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SUMMARY

This work is concerned with developing the hierarchical basis for meshless methods. A reproducing kernel
hierarchical partition of unity is proposed in the framework of continuous representation as well as its
discretized counterpart. To form such hierarchical partition, a class of basic wavelet functions are introduced.
Based upon the built-in consistency conditions, the di�erential consistency conditions for the hierarchical
kernel functions are derived. It serves as an indispensable instrument in establishing the interpolation error
estimate, which is theoretically proven and numerically validated. For a special interpolant with di�erent
combinations of the hierarchical kernels, a synchronized convergence e�ect may be observed. Being di�erent
from the conventional Legendre function based p-type hierarchical basis, the new hierarchical basis is an
intrinsic pseudo-spectral basis, which can remain as a partition of unity in a local region, because the discrete
wavelet kernels form a ‘partition of nullity’. These newly developed kernels can be used as the multi-
scale basis to solve partial di�erential equations in numerical computation as a p-type re�nement. Copyright
? 1999 John Wiley & Sons, Ltd.

KEY WORDS: meshless hierarchical partition of unity; wavelet methods; moving least-squares interpolant; reproducing
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1. INTRODUCTION

In the recent development of meshless methods (see: [1; 2] for survey), several authors have
proposed various meshless hierarchical interpolants aiming at e�cient and large-scale computations,
see e.g. [3–6]. Among them, most notably, are the h–p clouds method by Duarte and Oden [4]
and the partition of unity method by Melenk and Babu �ska [3]. This class of meshless hierarchical
shape functions possess some special technical merits:
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(i) As the name suggested, they are meshless interpolants, and subsequently the formidable task
of mesh generation is relieved.

(ii) They can be conveniently employed in p or h–p adaptive re�nement process to obtain highly
accurate numerical solutions.

(iii) They provide a suitable basis to support multi-level iterative solvers, which can speed large
scale numerical simulations in many computational environment, such as parallel computing.

Note that the term ‘hierarchical’ used in this paper is strictly in the sense of Zienkiewicz [7], that
is: if u is an unknown function and its approximation is

u ≈ ũ=
n∑

i=1
Niai

then the approximation is hierarchical if an increase of n to n+1 does not alter the shape function
Ni, i = 1; : : : ; n.†

In this paper, a new meshless hierarchical partition of unity is constructed, which is a natural
extension of the former moving least-squares (MLS) interpolant by Lancaster and Salkauskas [9],
and the recent reproducing kernel interpolant by Liu et al. [10]. By taking the original MLS
interpolant as the fundamental basis, the hierarchical partition of unity is constructed by adding
a sequence of wavelet-like frames, which are the discretization of basic wavelet functions (or
mother wavelets) over a random particle distribution. By viewing the interpolation as a sampling,
or �ltering process, the resulting higher order pseudo-spectral (PS) basis is literally a wavelet
function packet, meaning that they are are a group of kernel functions with di�erent bandwidth
(or support size) in frequency domain, or with di�erent wave number in physical space. That is
the root of the term ‘wave packet’ in physics (e.g. [11]). It also shares the similarity with the
speci�c ‘wavelet packets’ in harmonic, and wavelet analysis, such as those proposed by Coifman
and Meyer [12], and Chui and Li [13] via multiresolution analysis (MRA) in physical space, or
those proposed by Duval-Destin et al. [14] in frequency domain.
The authors would like to caution readers that there are subtle di�erences in the meanings of

some technical terms used here. For instance, a hierarchical partition of unity is not equivalent to
a hierarchical basis. In this particular context, the hierarchical partition of unity is only a frame in
a global sense. There is a di�erence between wavelet frame and wavelet basis. The former is an
‘overcomplete’ basis with redundancy, in our case it comes from the discretization of a continuous
wavelet transformation; and the latter is usually referred to as a dilation=translation sequence of
an R-wavelet. Moreover, the focus of this paper is on the �nite-dimensional function space in a
bounded region, and usually a wavelet basis in a �nite-dimensional space is not a basis in L2(
).
Of course, in good faith, we believe that as the dilation parameter �→ 0, it will provide a wavelet
basis for L2(
). It may be noted that the wavelet functions employed in the construction of the
hierarchical basis are actually the basic, or mother wavelet function by the de�nition of continuous
wavelet transformation, which may or may not form a dyadic wavelet basis, or in general, a
R-wavelet basis in L2(
) (see [15]), though in most cases they may form a non-orthogonal
wavelet (pre-wavelet) basis if proper provisions are mandated. Since the main objective of this
paper is to construct a meshless hierarchical partition of unity over scattered data, no attempt has
been made to construct a new type of dyadic wavelet basis.

† There are other usages of the term ‘hierarchical’, such as the hierarchical bases in a sense of direct sum of orthogonal
subspaces, see e.g. [8]
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A complete construction procedure is presented in Section 2 with both continuous and dis-
crete formulations. The built-in global consistency conditions for interpolant kernel are discussed
in detail, from which a set of global di�erential consistency conditions are derived. Aided by
these di�erential consistency conditions, a global interpolation estimate is given. In addition, an
interesting synchronized convergence phenomenon is observed, if certain interpolation schemes are
adopted. In Section 3, several examples are given to illustrate the construction procedure and their
intrinsic properties. Here, the emphasis is placed on how to generate the wavelet-like frame, a par-
tition of nullity, so to speak. It is worthwhile noting that adding a partition of nullity to a partition
of unity will result a hierarchical partition of unity; this is in contrast with the Legendre function
based p-type hierarchical �nite element interpolation scheme [17], which does not form a partition
of unity in general. A systematic approximation theory of the proposed hierarchical partition of
unity is presented in Section 4. The structures of the basic wavelet functions are further analysed
in details in Section 5.

2. FORMULATIONS

To begin with, we formulate a generalized moving least-squares reproducing kernel interpolant
via continuous representation. By doing so, a class of hierarchical kernel functions are derived
explicitly. Then, its discrete counterpart is formulated by direct discretization of the continuous
formulation.

2.1. Generalized moving least-squares reproducing kernel

As shown in [10], a local least-squares approximation of a continuous function, u(x)∈C0(
),
may be expressed as

L �xu(x) :=P
(
x − �x
%

)
d( �x); ∀ �x∈
 (1)

where P is a polynomial basis with order m, and d is an unknown vector. Without loss of
generality, the polynomial basis is assumed to have ‘ terms, namely,

P(x) := (P1; : : : ; Pi; : : : ; P‘); Pi(x)∈ �m(
) (2)

with P1 = 1; Pi(0)= 0; i 6=1, where �m(
) denotes the collection of polynomials in 
⊂Rn of
total degree 6m. The unknown vector d( �x) can be solved in the moving least-squares procedure,
and subsequently equation (1) can be rewritten as [10]

L �xu(x)=P
(
x − �x
%

)
M−1( �x)

∫

y

Pt
(
y − �x

%

)
u(y)�%(y − �x) d
y (3)

where �%(x)= (1=%n)�(x=%) is the weighting function in the least-squares procedure, which we
refer to as the window function; M is the moment matrix,

M(x) :=
∫

y

Pt
(
y − x

%

)
P
(
y − x

%

)
�%(y − x) d
y (4)

Remark 2.1. In formula (3), the components of the polynomial vector P(x) can be any inde-
pendent polynomial functions. In fact, the requirement of the polynomials is also not essential.
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The construction can be further generalized to include general linearly independent functions as
basis, such as trigonometric functions, hyperbolic functions, and any other orthogonal or non-
orthogonal basis functions.

So far, all steps followed the moving least-squares reproducing procedure. To construct the new
interpolant, instead of assigning the local approximation as what MLS does [9], i.e.

u‘(x; �x) :=L �xu(x) (5)

we propose a di�erent local approximation. Let

Pi(x)=
(
x − �x
%

)�

; 06|�|6m; 16i6‘ (6)

with P1 = 1 and P‘(x)= ((x − �x)=�)�; |�|=m.
Note that there is a relationship between the polynomial order m and the rank of the polynomial

vector P, ‘. Let n denote the dimension of space. n=1: ‘=m+ 1; n=2: ‘=(m+ 1)(m+ 2)=2,
and n=3: ‘=(m+ 1)(m+ 2)(m+ 3)=6. De�ne

u‘(x; �x) :=
∑

|�|6m

C�( �x)
�!

D�
x (L �xu(x)) %

�

= L �xu(x) +
∑

16|�|6m

C�( �x)
�!

D�
x (L �xu(x)) %

� (7)

where C0 = 1, and C�( �x); |�|6m, are given functions.
Intuitively, the new local approximation (7) can be viewed as a truncated Taylor series by taking

C�(x)= 1; ∀�. By substituting (3) into (7), the local approximation can explicitly be expressed as

u‘(x; �x) =P
(
x − �x
%

)
M−1( �x)

∫

y

Pt
(
y − �x

%

)
u(y)�%(y − �x) d
y

+
∑

16|�|6m

C�( �x)%�

�!
D�

x

(
P
(
x − �x
%

))
M−1( �x)

∫

y

Pt
(
y − �x

%

)
u(y)�%(y − �x) d
y

(8)

To globalize the approximation, we apply the moving procedure to (8),

Gu(x) := lim
�x→x

u‘(x; �x) (9)

which yields the following global approximation:

u(x)≈Gu(x) =P(0)(0)M−1(x)
∫

y

Pt
(
y − x

%

)
u(y)�%(y − x) d
y

+C1(x)P(1)(0)M−1(x)
∫

y

Pt
(
y − x

%

)
u(y)�%(y − x) d
y

+ · · ·
+C�(x)P(�)(0)M−1(x)

∫

y

Pt
(
y − x

%

)
u(y)�%(y − x) d
y (10)
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where P(�)(0) := (1=�!)D�
xP(x=%)%

� |x=0 ; 06|�|6m. P(�)(0) possesses particular simple structure,

P(0)(0) = (1; 0; : : : ; 0; : : : ; 0︸ ︷︷ ︸
‘

)

P(1)(0) = (0; 1; 0; : : : : : : ; 0︸ ︷︷ ︸
‘−1

)

· · ·
P(�)(0) = (0; : : : ; 0; 1; 0; : : : ; 0︸ ︷︷ ︸

‘−i

)

· · ·
P(�)(0) = (0; 0; : : : : : : ; 0; 1︸ ︷︷ ︸

‘

) (11)

The generalized reproducing kernel representation is then expressed as

�R
m
% u(x) =Gu(x)=

∑
|�|6m

C�(x)
{∫



P
(
y − x

%

)
u(y)�%(y − x)d
y

}
b(�)(x)

=
∑

|�|6m
C�(x)

∫


K[�]

% (y − x; x)u(y) d
y (12)

where K[�]
% is the �th kernel,

K[�]
% (y − x; x) :=P

(
y − x

%

)
b(�)(x)�%(y − x) ∀06|�|6m (13)

and b(�)(x) is determined by algebraic equations

M(x)b(�)(x)= {P(�)(0)}t (14)

namely,

b(�)(x)=
1
�

{
(−1)1+iA1i(x); (−1)2+iA2i(x); : : : ; (−1)‘+iA‘i(x)

}t
(15)

where �=detM and Aij are the minors of the global moment matrix M(x). Note that since the
moment matrix M(x) is symmetric

P(�)(0)M−1(x)Pt
(
y − x

%

)
=P

(
y − x

%

)
M−1(x){P(�)(0)}t

If C�=0; ∀|�| 6=0, (12) recovers the regular RKPM representation [10],

Rm
% u(x)=

∫

y

K[0]
% (y − x; x)u(y) d
y (16)

Equivalently, equation (14) can be interpreted as the following �-scale consistency conditions (see
[10]): ∫




(
y − x

%

)�
K[�]

% (y − x; x) d
y = ���; 16|�|6m (17)
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When 
=Rn and %=1; b(�)(x)= const: and K[�]
% (· ; ·)≡K[�](·):‡ Closely examining (17), one

may �nd that ∫
Rn

K[0](z) d
z =1 and
∫
Rn

z�K[0](z) d
z =0; 16|�|6m (18)

Consequently, kernel K[�]
% (x); |�| 6=0, satisfy |�| − 1 order vanishing moment condition:∫

Rn
z�K[�](z) d
z =0; 06|�|6|�| − 1 (19)

and some other vanishing moment conditions as well,∫
Rn

z�K[�](z) d
z =0; |� + 1|6|�|6m (20)

If we restrict the window function �∈Hm+1(R)∩Cm
0 (R), the de�nition (13) will guarantee that

at least§K[�](x)∈L2(R)∩L1(R); and∫
R
|x|�|K[�](x)| dx¡+∞; �¿0 (21)

which in turn, combining with (19), guarantees

CK[�] = (2�)
∫
R+

|K̂[�](�)|2 d�
�
=(2�)

∫
R−

|K̂[�]
(�)|2 d�|�|¡+∞ (22)

where K̂[�](�) is the Fourier transform of K[�](x),

K̂[�](�) :=
1√
2�

∫ ∞

−∞
exp(−i�z)K[�](z) dz (23)

Equation (22) is the admissible condition for the basis wavelet, or the mother wavelet (see
[15] pp: 61–62; [16] pp: 7; 24–27; [19] p: 16; [20] pp: 5; 27; [21] pp: 61–72).‖ The higher-dimensional
extension of the admissible condition (22) is discussed in [16] pp: 33; 34:
In the following, we show that this is true in one-dimensional case (the extension to higher-

dimensional cases can be readily followed). Since K[�](x)∈Cm
0 (R) for m¿1, it follows imme-

diately that K[�](x)∈L1(R)∩L2(R), and consequently, K̂[�]
is continuous, and K̂

[�] ∈L2(R).
Furthermore, since K[�](x)∈Cm

0 (R), it is obvious that∫ ∞

−∞
|x||K[�](x)| dx¡+∞ (24)

‡ This is also true when x is in the interior domain of a �nite domain 

§ The only exception in our numerical experiments is the Gaussian function; the associated kernel function, however, still
satis�es this condition and (21)
‖The de�nition was �rst introduced by Grossmann and Morlet [18] in 1984
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which implies that K̂[�]′(�) := dK̂[�]=d� is also bounded. On the other hand, K[�](x) is real,

K̂[�](−�)= K̂[�](�) ⇒ |K̂[�](−�)|2≡ |K̂[�](�)|2 (25)

Thus, ∫ ∞

−∞

|K̂[�](�)|2
|�| d�=2

{∫ a

0

|K̂[�](�)|2
�

d�+
∫ +∞

a

|K̂[�](�)|2
�

d�

}
(26)

where a¡1. Since K̂[�](�)∈L2(R) as shown early, ∃C1¿0 such that∫ +∞

a

|K̂[�](�)|2
�

d�¡C1¡+∞ (27)

The remaining concern is the term,
∫ a
0 |K̂[�](�)|2=� d�. By the Cauchy inequality,

∫ a

0

|K̂[�](�)|2
�

d�6

√√√√∫ a

0

∣∣∣∣∣K̂
[�](�)
�

∣∣∣∣∣
2

d�

√∫ a

0
|K̂[�](�)|2 d� (28)

From the vanishing moment conditions (19), one has∫ ∞

−∞
K[�](x) dx=0 ⇒ K̂[�](0)= 0 (29)

By considering the facts that K̂[�](�), and K̂[�]′(�) are continuous and bounded, there exists a
constant, C2¿0; such that∣∣∣∣∣K̂

[�](�)
�

∣∣∣∣∣6
∣∣∣∣1� (K̂[�]

(0) + K̂[�]′(�∗)�)
∣∣∣∣6|K̂[�]′(�∗)|6C2; 0¡�∗¡a (30)

Inequality (28) is then under control, which leads to the desired result¶∫ 0

−∞

|K̂[�](�)|2
|�| d�=

∫ ∞

0

|K̂[�](�)|2
�

d�¡+∞ (31)

Thereby, coincidentally and legitimately, the higher scale kernels,K[�](x); � 6=0, are indeed a cluster
of basic wavelet functions. It may be worthwhile noting that there is a strong resemblance in the
construction procedure between this class of wavelets and ‘the coiets’, a particular wavelet,
constructed by Daubechies [16; 22] and Beylkin et al. [23].

2.2. Interpolation formulas

To formulate a discrete interpolation scheme, a few de�nitions are in order. Let � be an index
set of all particles. For a given bounded, simply connected region 
⊂Rn, a particle distribution

¶ As shown in [16], condition ∫ dx  (x)= 0 and ∫ dx(1+ |x|)�| (x)|¡∞ for some �¿0 which guarantee | ̂ (�)|6C|�|�,
with �= min(�; 1) and then the admissible condition (22)
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D within 
 is de�ned as

D := {xI | xI ∈
; I ∈�} (32)

For each xI ∈D, there is an associated ball !I ,

!I := {x∈Rn | |x − xI |6aI�} (33)

where aI ∼ O(1) and � is de�ned as the dilation parameter. As de�ned in [10], for the admissible
particle distribution, the dilation parameter is so chosen that it grants the following conditions:

1. For given constants Nmin ; Nmax

Nmin6card{�I}6Nmax (34)

where �I is a subset of �, i.e.

�I := {J | J ∈�; !J ∩!I 6= ∅} (35)

2. The collection of all the balls,

Fd := {!I | I ∈�; xI ∈D; and diam(!I )6aI�} (36)

is a �nite covering of domain 
, i.e. �
⊂⋃I∈� !I we assume that there exists a constant Cd such
that maxI∈�{aI}6Cd.

In what follows, we form the discrete interpolation formula by brutal discretization of the
continuous integral representation, namely, equations (12), (13) and the moment equation (4), by
Nystr�om quadrature method [24].
For given window function, �¿0, around particle xI , the polynomial basis takes the value

PI(x)= {P1I ; : : : ; PiI ; : : : ; PjI ; : : : ; P‘I} with PiI =((xI − x)=�)� and PjI =((xI − x)=�)�, the discrete
moment matrix (4) has the expression

Mh(x) :=
{
Mh

ij(x)
}‘×‘

=

{∑
I∈�

(
xI − x

�

)�+�

��(xI − x)�VI

}‘×‘

(37)

Then, the �th-order discrete correction function is de�ned as

C[�]� (xI − x; x) :=P(�)(0){Mh(x)}−1Pt
(
xI − x

�

)
=P

(
xI − x

�

)
b(�)(x) (38)

Accordingly, the discrete �th scale kernel function is constructed as the modi�ed window functions,

K[�]
% (xI − x; x) :=C[�]� (xI − x; x)��(xI − x) (39)

Each kernel function generates a shape function sequence, i.e.

{	[�]I (x)}I∈� :=
{
�!K[�]

% (xI − x; x)�VI
}
I∈� (40)

The associated hierarchical interpolation is then set forth as

Rm[�]
�; h u(x) :=

∑
I=�

	[�]I (x)u(xI )= �!
∑
I=�

K[�]
% (xI − x; x)u(xI )�VI (41)
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where {�VI}I∈� are the quadrature weights; they are so chosen such that
�VI6an

I �
n and

∑
I∈�
�VI =meas(
) (42)

Equation (42) is often referred to as the stability condition [25; 10]: Note that in equation (38),
the vector b(�) is determined by the discrete moment equations

Mh(x)b(�)(x)= {P(�)(0)}t (43)

One can readily verify that equation (43) is equivalent to the following discrete consistency con-
dition:

∑
I∈�

(
xI − x

�

)�

K[�]
% (xI − x; x)�VI = ��� (44)

2.3. Hierarchical partition of unity and hierarchical basis

From equation (44), one may �nd that the fundamental basis {	(0)I (x)} is a signed partition of
unity, i.e. ∑

I∈�
K[0]

% (xI − x; x)�VI =
∑
I∈�
	[0]I (x)= 1 (45)

which is the original moving least-squares reproducing kernel basis; whereas the higher order
bases, {	[�]I (x)}; � 6=0, are the partition of nullity, so to speak, because by construction,∑

I∈�
	[�]I (x)=

∑
I∈�

�!K[�]
% (xI − x; x)�VI =0; 16|�|6m (46)

This is a very desirable property, because by inserting the higher-order basis into the fundamental
basis, one will still have a partition of unity, i.e.∑

I∈�
(K[0]

% (xI − x; x) + 1!K[1]
% (xI − x; x) + · · ·+ �!K[�]

% (xI − x; x))�VI

=
∑
I∈�

∑
06|�|6|�|

	[�]I (x)= 1; |�|6m (47)

In the rest of the paper, we denote the mth-order hierarchical partition of unity on the particle
distribution D as Hm := {{	[�]I (x)}I∈�: 06|�|6m}: An example of such hierarchical partition of
unity is displayed in Figure 1.
Since discrete wavelet functions form a partition of nullity, they are not linearly independent

because in a partition of nullity there are extra, or redundant shape functions. Thus, the hierarchical
partition of unity is at most a frame in global sense. Nevertheless, by careful selection, one can
still form a hierarchical basis.

De�nition 1 (Hierarchical basis). Choose ��[�]⊂⊂�; ∀16|�|6m and denote n[�] := card{ ��[�]}
such that ∀f∈ span {	[�]I }I∈ ��[�] ; ∃cI and cI 6≡ 0,

f(x)=
∑

I∈ ��[�]
cI	[�](x)

Copyright ? 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 45, 251–288 (1999)



260 S. LI AND W. K. LIU

Figure 1. An example of hierarchical partition of unity: (a) {K[0]
% (xI − x; x)}I∈�; (b) {K[1]

% (xI − x; x)}I∈�;
(c) {K[2]

% (xI − x; x)}I∈�; (d) {K[3]
% (xI − x; x)}I∈�

De�ne the global hierarchical basis

{�j}�H :=
{
{	[0]J }J∈�; {	[1]J }J∈ ��[1] ; : : : ; {	

[�]
J }J∈ ��[�]

}
(48)

where �H := {j | j=1; : : : ; np; np+ 1; : : : ; nH}; nH := (np+ n[1] + · · ·+ n[�]) and

AH := {�ij}nH×nH; �ij =
∫


�i�j d


If det {AH}¿0, we say {�i}i∈�H is a hierarchical basis for the �nite-dimensional space, SH :=

span
{
{	[0]I (x)}I∈�; {	[1]I (x)}I∈ ��[1] ; : : : ; {	

[�]
I (x)}I∈ ��[�]

}
:

Remark 2.2. (1) By properly choosing the size of the compact support of the window function,
one can form a wavelet-like basis by taking some shape functions out of the partition of nullity,
usually the ones that are on the boundary. In this way, in the interior region, the hierarchical basis
remains as a partition of unity. (2) In practice, by underintegration, it is possible that the sti�ness
matrix formed by hierarchical partition of unity is still invertible; in that case, however, spurious
modes may occur. (3) By taking out certain number of extra shape functions from a partition of
nullity, one may form an independent Group of basis functions from the partition of nullity, but it
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does not automatically guarantee that (48) is an independent basis. In practice, exactly how many
extra shape functions should be taken out is determined so far on a basis of trial and error.

Let A−1
H := {�ij}nH×nH and

∑
l
�il�lj =

{
1; i = j
0; i 6= j

One can then de�ne the dual basis

{�̃i(x)}i∈�H ; �̃i(x) :=
∑

i∈�H

�ij�j(x) (49)

and subsequently the reproducing kernel of the hierarchical basis is

KH (y; x) :=
∑

i; j∈�H

�ij�i(x)�j(y) (50)

Thus, the generalized reproducing kernel formula becomes

Rm[H ]
�; h f(x) := 〈f(y); KH (y; x)〉y =

∑
i; j∈�H

�ij

(∫


f(y)�j(y) d
y

)
�i(x) (51)

When f∈ span{�i(x)}�H , one can readily verify that R
m[H ]
�; h f(x)=f(x):

3. EXAMPLES OF HIERARCHICAL PARTITION OF UNITY

In this section, several examples are given to illustrate how to construct a hierarchical partition of
unity.

Example 3.1. In a 1-D segment [−0·5; 0·5], let m=3, ‘=3 + 1=4. The hierarchical kernel
functions are constructed in a pointwise fashion,

K[�]
% (xI − x; x) :=P

(
xI − x

%

)
b(�)(x)�%(xI − x); 06�63 (52)

The consistency conditions that the wavelet kernel packet satis�es are the following algebraic
equation imposed on the vector b(�)(x):

Mh(x)b(�)(x)= {P(�)(0)}t ; �=0; 1; 2; 3 (53)

Or more explicitly, 


mh
0 mh

1 mh
2 mh

3

mh
1 mh

2 mh
3 mh

4

mh
2 mh

3 mh
4 mh

5

mh
3 mh

4 mh
5 mh

6







b(�)1
b(�)2
b(�)3
b(�)4


=




��0

��1

��2

��3


 (54)
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Figure 2. The hierarchical kernels at point xI =0 for P= (1; x; x2; x3): (a) fundamental kernel; (b) The �rst-order
wavelet; (c) The second-order wavelet; (d) The third-order wavelet

where the �th discrete moment is de�ned as

mh
�(x) :=

np∑
I=1

(
xI − x

%

)�

�%(xI − x)�xI : (55)

In Figure 2, the constructed kernel function sequence is displayed at xI =0, and an uniform particle
distribution (11 particles) is used in the computation. In computation, the parameter %=�x,
and a �fth-order spline is used as window function (aI =3·3). The second wavelet kernel in
Figure 2(c) also resembles an upside-down Mexican hat.

Example 3.2. Let P(x)= (1; x1; x2). The discrete moment equations are


mh
00 mh

10 mh
01

mh
10 mh

20 mh
11

mh
01 mh

11 mh
02






b(�)1
b(�)2
b(�)3


=




��(0;0)

��(1;0)

��(0;1)


 (56)

One may note that here � is multiple index, i.e. �=(0; 0); (1; 0); (0; 1). The hierarchical kernel
functions are plotted in Figure 3.

Example 3.3. In this example, the dimension of the space is n=2, |�|=m=2, and ‘=6, and
K[�]

% (xI−x; x) :=P((xI − x)=%)b(�)(x)�%(xI−x), with xI =(x1I ; x2I ); x=(x1; x2), and �=(0; 0); (1; 0);
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Figure 3. An illustration of 2-D hierarchical partition of unity with generating polynomial basis P= (1; x1; x2): (a) 	
[(0;0)]
I (x);

(b) 	[(1;0)]I (x); (c) 	[(0;1)]I (x)

(0; 1); (2; 0); (1; 1); (0; 2). The vector b(�)(x) is determined by the global moment equation that is
similar to (54), namely,




mh
00 mh

10 mh
01 mh

20 mh
11 mh

02

mh
10 mh

20 mh
11 mh

30 mh
21 mh

12

mh
01 mh

11 mh
02 mh

21 mh
12 mh

03

mh
20 mh

30 mh
21 mh

40 mh
21 mh

22

mh
11 mh

21 mh
12 mh

31 mh
22 mh

13

mh
02 mh

12 mh
03 mh

22 mh
13 mh

04







b(�)1
b(�)2
b(�)3
b(�)4
b(�)5
b(�)6



=




��(0;0)

��(1;0)

��(0;1)

��(2;0)

��(1;1)

��(0;2)




(57)

Again, the above moment matrix is a full matrix for arbitrary particle distributions. By using a
2-D cubic spline as the window function, numerical computations have been carried out in a 2-D
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domain [−1; 1]× [−1; 1] on an uniform 21× 21 particle distribution. In Figure 4, the sequence
of hierarchical kernel functions are displayed with respect to xI =(0; 0). In the computation, the
dilation vector %=(%1; %2) is chosen as %=(�x;�y) and �x=�y= h. The window function is
a direct product of two cubic spline functions.

4. APPROXIMATION THEORY FOR THE HIERARCHICAL PARTITION OF UNITY

4.1. The di�erential consistency conditions

An intrinsic property of the above meshless hierarchical partition of unity is the following
di�erential consistency conditions.

Lemma 4.1. For the m-order polynomial based hierarchical partition of unity; the �th kernel
function K

[�]
% satis�es the following di�erential consistency conditions:

∑
I∈�

(
xI − x

�

)�
D

x=�K
[�]

% (xI − x; x)�VI =
�!
�!

��(�+); |�|; |�|; ||6m (58)

Proof: The proof is by induction on . First, assume ||=0 and then by (44)
∑
I∈�

(
xI − x

�

)�
D

x=�K
[�]

% (xI − x; x)�VI=
∑
I∈�

(
xI − x

�

)�
K[�]

% (xI − x; x)�VI = ��� (59)

Equation (58) holds.
Second, assume that (58) holds for 06||6m− 1, namely,

∑
I∈�

(
xI − x

�

)�
D

x=�K
[�]

% (y − x; x)�VI =
�!

(�− )!
��(�+) (60)

We need to show that (58) holds for 06|′|6m. Let ′=  + �; �=(�1; �2; : : : ; �n); |�|=
1; 06|′|6m. Since |�|=1, di�erentiate (60) and then by the chain rule,

∑
I∈�

{
D�

x

(
xI − x

�

)�
D

x=�K
[�]

% (xI − x; x) +
(
xI − x

�

)�
�−�D+�

x=� K[�]
% (xI − x; x)

}
�VI =0 (61)

It can be shown that

D�
x

(
xI − x

�

)�
= (−1)|�1|+|�2|+···+|�n| �1!�2! · · · �n! · �−�1−�2−···−�n

(�1 − �1)!(�2 − �2)! · · · (�n − �n)!

×
(
x1I − x1

�

)�1−�1 (x2I − x2
�

)�2−�2

· · ·
(
xnI − xn

�

)�n−�n

= (−1)|�| �−��!
(�− �)!

(
xI − x

�

)�−�

(62)
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Figure 4. A 2-D hierarchical kernel sequence: (a) 	[0;0]I (x); (b) 	[1;0]I (x); (c) 	[0;1]I (x); (d)	[2;0]I (x); (e) 	[1;1]I (x);

(f ) 	[0;2]I (x)
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Table I. Di�erential consistency conditions for K[0]
%

Thereby, equation (61) yields

∑
I∈�

(
xI − x

�

)�
D′

x=�K
[�]

% (xI − x; x)�VI

=
(−1)|�|+1�!
(�− �)!

∑
I∈�

(
xI − x

�

)�−�

D
x=�K

[�]
% (xI − x; x)�VI

=
�!

(�− �)!
(�− �)!

(�− �− )!
�(�−�)(�+) =

�!
(�− ′)!

�(�−�)(�+) =
�!
�!

��(�+′) (63)

In the second step, (60) is used, and in the last step, the identity, �(�−�)(�+) = ��(�+′), is used.

Let

M [�]
� :=

∑
I∈�

(
xI − x

%

)�
K[�]

% (xI − x; x)�VI (64)

M [�]()
� :=

∑
I∈�

(
xI − x

%

)�
D

x=%K
[�]

% (xI − x; x)�VI (65)

The di�erential consistency conditions for the fundamental kernel and the wavelet kernels can be
interpreted as the following moment identities:

M [0]()
� = �!��; M [�]()

� =
�!
�!

��(�+) (66)

Tables I–IV display graphically the di�erential consistency conditions of the hierarchical partition
of unity in Example 3.1. For the fundamental kernel, all the non-zero entries lie on the main
diagonal line of the table; for the �rst-order wavelet kernel, all the non-zero entries lie on the
�rst sub-diagonal line; and for the second-order wavelet, the non-zero entries move to the second
sub-diagonal line, and the pattern continues untill the third-order wavelet.

4.2. Interpolation estimate

The main result of this section is the following interpolation estimate for the �th-order kernel
interpolant.
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Table II. Di�erential consistency conditions for the �rst
wavelet K[1]

%

Table III. Di�erential consistency conditions for the sec-
ond wavelet K[2]

%

Table IV. Di�erential consistency conditions for the third
wavelet K[3]

%

Theorem 4.1 (Local estimate). Assume u∈Hm+1(
)∩C0(
) and �∈Cm
0 (
)∩Hm+1(
)∗∗ and

2m¿n; where n is the dimension of the space. For given bounded domain 
; there is a mesh-
less hierarchical discretization {D;F�;Hm}. Then ∀!I ∈F� and R

m[�]
%; h u∈ span{Hm} the following

interpolation error estimate holds:

‖��D�
x u(x)−R

m[�]
%; h u(x)‖H(!I ∩
)6 ; CI%m+1−||‖u‖Hm+1(!I ∩
); ∀06 |�|; ||; |� + |6m (67)

where R
m[�]
%; h u(x) is given in equation (41).

Proof. We only need to show that ∃C such that for �xed I ∈�,
|D

x((�
�D�

x u(x)−R
m[�]
%; h u(x))|L2(!I ∩
)6C%m+1−|||u|Hm+1(!I ∩
); ∀06 |�|; ||; |� + |6m

(68)

∗∗ This restriction is imposed for the sake of an easy proof; it may be relaxed
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By Taylor’s expansion, for x∈!I ∩
, one has

D
x

(
��D�

x u−R
m[�]
%; h u

)
= ��D�+

x u(x)− �!D
x

[ ∑
J∈�I

K[�]
% (xJ − x; x)u(xJ )�VJ

]

= ��D�+
x u(x)− �!

∑
J∈�I

(
D

xK
[�]

% (xJ − x; x)
)

×
( ∑

|�|¡m+1

1
�!
(xJ − x)�D�u(x) +

∑
|�|=m+1

(
m+ 1
�!

)
(xJ − x)�

×
(∫ 1

0
smD�u(xJ + s(x − xJ )) ds

))
�VJ (69)

Applying the di�erential consistency condition (58)–(69), one may �nd that

∣∣∣D
x

(
��D�

x u−R
m[�]
%; h u

)∣∣∣ =
∣∣∣∣∣��D�+

x u(x)− ��D�+
x u(x)

−�!
∑

J∈�I

∑
|�|=m+1

(
m+ 1
�!

)
(xJ − x)�D

xK
[�]

% (xJ − x; x)

×
(∫ 1

0
smD�u(xJ + s(x − xJ )) ds

)
�VJ

∣∣∣∣∣
6C(�; m)

∣∣∣∣∣ ∑J∈�I

∑
|�|=m+1

(xJ − x)�

�!
D

xK
[�]

% (xJ − x; x)

×
(∫ 1

0
smD�u(xJ + s(x − xJ )) ds

)
�VJ

∣∣∣∣∣ (70)

Let �= x=�, �J = xJ =� and E;m
!I (x) := |D

x(��D�u−R
m[�]
%; h u)|. Considering the fact that K[�]

(�J − �; �) is compact supported and its support size equals diam{!J}, then identically,

K[�](�J − �; �)=K[�](�J − �; �)�(�J − �)

where �(�J − �) is the characteristic function of !J , i.e.

�(�J − �)=
{
1; |�J − �|6 aJ

0; |�J − �|¿aJ

Repeat using the Cauchy–Schwarz inequality yields

E;m
!I
(x)6C(�; m)�m+1−||−n

∣∣∣∣∣ ∑J∈�I

∑
|�|=m+1

(�J − �)�

�!
(D

�K
[�](�J − �; �))

×
(∫ 1

0
smD�u(�[�J + s(�− �J )]) ds

)
�(�J − �)�VJ

∣∣∣∣∣
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6C(�; m)�m+1−||−n

∣∣∣∣∣∣
∫ 1

0

∑
J∈�I



[ ∑
|�|=m+1

(
(�J − �)�

�!
D

�K
[�](�J − �; �)

)2]1=2

×
[ ∑
|�|=m+1

(smD�u(�[�J + s(�− �J )]))2
]1=2

 �(�J − �)�VJ ds

∣∣∣∣∣∣
6C(�; m)�m+1−||−n

∣∣∣∣∣∣
∫ 1

0



[ ∑

J∈�I

�(�J − �)�VJ

× ∑
|�|=m+1

(
(�J − �)�

�!
D

�K
[�](�J − �; �)

)2]1=2 [ ∑
J∈�I

�(�J − �)�VJ

× ∑
|�|=m+1

(smD�u(�[�J + s(�− �J )]))
2

]1=2
 ds

∣∣∣∣∣∣ (71)

Since D
�K

[�](�J − �; �) is bounded and �(�J − �)|�J − �|6aJ6Cd,

E;m
!I
(x)6 C(�; �; ; Cd; m)�m+1−||−n

∣∣∣∣∣∣
∫ 1

0

[ ∑
J∈�I

�VJ

]1=2
·
[ ∑

J∈�I

�(�J − �)�VJ

× ∑
|�|=m+1

(smD�u(�[�J + s(�− �J )]))
2

]1=2
ds

∣∣∣∣∣∣ (72)

By invoking the stability condition,
∑

J∈�I
�VJ 6NmaxCn

d�
n, it follows that

|��D�
x u−R

m[�]
%; h u|H ||(!I ∩
)6C(�; �; ; Cd; m; Nmax)�m+1−||−n=2

×
{ ∑

J∈�I

∫ 1

0

∫
!I ∩!J ∩


∑
|�|=m+1

s2m(D�u(xJ + s(x− xJ )))2

×d
x ds�VJ

}1=2

Change variables z= xJ + s(x− xJ ), and 
x ds= s−nd
z ds. The new integration domain for each
J ∈�I is

AJ (z; s)= {(z; s) | s∈ (0; 1]; !̃I ∩!̃J ∩
̃} (73)

where ∀J ∈�I and !̃J := {z|(1=s)|z− zJ |6 aJ�; 0¡s6 1}.
Since s61 and zJ = xJ , one has !̃J ⊂!J ∀J ∈�I , and

|��D�
x u−R

m[�]
%; h u|H ||(!I ∩
)6C(�; �; ; Cd; m; Nmax)�m+1−||−n=2

×
{ ∑

J∈�I

�VJ

∫ 1

0

∫
!I ∩!J ∩


∑
|�|=m+1

s2m−n (D�u(z))2 d
z ds

}1=2
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By the assumption 2m− n¿0, the Fubini’s theorem, and the stability condition,

|��D�
x u−R

m[�]
%; h u|H ||(!I ∩
)6C(�; �; ; Cd; m; n; Nmax)�m+1−|||u|Hm+1(!I ∩
) (74)

Note that the fact that the constant C in Equation (74) is a function of Cd implies that C does
not depend on aI .

Theorem 4.2 (Global estimate). For u∈Hm+1(
)∩C0(
); �∈Cm
0 (
)∩Hm+1(
); the global

discretization; {D;F�;Hm}; yields the following estimate:
‖��D�

x u−R
m[�]
%; h u‖H ||(
)6C�m+1−||‖u‖Hm+1(
); 06|�|6m (75)

Proof. Again, we only need to show following semi-norm estimate

|��D�
x u−R

m[�]
%; h u|H ||(
)6C�m+1−|||u|Hm+1(
) (76)

By (74) ∃0¡C0¡∞ such that

|��D�
x u−R

m[�]
%; h u|2H ||(
)6

∑
I∈�

|��D�
x u−R

m[�]
%; h u|2H ||(!I ∩
)

6C20�
2(m+1−||)∑

I∈�
|u|2Hm+1(!I ∩
) (77)

where C0 can be chosen as the constant C in (74).
The key technical ingredient of the global estimate is the following fact: there exists an auxiliary,

virtual background cell discretization, { �!I}I∈�, that has the properties:

xI ∈ �!I∩ 
 (78)

�!I⊂!I (79)⋃
I∈�

�!I∩ 
=
 (80)

in which

int{ �!I}∩ int{ �!J}=
{
int{ �!I}; I = J

∅; I 6= J
(81)

such that ∀I ∈�
!I ∩
⊂ ⋃

J∈�I

�!J∩ 
 (82)

We show that the claim is true by contradictory argument.
Suppose there is no such virtual cell discretization (78)–(81) that satis�es the condition (82).
Then, ∃I ∈� and x∈
 such that

x∈!I ∩ 
 but x =∈ ⋃
J∈�I

�!J∩


It is obvious that x =∈ ⋃J∈�\�I
�!J∩
, which leads to the contradiction x =∈
 because of condition

(80).
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Hence, the overlapping condition (34) suggests that∑
I∈�

|u|2Hm+1(!I ∩
)6
∑
I∈�

∑
J∈�I

|u|2Hm+1( �!I ∩
)6Nmax
∑
I∈�

|u|2Hm+1( �!I ∩
)

= Nmax|u|2Hm+1(
) (83)

Estimate (76) follows immediately, and consequently, (75).

Remark 4.1. (1) When �=0, the estimate (75) recovers the error estimate for the regular
reproducing kernel interpolant [10]. (2) By taking advantage of the global di�erential consistency
conditions, there is no need to use the notion of ‘a�ne equivalence’ in the proof, which is a major
di�erence between the current proof and the �nite element type proofs. (3) Because the �th wavelet
kernel satis�es |�| − 1 order vanishing moment conditions, Theorem 4.2 indicates that its sampling
range is up to �|�| scale in the physical space. Apparently, the larger the absolute value |�|, the �ner
scale the wavelet kernel can represent, which, in other words, implies that each wavelet kernel has a
di�erent bandwidth in the frequency domain.†† In this sense, the hierarchical partition of unity is a
wavelet kernel packet, because we are basically dealing with a special type of least-square �lters.
It is noteworthy pointing out the similarity between the wavelet based hierarchical partition of
unity and the wavelet packet invented by Coifman and Meyer [12].

4.3. Synchronized reproducing kernel interpolants

Using hierarchical kernels, one also can construct a so-called synchronized reproducing ker-
nel interpolant via a combination of di�erent kernels. In Section 2, we de�ne the generalized
reproducing kernel by the following expansion:

K[s]
% (· ; ·) := ∑

|�|6m
C�K

[�]
% (· ; ·) (84)

And the so-called synchronized reproducing kernel interpolant is referred to as the following
sampling, or �ltering procedure,

Rm[s]
%; h u(x) :=

∑
I∈�

K[s]
% (xI − x; x)u(xI )�VI (85)

Theorem 4.3 (Synchronized convergence). Assume u∈ [tHm+1(
)∩C0(
) and �∈Cm
0 (
)∩

Hm+1(
). By �xing p; 06p6m; and choosing C0 = 1; C�= �!; |�|=p; and C�=0; � 6=0; �; then
following interpolation error estimate holds for the m-order synchronized kernel interpolant;

‖u(x)−Rm[s]
%; h u(x)‖H ||(
)6C�p‖u‖Hm+1(
); 06 ||6m+ 1−p (86)

where Rm[s]
%; h u(x) is de�ned in equation (85).

Proof. By Theorem 4.2, for �xed index , 06 ||6m,

‖u−Rm[s]
%; h u‖H ||(
)

= ‖u−Rm[0]
%; h u−R

m[�]
%; h ‖H ||(
) = ‖

(
u−Rm[0]

%; h u
)
+
(
��D�

x u−R
m[�]
%; h

)
−��D�

x u‖H ||(
)

†† Readers may �nd useful information on vanishing moments condition of a wavelet, or multiplicity zero condition of its
Fourier transform, and its e�ect on bandwidth in [16; pp: 243–245]
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6‖u−Rm[0]
%; h u‖Hm+1(
)+‖��D�

x u−R
m[�]
%; h u‖Hm+1(
) + �|�|‖D�

x u‖H ||(
)

6C1�m+1−||‖u‖Hm+1(
)+C2�m+1−||‖u‖Hm+1(
) +C3�p‖u‖Hm+1(
) (87)

Note that in the last step, we use the fact that ‖u‖Hm+1(
) ,→‖D�u‖H ||(
) because |�+|6m+1.
Furthermore, considering the fact 0¡|�|6m+1−||⇒ 06||6m+1−|�|, we have the desired
result

‖u−Rm[s]
%; h u‖H ||(
)6C4�p‖u‖Hm+1(
) (88)

4.4. An heuristic explanation of synchronized convergence

As a matter of fact, the synchronized reproducing kernel, K[s]
% (· ; ·)=K[0]

% (· ; ·)+C�K
[�]

% (· ; ·),
satis�es the following di�erential consistency condition:

∑
I∈�

(
xI−x
%

)�
D

x=�K
[s]

% (xI−x; x)�VI = �!��+
�!

(�−)!
��(�+)C� (89)

which can be written in terms of moment equations

M [s]()
� = �!��+

�!
�!

��(�+)C� (90)

where M [s]
� :=M [0]

� +C�M
[�]
� .

This synchronized convergence phenomenon is basically the consequence of the di�erential
consistency condition (89). For a better insight, it would be bene�cial to examine the e�ect of
the di�erential consistency condition (89) on the pointwise truncation error of the interpolant
approximation. Consider the case that C�=0; ∀� 6=0; �. We expand (85) via Taylor expansion,

Rm[s]
%; h u(x) =

∑
I∈�

K[s]
% (xI−x; x)

{
u(x)+u(1)(x)(xI−x)+

1
2!

u(2)(x)(xI−x)2+ · · ·
}
�VI

= u(x)M [s]
0 (x)+%u(1)(x)M [s]

1 (x)+
%2

2!
u(2)(x)M [s]

2 (x)+
%3

3!
u(3)(x)M [s]

3 (x)

+
%4

4!
u(4)(x)M [s]

4 (x)+O(%
5) (91)

where

u(n)(x) :=Dn
xu(x) (92)

Proceeding similarly, one may derive further

Dx{Rm[s]
%; h u(x)}= ∑

I∈�
DxK

[s]
% (xI−x; x)u(xI )�VI

=
1
%
u(x)M [s](1)

0 (x)+u(1)(x)M [s](1)
1 (x)+

%
2!

u(2)(x)M [s](1)
2 (x)

+
%2

3!
u(3)(x)M [s](1)

3 (x)+
%3

4!
u(4)(x)M [s](1)

4 (x)+O(%4) (93)
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Table V. Di�erential consistency conditions for the zero-
th-order K[s]

%

where

M [s]( j)
i (x) :=

∑
I∈�

(
xI−x
%

)i

D j
x=%K

[s]
% (xI−x; x)�VI

and

D2x{Rm[s]
%; h u(x)}= ∑

I∈�
D2xK

[s]
% (xI−x; x)u(xI )�VI

=
1
%2

u(x)M [s](2)
0 (x)+

1
%
u(1)(x)M [s](2)

1 (x)+
1
2!

u(2)(x)M [s](2)
2 (x)

+
%
3!

u(3)(x)M [s](2)
3 (x)+

%2

4!
u(4)(x)M [s](2)

4 (x)+O(%3) (94)

D3x{Rm[s]
%; h u(x)}= ∑

I∈�
D3xK

[s]
% (xI−x; x)u(xI )�VI

=
1
%3

u(x)M [s](3)
0 (x)+

1
%2

u(1)(x)M [s](3)
1 (x)+

1
2!%

u(2)(x)M [s](3)
2 (x)

+
1
3!

u(3)(x)M [s](3)
3 (x)+

%
4!

u(4)(x)M [s](3)
4 (x)+O(%2) (95)

In Tables V and VI, we tabulate both the di�erential consistency conditions of the �rst-order
SRK interpolant and the truncation errors for the case m=3; p=1. In Table VI, there is a
shaded ladder lying through the truncation errors at the order O(%). Comparing between Tables
V and VI, all the quantities below the shaded ladder are zero, and the quantities on the ladder
are non-zero. As a matter of fact, Table V indicates that M [s]

1 = 1!C1; M
[s](1)
2 = 2!C1; M [s](2)

3 = 3!C1
and of course M [s](3)

4 6=0 in general. This shows clearly that all the truncation errors are syn-
chronized. In parallel, there is a shaded ladder locating along the line where all the trunca-
tion errors are at order O(%1). By the same token, all the entries below the shaded ladder are
zero, whereas the entries on the shaded ladder are non-zero. Again, all the relevant truncation
errors are synchronized. This synchronized pattern of truncation error has an one-to-one corre-
spondence with the global interpolation error estimate. In Tables VII and VIII, the di�erential
consistent condition of the second-order SRK interpolant and the associated truncation errors are
tabulated.
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Table VI. Pointwise truncation error for the zeroth-order SRK interpolant

Table VII. Di�erential consistency conditions for the second-
order K[s]

%

Table VIII. Pointwise truncation error for the second-order SRK interpolant

Numerical experiments have been conducted to verify the theoretical claim. By using the syn-
chronized reproducing kernel discussed in Example 3.1, we interpolate function u(x)= sin(x) in
a 1-D segment [0; 1], and the numerical results are exhibited in Figure 5. In Figure 5, there are
two cases. In the case (a), p=1 and =0; 1; 2; 3, which means that the interpolation error norm
L2; H 1; H 2, and H 3 are all having the same convergence rate at order 1. This corresponds exactly
to the synchronized truncation errors shown in Table VI. In the case (b), p=2 and =0; 1; 2,
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Figure 5. Synchronized convergence rates: (a) m=3; p=1; =0; 1; 2; 3; (b) m=3;p=2; =0; 1; 2

which means that the convergence rates of the interpolation errors of the norm L2; H 1, and H 2,
are all synchronized at order p=2.

5. WAVELET-LIKE FUNCTIONS AND WAVELET KERNEL PACKET

In this section, we present some examples of wavelet-like shape functions, and wavelet kernel
packet. Once again, the term ‘wavelet kernel packet’ is referred to as ‘a group of distinct basic
wavelet functions’, which may not necessarily provide a group of orthogonal wavelet basis in
L(R)n. For the sake of simplicity, it is always assumed that 
=R and �∈Hs(R), s¿m+1. In the
following, only 1-D hierarchical reproducing kernel functions in continuous form are considered,
unless otherwise stated. Contrast to the discrete cases in Section 3, all the moments of the window
function are constant here, and the vector, b(�), is a constant as well; thus,

K[�](y; x)≡K[�](y); ∀�¿0: (96)
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For the particular purpose, denote the �th mth-order hierarchical reproducing kernels as  [�]m (x)=
K[�](x). By construction, ∫

R
x� [�]m (x) dx= ���; �6m (97)

For � 6=0;  �(x) satis�es (m−1)th order vanishing moment conditions, i.e.∫ ∞

−∞
 [�]m (x) dx=0 and

∫ ∞

−∞
x� [�]m (x) dx=0; � 6= � (98)

In general, { [�]m (·−k)}k∈Z may not be an orthogonal sequence. Nevertheless, it possesses some
special properties. Some preliminary results of these special properties are discussed by the fol-
lowing examples.

Example 5.1. In this example, the linear B-spline is chosen as the window function, which has
a compact support in |x|61.

�(x)=

{
1− |x|; |x|61
0 otherwise

(99)

The linear generating polynomial basis P(x)= (1; x) is used in the construction. The expression of
the kernel function is  [�]1 (x)=P(x)b

(�)�(x), where vectors b� satisfy the moment equation

(
m0 m1
m1 m2

)(
b(�)1
b(�)2

)
=
(

��0

��1

)
(100)

Simple calculation shows that m0 = 1; m1 = 0; m2 = 1=6. Subsequently, it is obtained that b
(0)
1 =

(1; 0)t ; b(1)1 = (0; 6)t and

 [0]1 (x) =m−1
0 �(x)=�(x) (101)

 [1]1 (x) =m−1
2 x�(x)= 6x�(x) (102)

The wavelet kernel packet is depicted in Figure 6. One may verify the orthogonality condition

∫ ∞

∞
 [0]1 (x) 

[1]
1 (x) dx=

∫ 1

−1
6x�2(x) dx=0 (103)

Example 5.2. In this example, the standard Gaussian function

g�(x)=
1

2
√
��
exp

{
− x2

4�

}
(104)

is chosen as the window function. Let the generating polynomial vector P(x)= (1; x; x2; x3), i.e.
m=3. The wavelet kernel packet is then described as  [�]3 (x)=P(x)b

(�)g�(x), where the vectors
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Figure 6. The �rst-order wavelet kernel packet: (a)  [0]1 (x);(b)  [1]1 (x)

b(�) are the solutions of the global moment equation




m0 0 m2 0
0 m2 0 m4
m2 0 m4 0
0 m4 0 m6






b(�)1
b(�)2
b(�)3
b(�)4


 =




��0

��1

��2

��3


 (105)

Since the solution space of the above system equations can be decomposed into two in-
variant subspaces, in turn, equation (105) can be reduced into two lower-order linear algebraic
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equations:

(
m0 m2
m2 m4

)(
b(�)1
b(�)3

)
=
(

��0

��2

)
; |�| is even (106)

with b(�)1 = b(�)4 = 0. And

(
m0 m2
m2 m4

)(
b(�)2
b(�)4

)
=
(

��1

��3

)
; |�| is odd (107)

with b(�)1 = b(�)3 = 0. The components of the wavelet kernel packet are

 [0]3 (x) =
(
3
2
− x2

4�

)
g�(x) (108)

 [1]3 (x) =
x
4�

(
5− x2

2�

)
g�(x) (109)

 [2]3 (x) =
1
4�

(
x2

2�
− 1
)

g�(x) (110)

 [3]3 (x) =
x
8�2

(
x2

6�
− 1
)

g�(x) (111)

One can verify the orthogonality conditions:∫ ∞

−∞
 [0]3 (x) 

[1]
3 (x) dx=

∫ ∞

−∞
 [0]3 (x) 

[3]
3 (x) dx=

∫ ∞

−∞
 [2]3 (x) 

[1]
3 (x) dx

=
∫ ∞

−∞
 [2]3 (x) 

[3]
3 (x) dx=0

However, in general,
∫∞
−∞  [0]3 (x) 

[1]
3 (x− k) dx 6=0; k ∈Z. This means that the wavelet sequences

constructed here do not form a discrete orthogonal bases. Figure 7 displays each member of the
basic wavelet function packet.

Example 5.3. Let m=4, P(x)=(1; x; x2; x3; x4), and  [�]4 (x)=P(x)b
(�)�(x). As long as the

window function is selected to be symmetric with respect to the y-axis (x=0), the moment
matrix has an alternative mode with zero and non-zero entries; this is because all the odd order
moments are zero. In this case, one has

M=




m0 0 m2 0 m4
0 m2 0 m4 0
m2 0 m4 0 m6
0 m4 0 m6 0
m4 0 m6 0 m8


 (112)

Copyright ? 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 45, 251–288 (1999)



KERNEL HIERARCHICAL PARTITION OF UNITY, PART I—FORMULATION AND THEORY 279

Figure 7. An third-order wavelet kernel packet: (a)  [0]3 (x); (b)  [1]3 (x); (c)  [2]3 (x); (d)  [3]3 (x)

Consequently, the moment matrix is reducible. Then the vectors b(�) can be determined by two
separated systems of equations:


m0 m2 m4

m2 m4 m6
m4 m6 m8




 b(�)1

b(�)3
b(�)4


 =


 ��0

��2

��4


 ; |�| is even (113)

with b(�)2 = b(�)4 = 0. And

(
m2 m4
m4 m6

)(
b(�)2
b(�)4

)
=
(

��1

��3

)
; |�| is odd (114)

with b(�)1 = b(�)3 = b(�)5 = 0.
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By choosing the Gaussian function as the window function, the explicit solutions for this par-
ticular wavelet kernel packet are as follows:

 [0]4 (x) =
(
15
8

− 5x2

8�
+

x4

32�2

)
g�(x) (115)

 [1]4 (x) =
x
4�

(
5− x2

2�

)
g�(x) (116)

 [2]4 (x) =
(
− 5
8�
+

x2

2�2
− x4

32�3

)
g�(x) (117)

 [3]4 (x) =
x
8�2

(
−1 + x2

6�

)
g�(x) (118)

 [4]4 (x) =
(

1
32�2

− x2

32�3
+

x4

384�4

)
g�(x) (119)

All members of the wavelet kernel packet are shown in Figure 8. In Figure 8(f), a synchronized re-
producing kernel interpolant is plotted, which is constructed based on the formula,K[s](x)=  [0]4 (x)
−0·5 [1]4 (x), which shows the upwind feature.
In general, if one chooses a symmetric window function �∈Hs(R) in the construction process,

for the even-order moment matrix (m=2n − 1 and ‘=2n), the global moment matrix will have
the form

M=




m0 0 m2 0 · · · m2n−2 0
0 m2 0 · · · 0 m2n

m2 0
. . . m2n

...
...

. . .
...

...
. . .

...

m2n−2 0
. . . 0

0 m2n · · · · · · 0 m2‘




(120)

The system of equations, Mb(�) = {P(�)(0)}t , can then be broken down into two sets of order n
linear algebraic equations. They are




m0 m2 · · · m2n−2
m2 m4 m2n
...

. . .
...

m2n−2 m2n · · · m2‘−2






b(�)1

b(�)3
...

b(�)2n−1


 =




��0

��2
...

��(2n−2)


 ; �=even (121)
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Figure 8. An fourth-order wavelet kernel packet: (a)  [0]4 (x); (b)  [1]4 (x); (c)  [2]4 (x); (d)  [3]4 (x); (e)  [4]4 (x); (f ) K
[s](x)
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with b(�)2 = b(�)4 = · · · = b(�)2n =0, and




m2 m4 · · · m2n
m4 m6 m2n+2
...

. . .
...

m2n m2n+2 · · · m2‘







b(�)2
b(�)4
...

b(�)2n


 =




��1

��3

...

��(2n−1)


 ; |�| is odd (122)

with b(�)1 = b(�)3 = · · · = b(�)2n−1 = 0.
The corresponding wavelet solutions can be shown as

 [2j−2]2n−1 (x) =
1
�
{A(2j−1)1 + A(2j−1)3x2 + · · ·+ A(2j−1) (2n−1) x2n−2}�(x)

 [2j−1]2n−1 (x) =
1
�
{A(2j)2x + A(2j)4x3 + · · ·+ A(2j) (2n) x2n−1}�(x)

where j=1; : : : ; n, and Aij are the cofactors of the global matrix M and � :=detM. By the
symmetry argument, it is obvious that

∫ ∞

−∞
 [�]2n−1(x) 

[�]
2n−1(x) dx=0; |�| is odd, |�| is even (123)

For the odd-order global moment matrix (m=2n and ‘=2n+ 1),

M=




m0 0 m2 0 · · · 0 m2n
0 m2 0 · · · m2n 0

m2 0
. . . 0

...
...

. . .
...

...
. . .

...

0 m2n
. . . 0

m2n 0 · · · · · · 0 m2‘




(124)

the system of equations breaks into two unequal order systems of equations:




m0 m2 · · · m2n
m2 m4 m2n+2
...

. . .
...

m2n m2n+2 · · · m2‘







b(�)1
b(�)3
...

b(�)2n+1


 =




��0

��2

...

��(2n)


 ; |�| is even (125)
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with b(�)2 = b(�)4 = · · · = b(�)2n =0, and


m2 m4 · · · m2n
m2 m4 m2n+2
...

. . .
...

m2n m2n+2 · · · m4n







b(�)2
b(�)4
...

b(�)2n


 =




��1

��3

...

��(2n−1)


 ; |�| is odd (126)

with b(�)1 = b(�)3 = · · · = b(�)2n+1 =0.
The corresponding solutions for the pre-wavelet sequence are

 [2j+1]2n (x) =
1
�
{A(2j)2x + A(2j)4x3 + · · ·+ A(2j) (2n)x2n−1}�(x)

 [2j]2n (x) =
1
�
{A(2j+1)1 + A(2j+1)3x2 + · · ·+ A(2j+1) (2n+1)x2n}�(x)

where j=0; 1; : : : ; n. As mentioned at the beginning, the wavelet packet derived here are a group
of basic, or mother wavelets, which may not form an orthogonal wavelet basis in L2(R);‡‡ i.e.
they are only pre-wavelets. That is, in an uniform lattice, k ∈Z,∫ ∞

−∞
 [�]m (x) 

[�]
m (x − k) dx 6=0;

∫ ∞

−∞
 [�]m (x) [�]m (x − k) dx 6=0 (127)

However, the situation in (127) can be improved. If speci�c window function is carefully selected.
A simple example of such construction is to use a symmetric orthogonal window function, i.e.
a function satis�es: �(x)=�(−x) and

∑∞
k=−∞ |�̂(� + 2�k)|2 = 1. Let us consider the wavelet

basis discussed in Example 5.11. There are two components in the packet:  [0]1 =m−1
0 �(x) and

 [1]1 =m−1
2 x�(x). By utilizing the Parseval identity, simple calculation shows that ∀j∈Z,∫ ∞

−∞
 [0]1 (x) 

[1]
1 (x − j) dx=m−1

0 m−1
2

∫ ∞

−∞
�(x)(x − j)�(x − j) dx

=
i

2�(m0m2)

∫ ∞

−∞
�̂(�)�̂′(�) exp(−ij�) d�

=
i

4�(m0m2)

∫ ∞

−∞

d
d�

|�̂(�)|2 exp(−ij�) d�

=
i

4�(m0m2)

∫ 2�

0

d
d�

(
∞∑

k=−∞
|�̂(�+ 2�k)|2

)
exp(−ij�) d�=0

(128)

Example 5.4. Here we adopt the procedure that is used by Battle [26], Lemari�e [27], Meyer
[19] and Chui [15] to construct orthogonal window functions.

‡‡ It is believed that they can form a non-orthogonal wavelet basis in L2(R) under certain provisions; the detailed proof
of the matter will be reported elsewhere
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Choose a symmetric window function, �(x); with reasonable decay at in�nity and consider an
orthogonal window function de�ned as

�̂∗(�)= �̂(�)√∑∞
k=−∞ |�̂(�+ 2�k)|2

=

(∑
j
�j exp(−ij�)

)
�̂(�) (129)

Consequently; �∗(x)= ∑j �j�(x − j); where

�j =
1
2�

∫ 2�

0

exp(−ijx)√∑∞
k=−∞ |�̂(�+ 2�k)|2

dx (130)

Obviously;
∑

k |�̂∗(� + 2�k)|2 = 1. The symmetry condition assures that �̂(�) is real. Hence; the
desired wavelet packets are

 [0]1 (x) =m−1
0 �∗(x)=m−1

0

∑
j
�j�(x − j) (131)

 [1]1 (x) =m−1
2 x�∗(x)=m−1

2

∑
j
�jx�(x − j) (132)

Numerical calculations have been carried out for both linear B-spline and the cubic spline functions.
By de�nition

�̂1(�)=
(
sin(�=2)

�=2

)2
and �̂3(�)=

(
sin(�=2)

�=2

)4
(133)

and subsequently (see [19, p. 62] for details);

∞∑
k=−∞

|�̂1(�+ 2�k)|2 =
1
3
+
2
3
cos2

(
�
2

)
=:P4

(
cos
(

�
2

))
(134)

∞∑
k=−∞

|�̂3(�+ 2�k)|2 =
17
315

− 34
315

cos8
(

�
2

)
+
72
315

cos6
(

�
2

)

+
4
105

cos4
(

�
2

)
+
248
315

cos2
(

�
2

)
=:P8

(
cos
(

�
2

))
(135)

Then

�̂∗1 (�)=
(
sin(�=2)

�=2

)2
(P4(cos(�=2)))

−1=2 (136)

�̂∗3 (�)=
(
sin(�=2)

�=2

)4
(P8(cos(�=2)))

−1=2 (137)

Substituting (134), (135) into (130), one may �nd �j. Subsequently, the symmetric, orthonormal
window function can then be found. By virtue of (131) and (132), one obtains the desired wavelet
packet. Two orthogonal wavelet packets, which are with respect to linear B-spline and cubic spline
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Figure 9. Orthogonal wavelet packets: (a)  [0]1 (x) w.r.t. �1(x), (b)  [1]1 (x) w.r.t. �1(x); (c)  [0]1 (x) w.r.t. �3(x), (d)  [1]1
w.r.t. �3(x)

correspondingly, are displayed in Figure 9. The components of the wavelet packets generated here
indeed form an orthogonal basis to each other.

Example 5.5. The pre-wavelet packet is generated based on a 2-D linear B-spline, �2d(x1; x2)=
�(x1)�(x2), and

�(xi)=
{
1− |xi|; |xi|6 1
0 otherwise

(138)

Thereby, the continuous wavelet packet can be expressed as  [�]2d (x)=P(x)b
(�)�2d(x), and x=

(x1; x2), �=(0; 0); (1; 0); (0; 1). After solving vector, b(�), one may have explicit expression

 [0;0]2d (x1; x2) =m−1
0 �2d(x1; x2) (139)
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Figure 10. An 2-D wavelet kernel packets based on linear spline box: (a)  [0;0]2d (x1; x2), (b)  [1;0]2d (x1; x2); (c)  [0;1]2d (x1; x2),

(d) K[s]
2d (x1; x2)

 [1;0]2d (x1; x2) =m−1
11 x1�2d(x1; x2) (140)

 [0;1]2d (x1; x2) =m−1
22 x2�2d(x1; x2) (141)

Choose a direction n=(n1; n2). A synchronized reproducing kernel interpolant along n can be
formed,

K[s]
2d (x)=  [0;0]2d (x) + �(n1 

[1;0]
2d (x) + n2 

[0;1]
2d (x)) (142)

The 2-D wavelet kernel packet are depicted in Figures 10(a)–(c), and a synchronized reproducing
kernel interpolant is shown in Figure 10(d) based on expression (142) with �=0·5 and n1 =
n2 = cos(�=4).
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6. CONCLUDING REMARKS

In the paper, we present a new meshless hierarchical partition of unity and the associated repro-
ducing kernel formula, which is the consequence of the discovery of wavelet partition of nullity.
We have shown here, as Liu and Chen [28] pointed out eariler, that there is a link between wavelet
method and moving least square based reproducing kernel formula.
Moreover, the wavelet hierarchical partition of unity developed here may enable us to perform

some special numerical operations, such as the p adaptivity re�nement; multiple scale analysis;
wavelet Petrov–Galerkin algorithm; and among others. These applications will be discussed in the
Part II [29] of this work. We would like to note that the approximation theory of the reproducing
kernel particle method presented here, and in [10] as well, is only for the cases that are involved
with compact supported window functions. Recently, we found that some convergence results of the
moving least-squares method for general window functions, which were given early by Farwig [30].
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