on the center of mass
of the boundary cells. In this case, we can redefine the external force density as follows (see [36]),

Bα = Sα t̄α + Ωαb̄α, (42)

where Sα is the area of macroscale traction boundary of αth cell, t̄α is the traction vector on Sα; and b̄α =


i bi/Ωα .
Then we can rewrite the above equation as,

Mα r̈α = −


β≠α


i∈α, j∈β

fi j + Bα. (43)

The first term in the right hand side (RHS) of Eq. (43) represents the cell-to-cell interactions. We can also rewrite the
first term of RHS of Eq. (43) as

β≠α


i∈α, j∈β

fi j =


β≠α

fαβ , where fαβ :=


i∈α


j∈β

fi j . (44)



S. Li, S. Urata / Comput. Methods Appl. Mech. Engrg. 306 (2016) 452–478 463

Then Eq. (43) can be written in terms of coarse grain variables completely,

Mα r̈α = −


β≠α

fαβ + Bα. (45)

where the Greek letters α, β denote the centers of mass of MD cells.
In Eq. (44), the cell-to-cell interaction term consists of all the atomic bond forces that passing through the surface

of the cell, which is actually the non-local divergence of the Cauchy stress (▽ · σα) generated by the atomic interaction
from outside the cell multiply the volume Ωα . This can be seen as follows,

−


β≠α


i∈α, j∈β

fi j ≈


∂Ωα

σ · nd S =


Ωα

∇ · σdV ≈ ∇ · σαΩα.

Thus Eq. (43) may be interpreted as,

Mα r̈α = (▽ · σα)Ωα + Bα (46)

which is a coarse-grain version of the Balance of Linear Momentum. Eq. (46) not only establishes a link from
molecular dynamics to continuum mechanics, but also provides an alternative computational formulation, which is
explained as follows.

First we can rewrite the divergence of the Cauchy stress as

Ωα∇r · σα = Ω̃α J∇R · σα


∂R
∂r


= Ω̃α


∇R ·


JσαF−T

α


− σα · ∇R · (JF−T

α )


= Ω̃α∇R ·


JσαF−T

α


= Ω̃α∇R · Pα,

where Ω̃α is the volume of the MD cell in the intermediate configuration, i.e. R-configuration, and J := det (Fα) =

Ωα/Ω̃α . In the above derivation, the Piola identity ∇R · (JF−T ) = 0 is used, and moreover Pα = JσαF−T
α is the

first Piola–Kirchhoff stress with respect to the current configuration (r-configuration) and the referential configuration
(R-configuration), which can be shown as

Pα = PV iral
α =

1

Ω̃α


i∈α


−φαmi Ṡi ⊗ Ṡi +

1
2


j∈α, j≠i

fi j ⊗ Si j


· χT

α , (47)

when the equilibrium state is reached at the mesoscale. The detailed derivation of Eq. (47) will be discussed in the
subsequent sections, and our purpose here is to derive the macroscale dynamic equation.

Now Eq. (46) can be re-written as

Mα r̈α = Ω̃α∇R · Pα + Bα. (48)

Recall that the coarse scale deformation gradient may be approximated as (9),

Fα = ∇R ⊗ rα ≈

 Nh
β=1

ω(|Rαβ |)rαβ ⊗ RαβΩ̃β


· M−1

α , (49)

which indicates that the structure of the discrete differential operator may be expressed as,

∇R ⊗


fα


≈

 Nh
β=1

ω(|Rαβ |)(fβ − fα) ⊗ RαβΩ̃β


· M−1

α .

Following the same procedure, we can define the discrete gradient operator as,

∇R ·


fα


≈

 Nh
β=1

ω(|Rαβ |)(fβ − fα) · RαβΩ̃β


· M−1

α . (50)
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Note that the center of mass positions, Rα or Rβ , are the same in the intermediate configuration (R) as that in the
referential configuration (R).

Finally, we can approximate Eq. (48) as

Mα r̈α ≈

 Nh
β=1

ω(|Rαβ |)(Pβ − Pα) · RαβΩ̃β


· M−1

α + Bα. (51)

This is an alternative computation formulation in comparison to Eq. (43), because one does not need to calculate
interactions among different cells but only calculate the Virial stress in each cell. This formulation provides a natural
passage between molecular dynamics and continuum mechanics coupling.

3.2. Mesoscale dynamic equations

We now exam the mesoscale Lagrange equation. Considering the derivative terms with respect to the chosen
mesoscale variable, i.e. φ̇α and φα , we first have,

∂Lm

∂φ̇α

= φ̇α · JS
α →

d

dt


∂Lm

∂φ̇α


=

d

dt
(φ̇α · JS

α) = φ̈α · JS
α, (52)

and then we have,

∂Lm

∂φα

=
1
2


i

mi Ṡi
∂Cα

∂φα

Ṡi −
1
2


i, j∈α

V ′(ri j )
ri j

|ri j |
·
∂ri j

∂φα

−


β


i∈α

j∈β≠α

V ′(ri j )
ri j

|ri j |
·
∂ri j

∂φα

−


i∈α

bi ·
∂ri

∂φα

= φα


i

mi Ṡi ⊗ Ṡi −
1
2


i, j∈α

fi j ⊗ Si j +


β


i∈α

j∈β≠α

fi j ⊗ Si +


i∈α

bi ⊗ Si . (53)

Finally, the mesoscale Lagrange equations have the form,

φ̈α · JS
α = φα


i

mi Ṡi ⊗ Ṡi −
1
2


i, j∈α

fi j ⊗ Si j +


β


i∈α

j∈β≠α

fi j ⊗ Si j +


i∈α

bi ⊗ Si . (54)

To understand physical meanings of the above equation, we can define the mesoscale 1st Piola–Kirchhoff stress
tensors as,

PV irial
α :=


i∈α


−φαmi Ṡi ⊗ Ṡi +

1
2


j∈α, j≠i

fi j ⊗ Si j


(55)

Pext
α =


β≠α


i∈α, j∈β

fi j ⊗ Si j = φα ·


β≠α


i∈α, j∈β

V ′(ri j )
Si j ⊗ Si j

ri j


, (56)

where PV irial
α and Pext

α are the first Piola–Kirchhoff stress of the αth cell, which are the two-point tensors defined on
the current configuration i.e r-configuration and the statistical configuration, i.e. S-configuration.

Figuratively speaking, these tensors have two legs, one is in r-configuration and the other is in S-configuration. If
we push the leg in S-configuration forward to the intermediate configuration R-configuration, i.e. Ri = χ · Si , the
corresponding first Piola–Kirchhoff stress will have the following expression,

PV irial
α =

1

Ω̃α


i∈α


−φαmi Ṡi ⊗ Ṡi +

1
2


j∈α, j≠i

fi j ⊗ Si j


· χT

α , (57)

which is used in Eq. (47).
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Remark 3.1. 1. There is no 1/2 factor in Eq. (56). This is because i ∈ α but j ∈ β, and α ≠ β;
2. If we define,

σ ext
α =

1
Ωα


i


j≠i

V ′(ri j )


ri j ⊗ ri j

ri j


= φα ·


1

Ωα


i


j≠i

V ′(ri j )


Si j ⊗ Si j

ri j


· φT

α , (58)

where Ωα is the volume of the αth cell in spatial configuration, i.e. Bc-configuration, Pext
α can then be expressed by

the external Cauchy stress as

Pext
α = det (φα)σ ext

α · φ−T
α . (59)

3. The Jacobian of the micromorphic gradient is

det (φα) = det (χα)det (Fα) =
Ω̃α

Ωα0

Ωα

Ω̃α

=
Ωα

Ωα0
(60)

where Ωα0 is the volume of the initial MD cell.

With above definitions of stresses, we can recast the mesoscale dynamics equations as

φ̈α · JS
α = −


PV irial

α − Pext
α


+ Mα (61)

where PV irial
α is given by Eq. (55), and Pext

α is given by Eq. (56) or (59), Mα =


i∈α bi ⊗Si is the mesoscale external
couple. Note that Eqs. (55) and (56) are insightful, because they resolve one of outstanding debates on the definition
of the Virial stress. Eq. (55) is basically the mathematical definition of the Virial stress e.g. [44,45]. However, Zhou
[46] argued that the kinetic energy part should be dropped out in the stress calculation, even though many disagreed,
e.g. [47,48]. We now see from Eqs. (55) and (56) that if the stress is internally generated, the definition of the Virial
stress is the original form of the Virial stress; but if the stress is an external stress, then the kinetic energy part
should drop out from its expression. This is because that the current formulation of the multiscale micromorphic
molecular dynamics is an adiabatic formulation, which does not consider the heat exchange among the cells. If in
Eq. (61), φ̈α = 0, we have Pext

α = PV irial
α → Pext

α = PV irial
α , which is the proof of Eq. (47).

3.3. Microscale dynamic equations

After evaluating the fine scale Lagrange equation for i ∈ α, we first have

d

dt

∂Lm

∂Ṡi
= mi


CαS̈i + Ċα · Ṡi


. (62)

The derivative of fine scale Lagrange equation with respect to Si has two cases,

(a) α = β :
∂Lm

∂Si
= −

1
2


j≠i


V ′(ri j )

ri j
Cα · Si j


(63)

(b) α ≠ β :
∂Lm

∂Si
= −

1
2


α≠β


j≠i


V ′(ri j )

ri j
φT

α · ri j


, (64)

where ri j = rαβ + φβ · S j − φα · Si . This is because,

∂V

∂Si
=

∂V

∂ri j

∂ri j

∂ri j

∂ri j

∂Si
= V ′(ri j )

ri j

ri j
· Φα =

V ′(ri j )

ri j
ΦT

α · ri j ,

and ri j = Φα · Si j only when α = β.
Combining these two equations i.e. Eqs. (63) and (64) as well as Eq. (62), we finally have

mi S̈i +
1
2
φ−1

α


β


i≠ j


V ′(ri j )

ri j
(rαβ + φβ · S j − φα · Si )


+ mi C−1

α Ċα · Ṡi + φ−1
α · bi = 0, (65)
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where i ∈ α. One may note that the second term in Eq. (65) contains both interaction of atoms within the αth cell and
between two different cells, i.e. the case i ∈ α, j ∈ β and β ≠ α.

In summary, the three scale governing equations of Multiscale Micromorphic Molecular Dynamics are as follows,

Mα r̈α = −


β≠α


i∈α, j∈β

fi j + Sα t̄α + Ωαb̄α, (66)

φ̈α · JS
α = −(PV irial

α − Pext
α ) + Mα, (67)

mi S̈i = −mi C−1
α · Ċα · Ṡi + φ−1

α


β


j∈β≠i∈α

f j i + bi


, (68)

where the micromorphic deformation tensor is φα = Fα · χα . One can see from Eq. (66) that the macroscale traction
boundary condition is embedded in the coarse scale dynamic equation.

4. Computational algorithms

Suppose that the αth cell has Nα atoms, and the total degrees of freedom of the atomistic system will be 3Nα . On
the other hand, Eqs. (66)–(68) have 3 + 9 + 3Nα degrees of freedom. Since MMMD is only a re-partition of original
first principle MD, it should have the same degrees of freedom as the original MD, i.e. 3Nα . Therefore, the MMMD
dynamic system (66)–(68) is an overdetermined system. We need additional 12 constraints to guarantee the multiscale
system equivalent to the original first-principle molecular dynamics system. The twelve constraints that we impose to
the multiscale system are:

(I ).


i

mi Si = 0, (69)

which stems from Eq. (3), and it ensures that Si have zero mean. Even though at the beginning of the computation,
Eq. (69) satisfies; during the computation, it will be gradually violated.

Similarly, at the beginning of the simulation, ∥Si∥ ≤ 1. However, after a while, the inequality starts to fail. Hence,
the second constraint is the following renormalization condition,

(I I ). χα · Si = χ · h
χ̃α

· h−1
· Si  

S̃i

= χ̃α · S̃i , (70)

which ensures the new scaled atomistic position vector S̃i := h−1Si → ∥S̃i∥ < 1. To do so, we can construct an
envelop shape tensor h = [SI , SI I , SI I I ] such that

SI 1 = max{|Si1|}
Nα

i=1, SI 2 = max{|Si2|}
Nα

i=1, and SI I I 3 = max{|Si3|}
Nα

i=1, (71)

with SI , SI I and SI I I not being coplanar. If h can be selected, we can renormalize Si , as graphically demonstrated
in Fig. 4. It should be noted that the selection or construction of h, i.e. Eq. (71), is not always possible for a given
molecular dynamics system. However, if JS

α(t) is a spherical tensor, the construction of h is not only possible, but
trivial in computation (see Fig. 5).

If this process is slow, we may assume that ḣ ≈ 0. Hence the kinematic energy of MMMD is invariant under the
renormalization, which is also called as the modular transformation if h = R ∈ SO(3) (see [49]). Based on the above
arguments, computationally, we can use the Lagrangian multiplier method to enforce the zero-mean condition, and
two statistical conditions. We first define the three constraint functions,

G1 :=


i

mi Si ; G2 := JS
α(t) − JS

α(0), and G3 := diag(JS
α(t)) − Tr(JS

α(0))diag(I(2)). (72)

These constraints can be enforced by the Lagrangian multiplier method,

L∗
α = Lα − λα1 · Gα1 − λα2 : Gα2 − λα3 · Gα3 and L∗

m =


α

L∗
α, (73)

where λα1 and λα3 are vector multipliers, and λα2 is a tensorial multiplier.
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Fig. 5. Illustration of renormalization of the statistical configuration.

Remark 4.1. 1. Eq. (69) provides 3 constraints, and Eq. (71) provides 9 constraints, while Eq. (73) also provides
3 + 6 + 3 = 12 constraints, because G2 is a symmetric tensor. Moreover, the above renormalization algorithm may
break down if there is long range atom diffusion, or a strong stochastic random motion, so that the local equilibrium
assumption is no longer valid. This may be the case for materials in fluid state, or liquid phase. Therefore, the proposed
multiscale molecular dynamics is only suitable for solid materials.

2. The original PR-MD is conceptually employed the following Lagrangian,

L∗

P R = L P R − λ


Trace(JS
α) − Wα


.

The augmented Lagrangian equations resulted from Eq. (73) can be solved by using the well-known SHAKE or
RATTLE algorithms e.g. [50–52]. In the following, we outline the basic steps for solving the fine scale equation of
motion due to the augmented Lagrangian (73). If we omit the constraint Gα3 and the body force at atomistic resolution,
we have

d

dt

∂L∗
m

∂Ṡi
−

∂L∗
m

∂Si
= 0 →

S̈i = −C−1
α · Ċα · Ṡ + φ−1

α


β


αi ≠β j

1
mi

f j i − C−1
α · λα1 − C−1

α · λα2 · Si (74)

where αi denote the i th atom in the αth cell, and β j denotes the j th atom in the βth cell; and free index β can run
through the fixed index α.

For simplicity, we let Fi := −mi C−1
α · Ċα · Ṡi + φ−1

α


β


αi ≠β j

f j i . Then we can use an original Verlet based
predictor–corrector algorithm [53] combining with operator splitting algorithm to integrate Eq. (74),

S(p1)
i (t + ∆t) = 2Si (t) − Si (t − ∆t) +

∆t2

mi
F(p)

i (75)

S(p2)
i (t + ∆t) = S(p1)

i (t + ∆t) − ∆t2C−1
α (t) · λ

(p)

α1 (∆t) (76)

S(p3)
i (t + ∆t) = S(p2)

i (t + ∆t) − ∆t2C−1
α (t) · λ

(p)

α2 (∆t) · S(p2)
i (t + ∆t). (77)

where the superscript “p” means predict phase, and the predicted velocity value is

Ṡ(p)
i =

Si (t) − Si (t − ∆t)

∆t
→ F(p)

i := −mi C−1
α · Ċα · Ṡ(p)

i + φ−1
α


β


αi ≠β j

f j i (Si ).

Imposing the first constraint condition, we obtain


i

mi S
(p2)
i = 0 → λ

(p)

α1 = Cα(t) ·



i

mi S
(p1)
i (t + ∆t)

(∆t)2


i
mi


 . (78)
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Imposing the second constraint condition


i mi S
(p3)
i ⊗ S(p3)

i = JS
α(0) and assuming λα2 is symmetric, we have

i

mi S
(p2)
i ⊗ S(p2)

i − 2(∆t)2C−1
α λ

(p)

α2


i

mi S
(p2)
i ⊗ S(p2)

i

+ (∆t)4


i

mi (C−1
α · λ2 · S(p2)

i ) ⊗ (C−1
α · λ

(p)

2 · S(p2)
i ) = JS

α(0). (79)

Neglecting the higher order terms, we finally obtain

λ
(p)

α2 =
1

2(∆t)2 Cα


i

mi S
(p2)
i ⊗ S(p2)

i − JS
α(0)


i

mi S
(p2)
i ⊗ S(p2)

i

−1

. (80)

Substituting (78) and (80) into (76) and (77), we finish the predictor phase. Repeating the same procedure in the
following corrector phase, we have

S(c1)
i (t + ∆t) = 2Si (t) − Si (t − ∆t) +

∆t2

2mi


F(c)

i + F(p)
i


(81)

S(c2)
i (t + ∆t) = S(c1)

i (t + ∆t) − ∆t2C−1
α (t) · λ

(c)
α1 (∆t) (82)

S(c3)
i (t + ∆t) = S(c2)

i (t + ∆t) − ∆t2C−1
α (t) · λ

(c)
α2 (∆t) · S(c2)

i (t + ∆t), (83)

where the superscript “c” means the corrector phase, and the predicted velocity value is

Ṡ(c)
i =

S(p3)
i (t + ∆t) − Si (t)

∆t
→ F(c)

i := −mi C−1
α · Ċα · Ṡ(c)

i + φ−1
α


β


αi ≠β j

f j i (S
(p3)
i ),

with the correction Lagrangian multipliers expressed as

λ
(c)
α1 = Cα(t) ·



i

mi S
(c1)
i

(∆t)2


i

mi


 , and (84)

λ
(c)
α2 =

1

2(∆t)2 Cα(t)


i

mi S
(c2)
i ⊗ S(c2)

i − JS
α(0)


i

mi S
(c2)
i ⊗ S(c2)

i

−1

. (85)

The above procedure constrains the inertia of statistical configuration, which may cause unintended rotational
momentum of Si in each supercell. According to Eq. (70), we can renormalize the atomistic position vector Si and cell
deformation tensor by any rotational shape tensor. We therefore apply the following constraint to eliminate rotational
momentum of atoms in the statistical configuration [54],

Lα =


i∈α

mi Si × Ṡi , (86)

ωα = (JS
α)−1Lα, (87)

˙̃Si = Ṡi − ωα × Si , (88)

where, L and ωα are the instantaneous angular momentum and the corresponding angular velocity, respectively.
To this end, we have provided a complete computational algorithm for the constrained multiscale molecular

dynamics.

5. Validation and numerical examples

To validate the proposed MMMD method, we use it to simulate the structure phase transition of single crystal
Nickel and Fe.
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Fig. 6. Uniaxial compression of a finite size (nanoscale) nickel particle: The external load is applied by using a macroscale boundary condition,
i.e. prescribing the displacement of the centers of mass of the boundary cells (yellow dots).

5.1. Structure phase transition of single crystal Ni

In the first example, we apply MMMD to simulate structure phase transition of Nickel, which was also used as
the validation example for PR-MD [28]. Different from the example in [28], the validation test is done in a finite size
specimen without imposing periodic boundary condition.

By imposing an uniaxial compression load, the original FCC lattice of single crystal Nickel will go through
structure change [55] as shown in Fig. 6. The compression load is applied to the centers of mass of the boundary
MD cells. The interaction between atoms is modeled by the Morse potential,

φ(r) = D(e−2α(r−r0) − 2e−α(r−r0)). (89)

The interaction force is given by

F(r) = −
∂φ(r)

∂r
= 2Dα(−e−2α(r−r0) + e−α(r−r0)), (90)

with the parameter constants chosen as D = 3.5059 × 10−20 J, α = 8.766/a0 and r0 = 0.71727 Å. a0 denotes the
constants of the FCC lattice of Nickel, i.e. a0 = 3.52 Å [28], with which the single crystal Nickel particle is in a global
elastic energy minimum state. Therefore the initial starting of the test is a stable equilibrium state, which is internal
stress free. The atomic weight of Nickel atom is 58.69 u.

All of simulations are carried out by using an in-house parallel computer code written in Fortran. For the
microscale calculation, the reversible NVT integrator [56] was implemented for time integration, and temperature
was controlled by using the Nosé-Hoover thermostat [57,58]. In the case of the mesoscale computation, the Gear
six-order predictor–corrector [59] was used. Contrarily, coarse-scale integration was accomplished by using velocity
Verlet algorithm with velocity scaling method as thermostat [59]. Time intervals for microscale, mesoscale and coarse-
scale are set to 0.1, 1.0 and 10.0 [fs], respectively. Note that for the mesoscale and coarse scale calculations, we need
additional integration procedures compared with the conventional MD simulation. However, the first Piola–Kirchhoff
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stress in Eq. (67) and interaction force between supercells in Eq. (66) can be evaluated by using interatomic forces
which have already been calculated in microscale time integration. Therefore, the computational efficiency of MMMD
is basically comparable with that of the conventional MD, or at least at the same order of magnitude.

In the simulation, we set the temperature higher than room temperature to create an environment favorable to
structure phase transition. The temperature is controlled by re-scaling the atom velocity in each MD cell at every
micro time step, so that the kinetic temperature is controlled at 350 K. Before the calculation, random perturbation
of positions and velocities were assigned to each atom to ensure an equilibrium state at the desired temperature. In
simulations, we have constructed three different cell partitions: (1) each micromorphic cell contains 3 × 3 × 3 = 27
unit cells; (2) each micromorphic cell contains 4 × 4 × 4 = 64 unit cells, and (3) each micromorphic cell contains
5 × 5 × 5 = 125 unit cells, and in each coordinate direction there are 3 or 5 micromorphic cell (supercell). We have
two types of simulation systems: 3 × 3 × 3 = 27 micromorphic cells and 5 × 5 × 5 = 125 micromorphic cells. For
both systems, there is one internal micromorphic cell at the center of the simulation system, with which we investigate
its phase transformation process. Since each micromorphic cell or supercell contains either 27, 64, or 125 FCC unit
cells, the simulation model may have different numbers of FCC unit cells ranging from 729 to 15 625 FCC unit cells.
We know that each unit cell of a FCC lattice has four atoms, hence the total number of atoms in the whole simulation
system ranges from 2916 atoms to 62 500 atoms.

In the simulation, we first prescribed displacement boundary condition on the centers of mass of the boundary cells
by compressing the molecular system on [100] direction. Note that we do not prescribe displacement for individual
atoms, but only prescribe the displacement of the centers of mass of the top and the bottom boundary MD cells. There
are either 2 × 9 = 18 of them or 2 × 25 = 50 of them. By doing so, it is equivalent to prescribe the coarse scale
deformation gradient Fα close to the two boundary surfaces. Subsequently, we can control the coarse scale stretch
λ1 at the loading boundary of the simulation system at the specified value. By doing so, we can gradually make the
stretch state, λ1, of all MD cells, at boundary as well as in the interior, to the value λ1 ≈ 0.7 by compressing the
displacements of the COMs of the boundary cells. During the load steps, the other components of Fα may change
according to complicated atomistic interaction, and as the prescribed boundary condition, we only control the principal
stretch in [100] direction as the load parameter. Fig. 7 displays the snapshots of deformation process of Nickel block,
and it also reveals the history of lattice structure change of the center MD cell. Note that the zoom-in picture is the
center MD cell.

When the stretch is relatively small, i.e. 0.93 < λ1 < 1, the Nickel block is going through some elastic
deformations. The particles deform uniformly. This is even true for much large stretch in infinite lattices. Since the
MD simulation domain has finite size, boundary effects will inevitably influence the overall pattern of deformation.
Therefore, when λ ≈ 0.925, there is lattice glide or slip initiating at the lateral boundary of the system. It may be
noted that PR-MD does not or cannot predict lattice slip when it simulates phase transform in an infinite lattice.

After slip or dislocation motion, the lattice structure start to change at boundary. As the principal stretch decreases
from λ ≈ 0.82 to λ ≈ 0.7, the structure will undergo dramatic structure change, and settles a new stable state other
than the initial configuration as shown in Figs. 7 and 8.

Since the major concern here is the structure phase transform of the center supercell, which is laterally confined
by boundary cells, we plot the deformation sequence of MMMD simulation system in Figs. 7 and 8 to show the non-
equilibrium transient process. The deformation and lattice structure change process in the center cell are shown in the
small zoom-in box in Figs. 7 and 8.

We have found that the center supercell is going through several stages of elastic deformation (λ[100] = 1–0.7),
and then some close packed planes of {010} are gradually formed. When λ[100] = 0.9–0.8, the relative positions of
atoms are hold between different planes. Finally, dislocations start to form between those close packed planes, and we
observed that some interplanar slips, in order to achieve a new stable position (λ[100] = 0.8–0.7), and the stable lattice
structure pattern is an HCP structure.

Zooming into the deformed lattice microstructure and comparing it with the initial lattice structure, we can see
clearly that the lattice structure changes from FCC to HCP. The phase transition occurs when principal stretch reaches
to the critical value: λ[100] ≈ 0.7, which is an optimal stretch to form a HCP lattice. Under the compression, the
bond angle between two Nickel atoms changes from 90◦ to 60◦ while the bond length hold fixed. The original
{010} plane of FCC lattice turned into the close packed plane {001} of HCP. Thus the stretch can be calculated
by λ[100] = a0/

√
2a0 ≈ 0.7, which is consistent with the result in our simulation.
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Fig. 7. Deformation and structure transition history: (a) (100) plane (top view), and (b) (010) plane (side view).

Fig. 8. Deformation and structure transition history at the corner of (010)-plane and (001)-plane (along [100]-axis).

Fig. 9 displays the supercell configurations and structures, which are represented by the total deformation gradient
φα and the positions of the center of mass of the supercell rα . It is possible to see visually that every cells change
their shape from cubic to distorted diamond shaped hexahedron with decreasing the stretch ratio λ. Our method



472 S. Li, S. Urata / Comput. Methods Appl. Mech. Engrg. 306 (2016) 452–478

Fig. 9. Visualization of cell structures during transition of Ni.

Fig. 10. Time series of cell lengths of the center cell in 3 × 3 × 3 system of Ni during the transition.

enables us to recognize local deformation by the individual deformation tensor, that distinguished MMMD from
conventional MD. We can also find that the unit cells are allowed to be overlapped each other as schematically shown
in Fig. 3. Fig. 10 displays a time series of edge lengths and angles of the center cell of the 3–3–3 system during this
phase transition. This result clearly demonstrates the validity of the proposed algorithm, which employs Lagrangian
multipliers to control cell shape i.e. Eqs. (75)–(85), can properly adjust the configurations of every supercells. As a
result, scaled atom position vectors of every Si atoms are well confined within −0.5 to 0.5 (Fig. 11). We therefore
conclude that the algorithm, which adopts Lagrangian multipliers to prescribe additional constraints to the total
degrees of freedom, is appropriate.

Different from the APR-MD simulation, which is an equilibrium ensemble MD simulation with the prescribed
constant stress, MMMD is a type of non-equilibrium molecular dynamics that can be used to calculate the non-
uniform stress distribution at different locations.

By using MMMD, we are able to find the stress variation among the cells, which indicates the non-equilibrium
stress state evolution inside the crystal specimen. To illustrate the MMMD’s capacity to capture non-equilibrium state
of the MD system, we investigated the inhomogeneous stress distribution inside the simulation system. Fig. 12(a)
shows the axial stress σ11 distribution in re-normalized unit for each local cell, where the stress distribution is in
(010)-plane.

One can see that the compressive stress is high in the middle of the specimen, and it gradually decreases towards
outside. Fig. 12(b) is a smoothed distribution of stress field by numerical interpolation. However, this graph only
provides a general trend of stress distribution. To obtain continuum stress distribution, a large system with more cells
is needed. To quantitatively assess the accuracy of MMMD simulation, we have studied the stress–strain relation
of the center supercell cell, and compared it with both Refs. [55] and [28]. The quantitative comparisons with [55]
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Fig. 11. Trajectories of statistical configurations of atoms in the center cell of 3 × 3 × 3 system of Ni during the transition.

Fig. 12. Non-uniform stress distribution (σ11): (a) σ11 in each supercell at horizontal surface, and (b) The smoothed global stress field.

and [28] are displayed in Fig. 13. Our simulation results show that the calculated critical stress value of the phase
transition is almost the same as that of the infinite lattice, and it seems that MMMD provides more accurate prediction
on the bifurcation of the primary and secondary load–deflection paths than that of PR-MD.

Fig. 13 also demonstrates size effects of the total system and supercell. Since all models show almost the same
stress in the range from 0.9 to 1.1 of λ, we may conclude that the smallest supercell composed of 3 × 3 × 3 unit
cells is large enough to capture the phase transition. Supercell size of MMMD might be insensitive if the cell contain
sufficient number of atoms to represent the crystal structure and first Piola–Kirchhoff stress in Eq. (57).

5.2. Structure phase transition of single crystal Fe

In the second example, we apply MMMD to simulate structure phase transition of a single crystal BCC Fe to
FCC structure under uniaxial loading. The structure phase transition of single crystal iron from BCC structure to
FCC structure under the uniaxial tension in [0 0 1] direction is first reported by Clatterbuck et al. [60] based on an
observation from ab initio calculations. This was lately confirmed by Zeng [61] who conducted a coarse grained MD
field theory simulation.

In the MMMD simulation, we used the same geometry and the size that are reported in [61]. The test specimen is
a single crystal iron nanorod, with two different sizes: (1) 3 × 3 × 11 supercells, and (2) 5 × 5 × 21 supercells. Each
supercell contains 3 × 3 × 3 BCC unit cells with two atoms per unit cell, so that total number of atoms are 5346 and
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Fig. 13. Load–deflection path: σ11 vs. the principal stretch λ1 for a nanoscale Nickel block under structure phase transition during the
compression–tension test.

28 350, respectively. The both macroscale traction as well as macroscale displacement boundary conditions are used
in the simulation, i.e we prescribe either traction or displacement at the centers of mass of 2×9 = 18 and 2×25 = 50
supercells at the two ends of the Fe nanorod for 3 × 3 × 11 supercells, and (2) 5 × 5 × 21 supercells, respectively.

In this simulation, we adopt the Finnis–Sinclair Model [62] for material BCC iron. The potential energy of the
Finnis–Sinclair Model (FSM) and the Embedded Atom Model (EAM) has the following general form:

U =
1
2

N
i=1


j=1

V (ri j ) +

N
i=1

F(ρi ) (91)

where F(ρi ) is a functional describing the energy of embedding an atom into the background electron cloud, and it is
defined as

ρi =

N
j≠i

ρ(ri j ), ri j = ri − r j , ri j = |ri j |. (92)

The Finnis–Sinclair potential is defined as

V (ri j ) = (ri j − c)2(c0 + c1ri j + c2r2
i j ), ρ(ri j ) = (ri j − d)2

+ β
(ri j − d)3

d
, F(ρi ) = −A

√
ρi , (93)

with parameters c0, c1, c2, c, A, d, and β taken from [63]. Note that both c and d are cutoff distances.

The results of MMMD simulation confirmed the previously reported results as shown in Fig. 14. In the case
of traction force boundary condition, it can be observed that before the necking of the nanorod both twinning and
dislocation occurred as the tensile strain increasing, and then FCC structure domain occurs at the necking region
before the specimen breaks into two parts. On the other hand, clear phase transition was not observed in the simulation
by using prescribed displacement boundary condition. To confirm size dependency, we also computed a larger system
using 5 × 5 × 21 supercells with traction force boundary condition. Fig. 15 clearly shows the phase transition from
BCC structure to FCC structure around the neck, just before the Fe crystal is breaking off. According to these results,
we find that an appropriate boundary condition is necessary to reproduce desired phase transition phenomena reported
in the literature. It is relatively easy for MMMD to apply both displacement and traction force boundary conditions
on the cell center position, and it is one of the advantages of this method.
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Fig. 14. Snapshots of single crystal nanorod undergoes structure phase transition from BCC to FCC during uniaxial tension. 3 × 3 × 11 supercells.
(Left) Traction force boundary condition, (right) displacement boundary condition.

Fig. 15. Snapshots of single crystal nanorod undergoes structure phase transition from BCC to FCC during uniaxial tension. 5 × 5 × 21 supercells.
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6. Discussions

The main objectives of this work are: (I) Understand the inherent multiscale structure and statistical representation
in conventional molecular dynamics, which can help us (A) Extrapolate statistical information from microscale
molecular dynamics simulations; (B) Device better and more accurate multiscale method. It is true that the three-
scale multiscale molecular dynamics does not save computer resource comparing with the conventional molecular
dynamics, because it is exactly the same as the conventional molecular dynamics except that we choose a set of
particular partition or sampling decomposition form to look at it. However, the outcome of this research will lay a
solid theoretical foundation for developing other computer resource-saving multiscale method. For instance, we can
develop a multiscale method based on presented MMMD method, in which we may use all three scales (the full
version of MMMD) at the place where the defect is initiated, while using the coarse simulation only at the place
that we deem less interesting. Because all three scale dynamics are intrinsically coupled, the multiscale coupling can
be potentially better than some of present multiscale methods; and (II) The most significant aspect of this work, we
believe, is that this work can serve as the theoretical formulation for the molecular dynamics that allows macroscale
boundary condition is being applied. In near future, one may be able to apply this type of molecular dynamics solving
macroscale engineering problems, or use it in engineering design of macroscale devices and machines.

The conventional wisdom assumes that if we can increase the size of molecular dynamics system we can always
simulate the motion of a macroscale object by directly using first principle based molecular dynamics. This is simply
not true, because when we are solving a macroscale engineering problem, we never specify the boundary conditions
for each atom. In order to capture thermodynamics responses of a finite size molecular system at continuum scale, we
must apply macroscale boundary conditions and initial conditions of continuum mechanics to the molecular system.
If we hope that in one day we can replace some macroscale phenomenological models with the molecular dynamics
model in engineering design, we must first be able to apply macroscale boundary conditions to molecular systems,
and solve the problem accordingly. This requires introducing domain decomposition or domain partition that can
represent non-uniform thermodynamics field variable distributions in a non-equilibrium state setting which is the
statistical manifestation of microscale motions of atoms. In other words, the molecular system’s thermodynamics
characters must be carefully taken into account so that the microscale quantities can be correctly related to mesoscale
and macroscale quantities based on first principle.

For example, in continuum mechanics, when we solve macroscale mechanics boundary value problems, we need
to impose boundary conditions that are either related to traction (stress) or displacements (strain) or some other
macroscale thermodynamics variables such as temperature or electrical voltage, etc. If we wish to use molecular
dynamics to simulate the same macroscale problem based on first principle, we must be able to apply the same type
of boundary conditions, which have to be consistent with macroscale engineering measurements, to first principle
based molecular dynamics. As computer and computing technology progress, the need for direct first principle
molecular dynamics solution of macroscale problems will become more and more relevant, important, and urgent.
Thus, we should develop a rigorous multiscale molecular dynamics that can take this task, i.e. a molecular dynamics
that can couple macroscale thermodynamic variables with microscale atomic variables from first principle rather
than directly couple molecular dynamics with the existing phenomenological continuum mechanics by superficial
boundary matching or blending.

In this work by utilizing the local equilibrium assumption, we have extended the equilibrium (Andersen)-Parrinello-
Rahman molecular dynamics to a non-equilibrium atomistic-to-continuum dynamics, which can compute the motions
of a finite size molecular system subjected arbitrary macroscale boundary conditions instead of periodic boundary
condition or the boundary condition on specific atoms. The application of macroscale boundary condition to a
molecular system is not a trivial task, both theoretically as well as computationally. The so-called macroscale
boundary condition may alternatively be called as the thermodynamics flux boundary condition, such as heat flux
(temperature), linear momentum flux (force), mass flux (diffusion), energy flux (material force) boundary conditions,
etc. Therefore, when prescribing the flux boundary condition to a molecular system, small or large, we are simulating
a non-equilibrium problem. In fact, this has been one of the crucial parts in non-equilibrium molecular dynamics
simulation. For example when using non-equilibrium MD to simulate fluids, a common flux boundary condition used
is called the Lees–Edwards Boundary condition (see [64]), which is a macroscale displacement boundary condition
for fluid boundary, but it is limited in periodic setting, whereas the macroscale boundary condition discussed in this
paper is much more general and systematical. Moreover, the common belief on the difference between microscale
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molecular systems and macroscale continuum systems is that microscale system has a small size (small length scale),
and macroscale system has a large size (large length scale). However, a profound difference between the two is that
the microscale system is usually (not always) in an equilibrium state whereas the macroscale system is most likely
(not always) in a non-equilibrium state, which is the essence of multiscale simulation, and the macroscale boundary
condition plays a key role in this matter.

Finally, in this work, we proposed in the first time a novel computational algorithm for multiscale micromorphic
molecular dynamics that is based on the novel concept of the multiplicative multiscale decomposition. The proposed
MMMD computational algorithm not only separates but also couples macroscale continuum deformation with discrete
atomistic motions, so that we can apply MMMD to solve engineering problems with general thermodynamics
boundary conditions in finite size region under non-equilibrium condition. The essence of multiscale molecular
dynamics computation is not just saving computational resource, but rather conducting simulation of non-equilibrium
systems, because most systems in macroscale are non-equilibrium thermodynamics systems. The approach adopted
in this work is to utilizing the so-called local equilibrium assumption (LEA), so that we may assume that each cell in
a short period is in an equilibrium state, so that we can conduct an incremental and local PR-MD simulation. In the
next time cycle, the cell may change to a new equilibrium state, and by integrating all three scales together, we piece
together a complete picture of a non-equilibrium thermodynamic process.

The MMMD formulation is basically a global partition of first principle molecular dynamics Lagrangian into a
set of local Lagrangian of NσH equilibrium ensembles for solids. A future study is to extend the present MMMD
formulation to other local equilibrium ensembles of molecular dynamics such as local NσT ensemble.
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