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In this work, we have developed a novel multiscale computational contact formulation 
based on the generalized Derjuguin approximation for continua that are characterized 
by atomistically enriched constitutive relations in order to study macroscopic interaction 
between arbitrarily shaped deformable continua. The proposed adhesive contact formu-
lation makes use of the microscopic interaction forces between individual particles in the 
interacting bodies. In particular, the double-layer volume integral describing the contact 
interaction (energy, force vector, matrix) is converted into a double-layer surface integral 
through a mathematically consistent approach that employs the divergence theorem and a 
special partitioning technique. The proposed contact model is formulated in the nonlinear 
continuum mechanics framework and implemented using the standard finite element 
method. With no large penalty constant, the stiffness matrix of the system will in general 
be well-conditioned, which is of great significance for quasi-static analysis. Three numerical 
examples are presented to illustrate the capability of the proposed method. Results indicate 
that with the same mesh configuration, the finite element computation based on the 
surface integral approach is faster and more accurate than the volume integral based 
approach. In addition, the proposed approach is energy preserving even in a very long 
dynamic simulation.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Contact that occurs at the interface between different continuum objects transmits forces. Classical (Hertz) contact be-
tween deformable bodies under large deformations has been extensively studied in computational contact mechanics, all of 
which are mainly focused on contact between large-scale objects governed by the principles of continuum mechanics and 
the no-penetrability condition [1,2]. With the increasing demand in nano-engineering and nano-science, the treatment of 
adhesive contact at nano/micro scale is becoming more and more important. The applications of small scale contact inter-
action range from nanoindentation [3–5], flexible nanotubes [6,7], MEMS design [8], atomic force microscopy [9–11], DNA 
strands and proteins [12], dynamic droplet spreading [13,14], to the contact/adhesion/crawling of living cells [15,16].

The adhesive contact phenomena at small scale can be modeled by several theoretical models, such as Johnson, Kendall 
and Roberts (JKR) model [17] and Derjaguin, Muller and Toporov (DMT) model [18]. Finite element based numerical methods 
have also be employed in modeling the adhesive/contact [19]. These analytical or numerical models have been successfully 
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Fig. 1. Continuum description of the contact model.

applied to a lot of areas, but they have their intrinsic limitations, by either assuming infinitesimal deformations, contacting 
bodies with special geometries, or requiring one of the contacting body to be rigid, which substantially simplifies the 
computational treatment. Microscopically, the contact interaction of two bodies originates from the inter-body interaction 
of individual atoms or molecules. In principle, one can always directly simulate the problem using molecular dynamics 
[20–22], which essentially treats all participating atoms as classical objects whose motions are governed by the Newton’s 
second law. But due to the intrinsic limitations [20], most of the studies using molecular dynamics mainly focus on the 
general principles, instead of practical applications in nano-engineering.

An appropriate model for describing such small scale contact/adhesion, should incorporate the microscopic interactions 
of the underlying atoms/molecules, formulate in nonlinear continuum mechanics framework, and at the same time main-
tain low computation cost. Similarly to classic Barrier contact method [1,23], one can characterize the small scale contact 
by introducing the inter-body interaction potentials between atoms/molecules into the total potential energy of the system. 
One of the advantages of this method is that it does not require any large penalty constant, such that the contact stiffness 
matrix of the system is in general well-conditioned. However, if one directly applies the body to body atomistic interaction 
potential to the system, the computational cost would be so large that no practical engineering problem can be solved. In 
this work, the double-layer volume integral describing the contact interaction (energy, force vector, matrix) is converted into 
a double-layer surface integral through a mathematically consistent approach that employs the divergence theorem and a 
special partitioning technique. Based on resulting surface formulation, a novel multiscale computational contact model is de-
veloped. We want to mention that the contact model developed here works for problems in both two and three dimensional 
space. A similar approach is accomplished in [24,25] for two-dimensional problem with certain physical assumptions.

The proposed contact model is formulated in the framework of nonlinear continuum mechanics and implemented for 
both quasi-static and explicit dynamic analysis. Results show that with the same mesh configuration, the proposed surface 
integral approach is faster and more accurate than the one directly applies the volume integral. The dynamic simulation 
of impact of the two cylinders within a rigid frame reveals that the proposed model is energy preserving in a long time 
dynamic simulation.

The paper is organized into five sections. In Section 2, the problem description of the multiscale contact model is pre-
sented in the framework of nonlinear continuum mechanics. In Section 3, the conversion from the double-layer volume 
integral to a double-layer surface integral for the contact model is presented. Section 4 deals with the Galerkin weak for-
mulation of the proposed contact model. In Section 5, the details of finite element implementation for both quasi-static and 
dynamic cases of the multiscale contact model are being discussed. In Section 6, several numerical examples are presented 
with some discussions are provided. Finally in Section 7, we close the presentation by making a few remarks.

2. Problem description

We are considering two interacting bodies 1 and 2, as shown in Fig. 1. Subjected to certain boundary conditions (not 
shown in the figure) and the inter-body contact interactions, the two bodies originally occupying the physical domains 
�10, �20 deform and evolve to �1, �2 in the current configuration. Correspondingly, the boundaries (surfaces) and unit 
out-normals of the two bodies change from ∂�10, ∂�20 and N1, N2 to ∂�1, ∂�2 and n1, n2.

If the system is conservative, the total potential energy of the system can be written as,

�total =
2∑

I=1

(
�int,I + �ext,I

)
+ �C , (1)

where �int,I is the internal elastic energy, �ext,I is the external potential energy and �C represents the interaction potential 
energy due to the adhesive contact. In general, the internal elastic energy
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�int,I =
∫

�I0

W (FI )dV I (2)

and external potential energy

�ext,I = −
∫
�I

ρI bI · uIdv I −
∫

∂�I T

tI · uIds (3)

where I = 1, 2 denotes the two interacting bodies. FI is the deformation gradient tensor, W (FI ) the energy per unit refer-
ence volume, uI the displacement field, bI the body force and tI the traction force on the Neumann boundary ∂�I T .

From microscopic perspective, the internal energy �int,I can be viewed as the potential characterizing the short range 
particle interactions within body I , which is mainly due to the covalent or ionic bonds. On the other hand, �C comes 
from the interactions between atoms/molecules from two different bodies, which could originate from different physical 
phenomena [26]. Normally it can be described by a potential energy that is dependent on their relative position. Generally 
only long range forces prevail in terms of the interaction between two adjacent bodies. Thus the long range van der Waals 
interaction is a suitable candidate for describing the inter-body interactions. In this work, the inter-body particle interaction 
is modeled by the 12–6 Lennard Jones potential

φ(r) = ε

[(σ0

r

)12 − 2
(σ0

r

)6
]

, (4)

where ε is the depth of the potential well (in the unit of energy) and σ0 is the equilibrium distance. The r−12 term 
characterizes the short range Pauli repulsion force resulting from electron orbital overlapping, preventing the two particles 
being much too close. Summing up all the inter-body interactions between particles in the two bodies, one may arrive at 
the final form of the homogenized interaction energy for the adhesive contact,

�C =
∫
�1

∫
�2

β1β2φ(r)dv2dv1, r = |x1 − x2|, (5)

where β1 and β2 represent the current particle densities located at points x1 ∈ �1 and x2 ∈ �2.
The first variation of the contact interaction energy is,

δ�C =
∫
�1

∫
�2

β1β2

(
∂φ(r)

∂x1
· δu1 + ∂φ(r)

∂x2
· δu2

)
dv2dv1 (6)

If we define

b̄1(x1) := −∂�2

∂x1
, �2 =

∫
�2

β2φ(r)dv2 (7)

b̄2(x2) := −∂�1

∂x2
, �1 =

∫
�1

β1φ(r)dv1 (8)

then

δ�C = −
∫
�1

β1b̄1 · δu1 −
∫
�2

β2b̄2 · δu2dv2 (9)

where b̄1 and b̄2 can be viewed as the body forces resulting from the adhesive contact.
Therefore the equilibrium equations of the multiscale contact problem can be expressed as⎧⎨

⎩
∂σ I
∂xI

+ bI + b̄I = 0, in �I

uI = ūI0, on ∂�Iu

tI = σ I nI = t̄I0, on ∂�It

(10)

where ūI0 is the fixed displacement on the essential boundary ∂�Iu and t̄I0 is the traction force on the boundary ∂�It .
Obviously, one can directly solve the problem using standard finite element method (FEM) [27,28]. But as one may notice, 

Eq. (9) involves a double-layer integral over the volumes of the two bodies that requires huge computational cost, posing 
great challenges if one wants to simulate a large system, especially in three-dimension space. In this work, we propose a 
different approach, such that the governing equations of the system can be expressed as
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Fig. 2. The surface integral for the contact model.⎧⎨
⎩

∂σ I
∂xI

+ bI = 0, in �I

uI = ūI0, on ∂�Iu

tI = σ s
I nI + t̄I0, on ∂�It

(11)

In addition to the usual applied traction forces t̄I0, an extra traction forces ts
I = σ s

I nI , resulting from the contact interaction, 
is applied to the system. σ s

I can be viewed as the surface stress tensors coming from the contact interaction. Details of the 
surface stress tensors will be shown in the next section.

3. Surface integral for the contact model

Following the approach outlined in [29,30], we convert the double-layer volume integral to a double-layer surface integral 
in context of continuum mechanics. As shown in Fig. 1, the force applying on an infinitesimal volume element dv1 in body 
�1 due to the presence of an infinitesimal volume element dv2 can be written as,

df = −β1β2
∂φ(r)

∂x1
dv1dv2 = β1β2

∂φ(r)

∂x2
dv1dv2, (12)

where x1 is the position vector of a generic particle in body �1 with a volume dv1 and x2 that of a generic particle in body 
�2 with a volume dv2. The relative distance is defined as r := |x1 − x2|. It is easy to see that the interaction force density 
in �1 due to �2 can be written as,

b̂1 =
∫
�2

df

dv1
dv2 =

∫
�2

β1β2
∂φ(r)

∂x2
dv2 =

∫
∂�2

β1β2φ(r)n2da2, (13)

where n2 and da2 is the surface unit out normal and the corresponding area of the infinitesimal surface element at the 
point of interest on ∂�2, respectively. Thus the interaction force density in �1 due to the presence of da2 ∈ ∂�2 is

db̂1 = β1β2φ(r)n2da2 (14)

The corresponding interaction force in �1 can then be expressed as

F1 =
∫
�1

db̂1dv1 = β1β2

∫
�1

φ(r)n2da2 dv1 (15)

As shown in Fig. 2, if we partition �1 into infinite number of spherical cones, with B Ai1 the axis of these cones, then 
the infinitesimal volume element dv1 can be expressed as dv1 = t2dαdt . B and Ai1 are the intersection points on ∂�2 and 
∂�1 when one connects the center of the volume element dv1 with that of dv2. dαi is the solid angle of the cone, and t is 
the distance to the apex of the cone B . Notice that the force in Eq. (15) can be evaluated by the summation of a series of 
integrals along the cone axes,

F1 = β1β2

Ncones∑
i=1

(n2da2)dαi

si2∫
si1

φ(t)t2dt

= β1β2

Ncones∑
i=1

(n2da2)dαi

⎛
⎝ ∞∫

si2

φ(t)t2dt −
∞∫

si1

φ(t)t2dt

⎞
⎠ (16)

where si1, si2 are distances from the apex of the i-th cone (B) to the intersections of the cone axis with ∂�1 (Ai1 and Ai2), 
respectively.
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It is assumed that the potential function φ(t) decays faster than 1/t3, such that the integrals in the equation above 
remain finite. Therefore the interaction force F1 in �1 due to the presence of da2 can now be written as the sum of a series 
of integrals,

F1 = β1β2

Ncones∑
i=1

⎛
⎜⎝n2da2dαi

2∑
j=1

(−1) j+1

∞∫
si j

φ(t)t2dt

⎞
⎟⎠=

Ncones∑
i=1

nint∑
j=1

Fi j
1 =

Nint∑
k=1

dF1 (17)

where Ncones represents the total number of infinitesimal spherical cones, nint the number of intersections of the ith cone 
axis with ∂�1, Nint the total number of intersections with ∂�1 for all spherical cone axes, and dF1 = Fi j

1 the contact 
interaction force corresponding to the jth intersection of the ith cone axis with ∂�1.

It is not hard to imagine that all together, these intersections points (k = 1, Nint) form exactly the surface ∂�1, if �1 is 
discretized into infinite number of spherical cones such that the solid angle dαi → 0, i = 1, 2, . . . . The proposed partitioning 
of the interaction force F1 to dF1 aims to represent the successive contribution from each infinitesimal surface element dai

1

associated with a generic intersection point Aij on ∂�1. The mathematical expression for Fi j
1 is

Fi j
1 = β1β2n2da2dαi(−1) j+1

∞∫
si j

φ(t)t2 dt (18)

where si j is the distance from the apex B to the intersection Aij and dα j is the solid angle of the cone with axis B Aij . Set 
r1 and r2 as the position vectors on ∂�1 and ∂�2, respectively, then direction of the cone axis can be obtained e = r12/s, 
where r12 := r1 − r2 and s = ‖r12‖. Based on the definition of solid angle, s2

i jdα j is the projection area of dai
1 onto the cone 

axis e,

s2
j dα j = (−1) j+1e · n1dai

1 = (−1) j+1 1

s j
r12 · n1dai

1 (19)

where n1 is the unit surface out-normal at point r1. Substituting Eq. (19) into Eq. (18), one can obtain,

Fi j
1 = β1β2(n2 ⊗ r12) · n1da2dai

1
1

s3
i j

∞∫
si j

φ(t)t2dt (20)

Define the function

ψ(r) = 1

r3

∞∫
r

φ(t)t2 dt, r > 0 (21)

and drop the indices i and j, the force in Eq. (20) can be written as

dF1 = (β1β2(n2 ⊗ r12) · n1ψ(s))da2da1, (22)

which represents the interaction force acting on an infinitesimal element da1 ∈ ∂�1 due to the presence of da2 ∈ ∂�2. Using 
the Nanson’s formula nda = J F−T NdA, Eq. (22) can be rewritten as

dF1 =
{
β10β20

[(
F−T N2

)
⊗ r12

]
·
(

F−T N1

)
ψ(s)

}
dA2dA1, (23)

where β10, β20 are the particle densities, N1, N2 the unit-out normals and dA2, dA1 the infinitesimal surface element areas 
in the reference configuration.

Similarly, the interaction force applied on an infinitesimal surface element da2 ∈ ∂�2 due to the presence of an infinites-
imal surface element da1 ∈ ∂�1 can be derived as,

dF2 = (β1β2(n1 ⊗ r21) · n2ψ(s))da1da2, (24)

Rewrite the equation above in the reference configuration, we have

dF2 =
{
β10β20

[(
F−T N1

)
⊗ r21

]
·
(

F−T N2

)
ψ(s)

}
dA1dA2, (25)

Reorganizing Eq. (22) and (24), one may get

dF1

da1
= [β1β2(n2 ⊗ r12)ψ(s)da2] · n1 (26)

dF2 = [β1β2(n1 ⊗ r21)ψ(s)da1] · n2 (27)

da2
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Define

ts
I := dFI

daI
, σ s

I := βIβ J (n J ⊗ rI J )ψ(s)da J , I, J = 1,2, I �= J (28)

and Eq. (26) and (27) can then be written as

ts
I = σ s

I nI (29)

where σ s
I and ts

I are the surface stress tensor and the corresponding traction force on ∂�I

Remark 1.
1. From Eq. (22), one can see that dF1 is in the direction of n2, i.e., the contact force applying on da1 due to the presence of 
da2 is in the unit out normal of ∂�2 at the point of interest, which indicates that the contact interaction here is frictionless.
2. In general, dF1 �= −dF2, but the total force applying on body �1 due to the presence of body �2 is equal to that acting 
on body �2 due to the presence of body �1, i.e., 

∑
dF1 =∑

dF2, as one would expect from Newton’s third law.
3. In addition, the contact force dF1 can also be viewed as the integral of the negative gradient of the following surface 
potential,

�C,s =
∫

∂�1

∫
∂�2

β1β2u(s)(n1 · n2)da1da2 (30)

where s is the distance between the points from the two surfaces, and u(s) is the potential defined as

u(s) =
∫

ψ(s)sds . (31)

4. Galerkin weak form of the adhesive contact model

In this section, the Galerkin weak form formulation of the proposed multiscale contact model shall be presented. Con-
sider the continuum system shown in Fig. 1, the total kinetic energy of the system can be written as

K tot =
2∑

I=1

K I =
2∑

I=1

∫
�I

1

2
ρI v

2
I dv I , (32)

where ρI and vI = u̇I are the mass density and velocity field in the body �I , I = 1, 2, respectively. The total Lagrangian of 
the system is given by

L = �tot − K tot, (33)

where K tot and �tot are the total kinetic energy and potential energy of the system, respectively. The Hamilton principle 
requires that the action

S =
t2∫

t1

Ldt (34)

attains its stationary value for true solution, that is δS = 0 holds for all kinematically admissible variations:

δS =
t2∫

t1

δLdt = 0

=
t2∫

t1

{
2∑

I=1

[
δ�int,I + δ�ext,I − δK I

]
+ δ�C,s

}
dt, ∀δuI (35)

The first variation of the kinetic energy for body �I is given by

δK I =
∫
�I

ρI vI · δvIdv I . (36)

By using integration by parts,
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t2∫
t1

ρI vI · δvIdt = (ρI vIδuI )
t2
t1

−
t2∫

t1

ρI v̇IδuIdt = −
t2∫

t1

ρI v̇IδuIdt, (37)

where δuI is chosen to be zero at time t1 and t2. By switching the order of integration, one can obtain,

t2∫
t1

δK Idt =
t2∫

t1

∫
�I

ρI vI · δvIdv Idt = −
t2∫

t1

∫
�I

ρI v̇IδuIdv Idt (38)

Following the derivation in Section 3, one may see that the first variation of the contact interaction energy �C,s can be 
expressed as

δ�C,s =
∫

∂�1

∫
∂�2

β1β2 [(n2 ⊗ r12) · n1ψ(s) · δu1 + n1 ⊗ r21) · n2ψ(s) · δu2] da2da1. (39)

Since Eq. (35) is valid for all nodal virtual displacements δuI , the expression inside the bracket should be equal to zero, that 
is,

2∑
I=1

⎡
⎢⎣∫

�I

ρI v̇IδuIdv I +
∫
�I

σ I : ∂δuI

∂xI
dv I

⎤
⎥⎦+

∫
∂�1

∫
∂�2

β1β2 [(n2 ⊗ r12) · n1ψ(s) · δu1

+ (n1 ⊗ r21) · n2ψ(s) · δu2] da2da1 =
2∑

I=1

⎡
⎢⎣∫

�I

ρI bI · δuIdv I +
∫

∂�I T

tI · δuIds

⎤
⎥⎦ , ∀δuI , I = 1,2 (40)

This is the Galerkin weak form of the multiscale adhesive contact model.

5. Computational algorithm and computer implementation

In this section, using standard FEM method, e.g. [27,28], we discretize the weak form of Eq. (40), from which the global 
mass matrix, internal force vector, external force vector, and the contact force vector are identified. The computational 
algorithms and the computer implementation details for both quasi-static and explicit dynamic simulations are presented 
below.

Consider the following interpolations of the displacement field uI and the corresponding variation δuI for body �I ,

uI (x) =
nnode∑
A=1

N A
I (x)dA

I , I = 1,2 (41)

and

δuI (x) =
nnode∑
A=1

N A
I (x)δdA

I , I = 1,2 (42)

where nnode denotes the number of nodes in the system, N A(x) is the finite element shape function associated with node A, 
and dA

I and δdA
I are the displacement and the corresponding virtual displacement at node A. In practical application, 

Eq. (41) and (42) are expressed element-wisely, i.e.,

uI (x)|�e
I
=

nen∑
A=1

N A
I (x)dA

I I = 1,2 (43)

and

δuI (x)|�e
I
=

nen∑
A=1

N A
I (x)δdA

I I = 1,2 (44)

where nen is the number of nodes for each element.
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Substituting Eq. (43) and (44) into Eq. (40) and reorganizing different terms, one may obtain

2∑
I=1

nelem∑
iel=1

nen∑
A=1

nen∑
B=1

δdA
I ·
∫
�e

I

ρI N A
I N B

I d̈B
I dv I +

2∑
I=1

nelem∑
iel=1

nen∑
A=1

δdA
I ·
∫
�e

I

σ I
∂N A

I

∂xI
dv I

−
2∑

I=1

nelem∑
iel=1

nen∑
A=1

δdA
I ·
∫
�e

I

ρI N A
I bIdv I −

2∑
I=1

nelem∑
iel=1

nen∑
A=1

δdA
I ·

∫
∂�e

T I

N A
I tIdsI

+
2∑

I=1

nselem1∑
isel=1

nselem2∑
jsel=1

nsen∑
A=1

∫
∂�e

1

∫
∂�e

2

β1β2N A
I (n J ⊗ rI J ) · nIψ(s)da2da1, I = 1,2 (45)

which is essentially

δdI ·
(

MI d̈I + fint
I + fcont

I − fext
I

)
= 0, I = 1,2 (46)

where we have defined the following quantities

MI =
nelem∑
iel=1

nen∑
A=1

nen∑
B=1

∫
�e

I

ρI N A
I N B

I dv I (47)

fint
I =

nelem∑
iel=1

nen∑
A=1

∫
�e

I

σ I
∂N A

I

∂xI
dv I (48)

fext
I =

nelem∑
iel=1

nen∑
A=1

∫
�e

I

ρI N A
I bIdv I +

nelem∑
iel=1

nen∑
A=1

∫
∂�e

T I

N A
I tIdsI (49)

fcont
I =

nselem1∑
isel=1

nselem2∑
jsel=1

nsen∑
A=1

∫
∂�e

1

∫
∂�e

2

β1β2N A
I (n J ⊗ rI J ) · nIψ(s)da2da1, I, J = 1,2, I �= J , (50)

in which, nselem1 and nselem2 are the total number of surface elements on ∂�1 and ∂�2, respectively, nsen is the number 
nodes for each surface element, nI and n J are the unit surface out-normal at corresponding surface points rI ∈ ∂�I and 
r J ∈ ∂� J , and rI J = rI − r J is the vector pointing from rI to r J . Due to the arbitrariness of the variation δdI , Eq. (46) can 
be reduced to

MI d̈I + fint
I + fcont

I − fext
I = 0, I = 1,2 (51)

which is the discretized equations of motion of the system.
Define the resultant force vector

fI (d) = fext
I (dI ) − fint

I (dI ) − fcont
I (d1,d2), I = 1,2 (52)

and then the discretized equations of motion in Eq. (51) can be written as

MI d̈I = fI (d), I = 1,2 (53)

5.1. Implementation: quasi-static case

For the quasi-static case, we have d̈I = 0 and the static equilibrium is simply governed by the nonlinear equation for 
each body �I

fI (d) = 0, I = 1,2 (54)

This type of equation can only be solved approximately. One may notice that the contact interaction force fcont
1 and fcont

2 both 
depend on the two displacement vectors d1 and d2 of the two interaction bodies, which is expected as they are coupled. 
Thus we have to solve the displacement fields in the two bodies simultaneously. In this respect, we rewrite Eq. (54) as

f(d) = fext − fint(d) − fcont(d) = 0 (55)



428 H. Fan et al. / Journal of Computational Physics 302 (2015) 420–438
where d = [d1; d2], f(d) = [f1(d); f2(d)], fext(d) = [fext
1 (d1); fext

2 (d2)], fint(d) = [fint
1 (d1); fint

2 (d2)], and fcont(d) = [fcont
1 (d);

fcont
2 (d)]. Under the condition of dead external load, that is fext(d) is independent of the displacement field d, the whole 

system is conservative and we can employ the famous Newton–Raphson method [31] to solve Eq. (55).
To apply the Newton–Raphson method, for each iteration step in a load step, we not only need to compute all the force 

vectors, but also the tangent stiffness matrices related to the displacement dependent force vectors. For the calculation of 
the external and internal force vectors (fext and fint), as well as the stiffness matrix Kint = ∂fint

∂d , we refer to the nonlinear 
finite element literature [2,31]. Instead, we are going to focus on the computation of the contact interaction force vector. 
A detailed derivation of the contact stiffness matrix is provided in Appendix A.

In practice, the global force vectors or matrices are assembled from element force vectors and matrices. For the contact 
problem, we shall consider the contact interaction from surface elements from the two bodies �e

i and �e
j . Obviously, if the 

two elements are from the same body, say �1, then there would be no contact interaction, and hence no contribution to 
the contact force vector or matrix. Thus we introduce the following characteristic function

χ(�e
i ,�

e
j) =

{
0, if elements i and j belong to the same body
1, if elements i and j belong to different bodies

(56)

With this characteristic function, the element contact interaction force vectors acted on element ∂�e
i and ∂�e

j can be 
written as

fecont,i
i j =

∫
∂�e

i

∫
∂�e

j

χ(�e
i ,�

e
j)βiβ jN

i(n j ⊗ ri j) · niψ(s)da jdai (57)

and

fecont, j
i j =

∫
∂�e

i

∫
∂�e

j

χ(�e
i ,�

e
j)βiβ jN

j(ni ⊗ r ji) · n jψ(s)da jdai (58)

where ni and n j are the unit surface out-normals at surface points ri and r j , respectively, ri j = ri − r j is the relative position 
vector with length s = ‖ri j‖, ψ(s) is the function defined in Eq. (21) and Ni , N j denote the shape function for element i and 
element j, respectively. The shape function for a generic element with nen nodes can be written in matrix form as

N =
[

N11, N21, . . . , Nnen 1
]

(59)

in which, 1 is the identity matrix and N A , A = 1, 2, . . . , nen is the value of the shape function at each node A.
By using the Nanson’s formula nda = J F−T NdA and noticing βi0 = Jβi , β j0 = Jβ j , one can convert them into the refer-

ence configuration as

fecont,i
i j =

∫
∂�e0

i

∫
∂�e0

j

χ(�e
i ,�

e
j)βi0β j0Ni

[
(F−T

j N j) ⊗ ri j

]
· (F−T

i Ni)ψ(r)dAidA j (60)

and

fecont, j
i j =

∫
∂�e0

i

∫
∂�e0

j

χ(�e
i ,�

e
j)βi0β j0N j

[
(F−T

i Ni) ⊗ r ji

]
· (F−T

j N j)ψ(r)dAidA j (61)

where Ni , N j and Fi , F j denote the initial unit surface out-normals and the deformation gradient tensors at the points of 
interest. Notice that the meaning of Ni and Ni are completely different.

As one may notice, the evaluations of the contact interaction forces expressed in Eqs. (60) and (61) require the unit 
out-normals (N1 and N2) in the reference configuration. The computational formula to obtain these out-normals for an 
arbitrarily shaped body is provided in Appendix B.

The algorithm flow chart for quasi-static analysis of the proposed contact model is shown in Table 1.

5.2. Implementation: dynamic case

In the dynamic case, one has to evaluate acceleration of the displacement field. For the sake of simplicity, the following 
lumped mass matrix is employed in transient analysis

MI =
nelem∑
iel=1

nen∑
A=1

∫
�e

ρI N A
I 1dv I , I = 1,2 (62)
I
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Table 1
Solution algorithm for the quasi-static analysis of the proposed contact formulation.

Loading loop: apply load in increments, e.g., prescribed forces and displacements
Newton–Raphson iteration: to obtain the solution displacement of Eq. (55)
• provide an initial guess u0, e.g., set u0 = 0 at first load step

or based on the solution of the previous load step.
• iterate until convergence: (energy residual KT

tot�u < TOL)
1. loop over the volume elements �e to compute feint and keint

assemble them into the global force vector ftot and stiffness matrix Ktot

2. double loop over the surface elements to compute fecont and kecont

(1). compute kecont and fecont

(2). assemble fecont and kecont into ftot and Ktot

3. impose the boundary condition
4. solve Ktot�u = −ftot

5. update ui+1 = ui + �u

Table 2
Solution algorithm for the explicit dynamic analysis of the proposed contact formulation.

Preprocess: compute the mass matrix M, initialize the displacement u0, velocity v−1/2 and acceleration a0

time loop: at each time step
1. compute the half step velocity vn+ 1

2
by vn+ 1

2
= vn− 1

2
+ 1

2 an�t

2. compute the full step displacement dn+1 by dn+1 = dn + vn+ 1
2
�t

3. prescribe the essential boundary conditions; e.g., displacement boundary condition
4. loop over the volume elements �e to compute feint

assemble feint into the global force vector ftot

5. double loop over the surface elements to compute fecont

(1). compute fecont are based on Eq. (60) and (61)
(2). assemble fecont into ftot

6. compute the full step velocity vn+1 = vn+ 1
2

+ 1
2 �tan+1, if needed.

where 1 is the identity matrix of dimension ndim by ndim. By using central difference method in the time integration, the 
algorithm flow chart for the explicit dynamic analysis is shown in Table 2.

6. Numerical examples and discussions

In this section, we present three numerical examples, in which the proposed surface formulation is employed to solve 
the adhesive contact mechanics problems.

6.1. Example: an indentation problem

To test the numerical performance of the proposed surface contact formulation, the following model problem is inves-
tigated. Consider the problem of a cylinder, with radius R0, located above the half space, which are pushed together by 
a displacement u, as shown in Fig. 3(a). The half-space is modeled by a block of size 5R0 × 10R0, such that there would 
be no spurious boundary effects. An initial gap of g0(u) = 0.2R0 exists between the half space and the lowest point of the 
cylinder. In the simulation, the cylinder and the half-space are both modeled by the hyperelastic Neo-Hookean material with 
Young’s modulus E0 and Possion’s ratio ν = 0.2. The contact interacting parameters are set to be σ0 = 0.1R0, ε = 3

2 β2
0 R3

0. 
The cylinder is pushed down by the relative displacement u, which causes the resultant reaction force P (u) in the vertical 
direction. For simplicity, the problem is considered in the state of plane strain. A quasi-static analysis of the problem is 
conducted by FEM. The model is discretized into 588 nodes and 534 quadrilateral elements, as shown in Fig. 3(b). Notice 
that the mesh is refined at the contact region, so as to reduce the computational cost.

In the simulation, a set of reduced units is used. The radius of the cylinder R0, Young’s modulus E0 of the Neo-Hookean 
material, and the particle density β0 of both material are selected to be the three basic units. The unit of stress is repre-
sented by E0/R3

0. Both the volume and surface integration methods are used in this quasi-static model problem. For both 
methods, the indenter vertical advance step size is chosen as 0.01R0 in the simulation. To make sure the stability and 
accuracy, we use 5 × 5 quadrature points in the volume integral method, and 5 quadrature points in surface integration 
method. The deformed mesh and the stress I1 = tr(σ ) is shown in Fig. 4 for u = R0. It can be seen that the deformations 
are mainly concentrated in the refined region. The resultant reaction force P (u) and the gap between the cylinder and the 
half space g(u) are shown in Fig. 5. One can see that there are small margins for both curves of the two methods. This can 
be attributed to the following reasons. In the numerical computation, the contact interaction forces are obtained through 
the integration of the Gauss quadrature points. For the volume integration based method, no matter how small the size 
of the element is, one can never have a quadrature point located on the surface of the bulk element. On the other hand, 
surface integral method obtains the interaction force based on quadrature points on the surface element. With the same 
macro configurations e.g. positions of the two macro bodies, meshes, etc., the surface integration method would provide 
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Fig. 3. The model indentation problem. (a) Geometry and boundary conditions. (b) FEM mesh.

Fig. 4. Stress distribution. (a) Stress I1 = tr(σ ) at load step u = R0. (b) Enlargement of the refined region.

Fig. 5. Main results of the indentation problem: (a) The resultant reaction force P (u) versus the prescribed displacement; (b) The gap g(u) versus the 
prescribed displacement.

larger repulsive forces, because the distance between two integration points from two macro bodies are much closer. If 
one does not consider the errors from interpolations, i.e., the approximation of the curvy edges, the surface integral shall 
provide a better approximation of the interaction force, due to the fact that the main contributions of the interaction forces 
between the two interacting bodies comes from particles with the closer distances, particularly from particles located on 
the surface.

To check the rate of convergence of the proposed surface formulation, five successive meshes with the mesh sizes of 
h1 = 0.625R0, h2 = 0.3125R0, h3 = 0.15625R0, h4 = 0.078125R0 and h5 = 0.0390625R0 are generated. The meshes for the 
case of h1 and h4 are shown in Fig. 6. By treating the finest mesh of h5 as the ‘exact’ solution, the following relative error 
e( f ) of a generic quantity f (h) is defined as

e( f ) :=
∥∥∥∥ f (h) − f (h5)

∥∥∥∥ . (63)

f (h5)
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Fig. 6. Different meshes for convergence study. (a) Coarse mesh. (b) Fine mesh.

Fig. 7. Convergence of the FEM solution. loglog plots of the relative errors e(u) and e(�). The slopes of the two curves are n1 = −1.06 and n2 = −1.12.

Fig. 8. Sliding contact: geometry of the two sliding half spheres.

Two quantities are checked, the vertical displacement u(h) at the top middle point of the block and the total potential 
energy of the system �(h) (internal elastic energy and the contact interaction energy). Fig. 7 shows the loglog plot of 
relative errors for both of them. One can easily see that both results are convergent. Linear fittings of the two curves yield 
the slopes of n1 = −1.06 for e(u) and n2 = −1.12 for e(�), revealing that the proposed method is approximately of first 
order accuracy with respect to the mesh size.

6.2. Example: frictionless sliding

In this example, we present a numerical simulation of applying the adhesive contact model to study the frictionless 
sliding contact between two half spheres as shown in Fig. 8. This idealized contact model can happen between the rough 
surfaces of two macro bodies. The two half spheres are both modeled as hyperelastic Neo-Hookean materials [32], with 
Young’s modulus E0 and Possion’s ratio ν = 0.2. The radius of the sphere is R0 and the corresponding contact interacting 
parameters are provided as σ0 = 0.15R0, ε = 3

2 β2
0 R3

0. As a comparison, quasi-static simulations are carried out for both the 
method developed here and the volume integral based approach proposed in [25].
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Fig. 9. Sliding contact: I1 stress distribution of the frictionless sliding of two half spheres.

Fig. 10. Horizontal resultant force versus the prescribed displacement. The results are obtained from quasi-static simulations.

Table 3
Computational efficiency of the two methods. The computation is carried out in an Intel Core i7-4700HQ processor with main frequency 2.40 GHz.

VI, Mesh 1 SI, Mesh 1 VI, Mesh 2 SI, Mesh 2

Number of dofs 684 684 1668 1668
Number of elements (volume/surface) 300 80 768 132
Number of contact pairs 5.6 × 107 1.6 × 105 3.7 × 108 4.4 × 105

CPU time 1.326 s 0.0312 s 7.77 s 0.0936 s

In the simulation, the base of the lower half sphere is fixed with zero displacement and that of the upper half sphere 
is subjected to an imposed nonzero displacement u in the horizontal direction. The total resultant reaction force at the 
base of the upper half sphere in the horizontal direction is denoted as P , which is a function of u. Figs. 9(a–c) show the 
deformation and the pressure (I1 = tr(σ )) within the two half spheres, for the case of u = 0.2R0, 0.4R0, 0.6R0. The stress 
and deformation of the two half spheres are symmetric, due to the symmetric contact interaction forces, which is expected. 
As can be seen, the two asperities are undeformed and stress free at the beginning and the end of the sliding process. 
Adhesion is a long-range effect characterized by the attractive forces within large separations and repulsive forces at small 
ones. The relation of the resultant reaction force P (u) versus the prescribed displacement u is shown in Fig. 10, for the 
both methods. The work required to move the right half sphere can be described by the area between the curve and the 
u axis. From the two curves in Fig. 10, one can see that during the sliding contact process, attractive forces first dominate, 
but they are gradually overpowered by the repulsive forces. It can be easily confirmed numerically that the total work for 
this process is equal to zero and the considered process with the two different formulations is energy conserving, due to 
the fact that the contact interaction force between the two half spheres is frictionless. However, If dissipative processes are 
included, e.g. through plastic deformations, the total energy of system is not going to be conserved.

To assess the computation efficiency of the proposed formulation, a comparison study of the two methods in computing 
the adhesive contact interaction forces and contact tangent stiffness matrix is conducted, and the main comparison param-
eters are listed in Table 3. Two sets of meshes are used in the comparison simulations. The CPU time denotes the real time 
that it costs in the computation of the contact forces and stiffness matrix in one single assembling process. It is readily to 
see that the computation cost of the surface integral method is less than that of the volume integral approach.

6.3. Example: dynamic collision of two cylinders

In this example, we apply the proposed the method to simulate the random collision of two deformable solids in a closed 
box. In doing so, we hope to demonstrate the ability of the proposed method in simulation of dynamic contact. In specific, 
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Fig. 11. Impact of two cylinders, discretized by quadrilateral elements.

Fig. 12. Energy history for the impact of two cylinders.

we are considering the impact of two hyperelastic cylinders inside a rigid box. The two cylinders are treated in the state 
of plain strain, with a radius of 1.0 and are discretized with four node quadrilateral elements, as shown in Fig. 11. Notice 
that a mesh of the rigid wall is needed, for the computation of the contact interaction forces between the cylinders and the 
wall. The hyperelastic Neo-Hookean material model is assumed for the two cylinders with Young’s modulus E = 1.0 × 103, 
Poisson’s ratio ν = 0.2, and density ρ = 1.0. The contact interaction parameters between any two of the three objects (two 
cylinders and the wall) are β1 = β2 = 1.0, σ0 = 0.2 and ε = 1.5, with the interaction potential given by Eq. (4). We are 
interested in energy conservation of the system in a long time simulation. A constant time step �t = 0.002 is chosen in 
the simulation. The left cylinder is given an initial velocity of vx = 0.6, v y = −0.9. The explicit dynamic solution algorithm 
in Table 2 is employed. The total energy of the system contains three different parts, the kinetic energies and elastic strain 
energies of the two cylinders and the contact interacting energy among the wall and the cylinders. The time history of the 
energies is plotted in Fig. 12. As can be seen, the total energy is conserved during the simulation. Figs. 13 and 14 depict the 
time sequence results. The left cylinder first hits the bottom wall at t ≈ 2.2, resulting in a decrease of the kinetic energy 
and an increase of the internal (strain) energy and the contact interaction energy, but the total energy remains at the same 
level. After bouncing from the wall, the left cylinder impacts the right cylinder at rest, which happens at t ≈ 3.8, as can 
be seen from the energy history and the time sequence plot. In fact, each sudden jump of the kinetic energy shown in 
Fig. 12 indicates an impact, either between a cylinder with the wall or between the two cylinders. Nevertheless, the total 
energy of the system remains at the same level even after a very long period of simulation. Compared to classic dynamic 
contact methods in macro scale simulations, here we do not need any enforcement of the non-penetrability condition or 
other advanced techniques to ensure the conservation of energy [33].

7. Conclusions

In this work, a novel atomistic enriched computational adhesive contact mechanics formulation is developed to study 
macroscopic interaction between arbitrarily shaped deformable solids. The proposed multiscale adhesive contact mechanics 
formulation is based on an atomistically induced surface traction formulation, which makes use of the microscopic interac-
tion forces between individual atoms or molecules in the interacting bodies, and then convert the interaction into surface 
traction. By doing so, the double-layer volume integral describing the contact interaction (energy, force vector, matrix) is 
reformulated into a double-layer surface integral through a mathematically consistent approach that employs the divergence 
theorem and a special partitioning technique.

The proposed adhesive contact model is formulated in the framework of continuum mechanics, and its computational 
formulation is formulated based the Galerkin variational weak formulation. The implementation of computational algorithms 
is based on the standard finite element discretization, quadrature integration, and time integration for both quasi-static and 
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Fig. 13. Time sequence of the impact of two cylinders, t = 0 → 11.0. The contour shows the instant von Mises stress inside the two cylinder.

dynamic problems. Specially, the contact stiffness matrix corresponding to the adhesive contact interaction force expressed 
in surface integrals is derived.

Three numerical examples are presented. The first example is a model indentation problem. By conducting quasi-static 
simulations of the model problem using a series of meshes, it is shown that the proposed method is of first order conver-
gence with respect to the mesh size. The second one is a quasi-static analysis of the frictionless sliding of two half spheres. 
By comparing to the volume integral approach, it is shown that within the same mesh configuration, the proposed surface 
approach is faster and more accurate. Because there is no huge penalty constant involved, the stiffness matrix of the system 
will in general not be ill-conditioned, in contrast to what usually happened in classic penalty based contact method. The 
third example evolves the dynamic contact/impact of the two cylinders with a rigid wall. It is revealed that the proposed 
model is energy preserving even in a long time dynamic simulation without any advanced techniques [33].
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Fig. 14. Time sequence of the impact of two cylinders, t = 12.0 → 20.0. The contour shows the instant von Mises stress inside the two cylinder.

Appendix A. Tangent stiffness matrix of the contact model

Contribution of the force vector fecont,i
i j to the element stiffness matrix of �e

i can be obtained by chain rule,

kecont,ii = ∂fecont,i
i j

∂ui
= ∂fecont,i

i j

∂xi
Ni (64)

where

∂fecont,i
i j

∂xi
=

∫
∂�e0

i

∫
∂�e0

j

χ(�e
i ,�

e
j)βi0β j0Ni(F−T

j N j) ⊗
∂
[

ri j · (F−T
i Ni)

]
∂xi

ψ(r)dAidA j

+
∫

∂�e0
i

∫
∂�e0

j

χ(�e
i ,�

e
j)βi0β j0Ni

[
ri j · (F−T

i Ni)
]
(F−T

j N j) ⊗ ∂ψ(r)

∂xi
dAidA j (65)

in which

∂
[

ri j · (F−T
i Ni)

]
∂xi

=
(

∂ri j

∂xi

)T

(F−T
i Ni) +

(
∂(F−T

i Ni)

∂xi

)T

ri j (66)

and



436 H. Fan et al. / Journal of Computational Physics 302 (2015) 420–438
∂ψ(r)

∂xi
= ∂ψ(r)

∂r

∂r

∂xi
= ∂ψ(r)

∂r

ri j

r
(67)

The potential function ψ(r) is defined in Eq. (21). In the case of the 12–6 LJ body–body interacting potential φ(r) defined 
in Eq. (4), ψ(r) can be obtained as

ψ(r) = 2

3
ε

[
1

6

(σ0

r

)12 −
(σ0

r

)6
]

(68)

The corresponding derivative

∂ψ

∂r
= 4ε

r

[
−1

3

(σ0

r

)12 +
(σ0

r

)6
]

(69)

In Eq. (66),

∂ri j

∂xi
= I (70)

and (
∂(F−T

i Ni)

∂xi

)T

ri j = (ri j ⊗ Ni) : ∂F−T
i

∂xi
+
(

∂Ni

∂xi

)T

(F−1
i ri j) (71)

where

∂Ni

∂xi
= ∂Ni

∂Xi
F−1

i (72)

The derivative ∂F−1
i

∂xi
can be obtained in the following expressions,

F −1
Bi FiC = δBC

⇒ ∂ F −1
Bi

∂ X A
FiC + F −1

Bi

∂ FiC

∂ X A
= 0

⇒ ∂ F −1
Bi

∂ X A
= −F −1

Bk

∂ FkC

∂ X A
F −1

Ci

⇒ ∂ F −1
Bi

∂x j
= −F −1

Bk GkC A F −1
Ci F −1

A j (73)

where

GkC A = ∂ FkC

∂ X A
= ∂2xk

∂ XC ∂ X A
(74)

Define the matrix

Ks
ii = (F−T

j N j) ⊗
∂
[

ri j · (F−T
i Ni)

]
∂xi

ψ(r) +
[

ri j · (F−T
i Ni)

]
(F−T

j N j) ⊗ ∂ψ(r)

∂xi
(75)

Based on the derivation above, matrix Ks
ii can be expressed as

Ks
ii = (F−T

j N j) ⊗
[

F−T
i Ni + (ri j ⊗ Ni) : ∂F−T

i

∂xi
+ F−T

i

(
∂Ni

∂Xi

)T

(F−1
i ri j)

]
ψ(r)

+
[

ri j · (F−T
i Ni)

] ∂ψ(r)

∂r

1

r
(F−T

j N j) ⊗ ri j (76)

The contribution of the force vector fecont,i
i j to the element stiffness matrix of �e

i can then be written as

kecont,ii =
∫

∂�e0
i

∫
∂�e0

j

χ(�e
i ,�

e
j)βi0β j0NiKs

iiN
idAidA j (77)

Similarly, one can define matrix Ks , Ks and Ks

i j j j ji
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Ks
i j =

[
ri j · (F−T

i Ni)
]
ψ(r)

(
F−T

j

∂N j

∂X j
+ N j · ∂F−1

j

∂X j

)
F−1

j − ψ(r)(F−T
j N j) ⊗ (F−T

i Ni)

+
[

ri j · (F−T
i Ni)

] ∂ψ(r)

∂r

1

r
(F−T

j N j) ⊗ r ji

(78)

Ks
j j = (F−T

i Ni) ⊗
[

F−T
j N j + (r ji ⊗ N j) : ∂F−T

j

∂x j
+ F−T

j

(
∂N j

∂X j

)T

(F−1
j r ji)

]
ψ(r)

+
[

r ji · (F−T
j N j)

] ∂ψ(r)

∂r

1

r
(F−T

i Ni) ⊗ r ji (79)

and

Ks
ji =

[
r ji · (F−T

j N j)
]
ψ(r)

(
F−T

i

∂(Ni)

∂Xi
+ Ni · ∂F−1

i

∂Xi

)
F−1

i − ψ(r)(F−T
i Ni) ⊗ (F−T

j N j)

+
[

r ji · (F−T
j N j)

] ∂ψ(r)

∂r

1

r
(F−T

i Ni) ⊗ ri j (80)

and the other contributions of the force vector fecont,i
i j and fecont, j

i j to the element stiffness matrices of �e
i and �e

j become

kecont,i j =
∫

∂�e0
i

∫
∂�e0

j

χ(�e
i ,�

e
j)βi0β j0NiKs

i jN
jdAidA j (81)

kecont, j j =
∫

∂�e0
i

∫
∂�e0

j

χ(�e
i ,�

e
j)βi0β j0N jKs

j jN
jdAidA j (82)

and

kecont, ji =
∫

∂�e0
i

∫
∂�e0

j

χ(�e
i ,�

e
j)βi0β j0N jKs

jiN
idAidA j (83)

Notice that in general, the contact force vector keconts,i
i j �= keconts, j

i j , but 
numelsi∑

i
kecont,i

i j =
numelsj∑

j
kecont, j

i j . Thus the resulting 

global contact stiffness matrix is still symmetric.

Appendix B. Initial out-normals of an arbitrarily shaped body

In standard finite element method, an arbitrarily shaped body is discretized into a finite number of sub domains. In 
three-dimensional space, these sub domains could be tetrahedron, hexahedron, wedge element and so forth. Without loss 
of generality, let’s assume our body is discretized by hexahedrons. In the proposed contact model, Gauss integrations have 
to be performed over the surface of the body (in the reference configuration), i.e., a number of quadrilateral elements. 
Thus we are specifically interested in getting the surface unit out-normals (N) at these Gauss integration points in the 
reference configuration. As shown in Fig. 15, we are interested in finding the unit out normal at the top surface of a generic 
hexahedron element located at X = (X1, X2, X3) in the reference configuration. Consider the Jacobi matrix J = ∂X

∂ξ that maps 
the element from the iso-parametric space to the corresponding physical domain. Denote ξ = (ξ, η, 1) as the corresponding 
point of interest in the iso-parametric space. It is easy to see that the unit surface out-normal at ξ is Nξ = (0, 0, 1). Making 
use of the Nanson’s formula nda = J F−T NdA and by considering J = ∂X

∂ξ as the corresponding deformation gradient of the 
two spaces, one can write

NdA = det(J)J−T NξdAξ (84)

where dA and dAξ are the surface area elements.
Noticing that in the Eq. (84), dA, dAξ and det(J) are scalars and keeping in mind N is a unit vector, one may get

N = J−T Nξ√
(Nξ · JT JNξ )

−1
(85)

where J can be obtained through standard finite element method and Nξ is always given once the corresponding surface is 
determined.
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Fig. 15. A numerical way to obtain the initial surface unit out-normals.
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