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A B S T R A C T

In this work, we employ both the state-based peridynamics and the smoothed particle hydrodynamics
(SPH) to simulate soil fragmentation/ejection induced by the blast of buried explosives. We use peridynamics
representation to model soil medium, and we use SPH representation to model explosive gas. The key
of the simulation is the coupling of the two. In the peridynamics–SPH computational domain, there is
an interphase zone, in which a peridynamic particle can have SPH particles within its own horizon,
while an SPH particle can have peridynamic particles within its supporting domain. The interactions of
the peridynamic and SPH particles in this interphase zone are discussed. By assuming the equivalence
of the two methods in the current configuration, we study how to choose simulation parameters that
can seamlessly couple the two methods. A Drucker–Prager plasticity soil model at finite strain is used
for soil medium and a charge model of equation of state is used to model the buried explosive. Numer-
ical examples are carried out to simulate soil fragmentation/ejection induced by the shock waves from
the buried explosive. It is shown that the numerical results are in general agreement with that of the
experiment.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Modeling and simulation of soil fragmentation/ejection gener-
ated by shock waves from blast loading has been a challenge in
computational mechanics research because of massive fragments
that are almost impossible to use any interpolation field to repre-
sent. The particle method is almost the only method that can
correctly represent the interaction of the soil and the explosive gas,
and characterize the expansion of the explosive gas. Unfortu-
nately for most particle methods, the ones that are accurate are
computationally expensive, and the ones that are fast are inaccu-
rate or lack convergence.

In recent years, Silling [1] proposed a computational nonlocal
continuum mechanics method, which he coined as peridynamics.
It is not only an efficient particle method, but also a convergent par-
ticle method. Peridynamics has two distinct formulations: the bond
based peridynamics and the state based peridynamics. The state-
based peridynamics, in particular, is a meshfree particle method that
not only can accommodate various macroscale constitutive relations,

but also runs fast and is convergent. It has solved quite some ma-
terial and structural failure problems in engineering mechanics
applications, due to its capabilities in representing and capturing
discontinuous deformations in solids and structures during their
failure processes. The state-based peridynamics is a nonlocal con-
tinuum theory of solid mechanics that replaces conventional partial
differential equations with displacement involved integral equa-
tions, which can characterize mechanical behaviors involving
significant discontinuities, for instance, crack. One of the most dis-
tinguishing features of the state-based peridynamics is that it can
seamlessly incorporate any constitutive relations in classical con-
tinuum mechanics framework. Thus in contrast with molecular
dynamics [2], which can only handle problems with limited time
or size scales, the corresponding peridynamics particle formula-
tion provides a computationally efficient algorithm to simulate large
deformations and fragmentation at macroscale. State-based
peridynamics has been successfully applied to a lot of fracture or
damage processes. For example, Warren et al. simulated the defor-
mation and fracture of solid materials [3]; Foster et al. investigated
the viscoplasticity a bar under impact [4]; Weckenr and Mohamed
implemented a state-based viscoelastic peridynamics model
[5]; Tuniki employed state-based peridynamics to predict the
fracture processes of concrete [6]; and Xin et al. simulated the
fragmentation of geomaterial induced by impluse loads using
peridynamics [7].
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In the simulation of soil fragmentation/ejection resulting
from blast loading, the expansion of the explosive gas will deform
and distort the local soil configuration. Thus, conventional mesh-
based Lagrangian methods such as finite element method (FEM)
will fail because of severe mesh distortions. In addition, it is almost
impossible to trace the fast-moving and evolving interface front by
using the conventional Eulerian mesh technique such as the finite
volume method [8]. We would like to point out that the interac-
tion between the fragmented soil medium and the explosive gas
will make the shock wave fronts in the soil and in the gas becom-
ing complex surfaces in three-dimensional space, which also poses
serious challenge even for some advanced techniques such as level
set method.

The SPH method has been utilized to simulate underwater ex-
plosion [9]. But as is well known, the SPH method is developed to
solve hydrodynamics problems, and is not so accurate when it comes
to solid mechanics. In this work, a state-based peridynamics–SPH
(PD-SPH) coupling scheme is employed to address the theoretical
and numerical issues related to the fragmentation of soil under a
high strain rate loading. On the one hand, the state-based
peridynamics offers advantages in handling discontinuities. On the
other hand, the SPH methodology [10] can deal with the dynamic
process of the explosive gas and the moving boundary, given that
it is a Lagrangian particle method with an Eulerian kernel func-
tion [11].

To accurately characterize soil fragmentation driven by blast loads
in the proposed hybrid PD-SPH framework, one needs the correct
constitutive relations for both the soil and the explosives. For the
explosive part, the one used in Reference 9 is adopted. Soils usually
present great nonlinearities after plastic yielding, with pressure-
sensitive yield surfaces [12]. In the literature, there are many
successful constitutive models for soils, such as the Drucker–
Prager (DP) model [13], the Mohr–Coulomb (MC) model [12] and
the Matsuoka–Nakai (MN) model [14]. In this work, the Drucker–
Prager (DP) plasticity model is adopted to characterize the plastic
behaviors of the soil. The DP model has been extensively used in
numerical simulations of soil, rock and concrete structures [15]. It
reduces to a familiar J2 plasticity form when the pressure sensitiv-
ity part vanishes. The material parameters of the DP model for soils
are well documented with experimental calibrations [16]. To conform
with the large deformation and distortion, the DP model at finite
deformation with the Hughes and Winget algorithm is rephrased
in the state-based peridynamics framework for the constitutive
update. In Reference 17, the preliminary study of the PD-SPH cou-
pling approach has been reported by the present author. In this work,
we aim to present a more detailed explanation on the equivalence
of the two methods, especially in the coupling zone. In addition,
the real time simulation and the corresponding experiment vali-
dation of under buried soil explosion are performed.

The paper is organized into six sections. In Section 2, we first
outline the state-based peridynamics and SPH methods, with a
standard Monagphan type artificial viscosity incorporated into
the formulations of both methods, which can help prevent non-
physical particle interpenetrations. In Section 3, we discuss the
interaction of peridynamics and SPH particles in the interphase
zone. By assuming the equivalence of two formulations in the
current configuration, we propose a coupling algorithm between
peridynamics and SPH. In Section 4, a Drucker–Prager plasticity
soil model is presented at finite strain, with the Hughes–Winget
algorithm rephrased in state-based peridynamics framework for
the constitutive update. In Section 5, numerical examples are carried
out to verify the soil modeling in the state-based peridynamics
framework. Finally, by using the proposed PD-SPH coupling algo-
rithm, we present the simulation of soil fragmentation/ejection
induced by the blastic loadings of buried explosive. The compari-
son of the early soil deformations from an explosion experiment

and the corresponding simulation results proves the validity of
the proposed coupling scheme to a certain extent. To close our
presentation, we make a few remarks in Section 6.

2. Overview of the state-based peridynamics and SPH

In this section, we first briefly review the state-based
peridynamics, in which we incorporate the artificial viscosity into
the peridynamics formulation so as to prevent nonphysical parti-
cle interpenetration. Then we outline the basics of the SPH method,
including the SPH equation of state TNT explosive for simulating
blast loading.

2.1. State-based peridynamics

State-based peridynamics is a nonlocal continuum theory of solid
mechanics that replaces conventional partial differential equa-
tions with displacement involved integral equations [18]. In the state-
based peridynamics, a continuum body Ω0 is considered to be a
group of discretized material particles XA with associated volume
VA

0 and mass density ρA
0 , where A = ∞1 2, , ,… is the particle index.

It is assumed that a material particle XA only interacts with par-
ticles XB within a local region, called as a horizion HXA . Typically,
a horizon is chosen to be a circle (2D) or a sphere (in 3D), with the
radius δXA named as the horizon size of particle XA. All the par-
ticles XB AB n, , , ,= 1 2 … inside the horizon HXA are called as the
family of particle XA and nA denotes the total number of particles
in this family. The relative position vector pointing from particle XA

to XB in the reference configuration is called a bond, which shall
be denoted as

X X XA B B A→ = −: (1)

The horizon HXA is defined by

H RX XX XA AA B A B: ,= ∈ ≤ ≤{ }→ →
3 0 δ (2)

Under certain motion or deformation χ, the continuum body Ω0

in the reference configuration deforms and evolves to Ω in the
current configuration. Correspondingly, the material points XA and
XB map to xA and xB respectively. The bond X A B→ becomes

x X X Y XA B B A A B→ →= − = ( ) (3)

where Y is a nonlinear quantity called the deformation state, which
is a vector-state, i.e, a mathematical object in peridynamics theory
analogous to a tensor in classical continuum mechanics. Here, the
deformation state Y maps the undeformed bond X A B→ to a de-
formed bond X A B→ .

Aside from the deformation state, another important vector-
state in the peridynamic theory is the force state T , with which the
balance of the linear momentum can be written as

ρ ρA A A B B B A X AdV B
A

0 0��u T X X T X X b
X

= ( )− ( )[ ] +→ →∫ , , ,
H

(4)

where u is the displacement and b is the external body force.
By establishing an equivalence of the strain energy functionals

[1,18], one can obtain the relation between the force state and the
first Piola–Kirchhoff stress tensor P of classical continuum mechan-
ics as

T X X X P K XX XA A B A B A BA A, → →
−

→( ) = ( ) ⋅ω 1 (5)

where ω X A B→( ) is a positive scalar influence function depending
on the distance of the two particles, X A B→ , and KXA is the refer-
ence shape tensor, defined as

15H. Fan et al./International Journal of Impact Engineering 87 (2016) 14–27



K X X X

X X X

X X

X

X

X

A
A

B

B A

A B A B A B

A B A B A B B

dV

V

= ( ) ⊗

= ( ) ⊗

→ → →

→ →
∈

→

∫
∑

ω

ω
H

H

0 (6)

To compute the first Piola–Kirchhoff stress tensor PXA , one needs
to first obtain the deformation gradient tensor FXA , which can then
be substituted into the constitutive relations in classical continu-
um mechanics. For this purpose, the following shape tensor NXA is
introduced,

N X X X

X X X

X X

X

X

X

A
A

B

B A

A B A B A B

A B A B A B B

dV

V

= ( ) ⊗

= ( ) ⊗

→ → →

→ →
∈

→

∫
∑

ω

ω
H

H

0 (7)

If we assume that the deformations of all the bonds X A B→ within
a horizon HXA is uniform, then the corresponding deformed bonds
can be expressed as

x Y X F XXA B A B A BA→ → →= ( ) = ⋅ (8)

where FXA is a second-order tensor and can be viewed as the ap-
proximated deformation gradient at particle A. Substituting Eq. (8)
into (7) and combining with Eq. (6), one may get

N F X X XX X
X

X X
X

A A

B A

A AA B A B A B BV F K= ⋅ ( ) ⊗
⎡

⎣
⎢

⎤

⎦
⎥ = ⋅→ →

∈
→∑ ω

H

0 (9)

Notice that the shape tensor KXA is calculated based on the ref-
erence configuration. As long as there are enough bonds within the
horizon HXA , matrix KXA is invertible. Therefore, the approxi-
mated deformation gradient can be obtained as

F N KX X XA A A= ⋅ −1 (10)

Although the state-based peridynamics is very promising, it has
been observed in numerical simulations that certain nonphysical
deformation modes may happen, which can lead to particle inter-
penetrations [19,20]. This issue is extremely prominent for large
deformation problems that have high strain rates resulting from ex-
plosive load. In this work, we propose to introduce an artificial
viscous stress term into the original peridynamics formulation. In
particular, the following Monaghan type artificial viscosity used by
Reference 9 is considered:

ΠAB

AB AB AB

AB
AB AB

AB AB

c
=

− + ⋅ ≤

⋅ >

⎧
⎨
⎪

⎩⎪

α φ βφ
ρ

2

0

0 0

,

,

v x

v x

(11)

where

φ δ
φδ

AB
AB AB AB

AB AB

= ⋅

+ ( )
v x

x 2 2 (12)

c c cAB A B= +( )1
2

(13)

ρ ρ ρAB A B= +( )1
2

(14)

δ δ δAB A B= +( )1
2

(15)

v x xAB B A= − (16)

x x xAB B A= − (17)

In these equations above, α and β are constant parameters
and they are set to be 1.0. φ is the variable used to prevent
the overlapping of the two particles A and B and is set to
be 0.1. cAB , ρAB and δ AB are the average solid velocity,
density and interacting distance, respectively. The following
Cauchy stress corresponding to the artificial viscosity is
introduced,

s viscous
A B AB BV

B A

:= ( )→
∈
∑ ω X I

X X

Π
H

(18)

which can be converted into the first Piola–Kirchhoff viscous stress
as

P Fviscous
viscous

TJ= −s (19)

In the end, the modified force state with artificial viscosity can
be written as

T X X X P P K XX X XA A B A B
viscous

A BA A A, → →
−

→( ) = ( ) −( ) ⋅ω 1 (20)

2.2. Basic of SPH and essential formulation for blast loading

The SPH method was developed for hydrodynamics problems,
which are usually expressed in the form of partial differential equa-
tions of density, velocity, energy and so forth. There are two key
steps in the formulation of the SPH methodology. The first one
is the kernel approximation and the second one is particle
approximation [11].

In the first step, a continuous field f(x) and its gradient ∇f(x) is
approximated as

〈 ( )〉 = ( ) −( )∫f f W dVyx y x y
Ω

(21)

where 〈〉 is the kernel approximation operator [21], W is the so-
called kernel function. Using the smoothing function, the gradient
of f(x) can be written as

〈∇ ( )〉 = − ( )∇ −( )∫f f W dVx y x yx yΩ
(22)

where the minus sign results from the integration by parts, which
is standard in SPH [22]. The particle approximation basically in-
volves the way to represent the target continuum into a finite
number of particles that carry individual mass and volume. By doing
this, any continuous integral representation can be directly con-
verted into discretized summations. For instance, Eqs. (21) and (22)
can be written in the corresponding discretized forms as

〈 ( )〉 = ( ) −( )
∈
∑f f W VA B A B B

SB A

x x x x
x x

(23)

and

〈∇ ( )〉 = − ( )∇ −( )
∈
∑f f W VA B A B BA

B A

x x x xx
x xS

(24)

where Sx A represents the supporting (influence) domain of parti-
cle xA, similar to the definition of horizon HXA in the state-based
peridynamics. In Eq. (24), by considering a constant field f(x) = 1 and
a linear field f(x) = x, one may get

0 x xx
x x

≈ −∇ −( )
∈
∑ A

B A

W VA B B
S

(25)

and

I x x x
x

x
x

≈ − ⊗∇ −( )
∈
∑ B A B B

B A

AW V
S

(26)
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From Eqs. (24) and (25), one can obtain

〈∇ ( )〉 = − ( )∇ −( )+ ( )∇ −( )[ ]
∈
∑f f W f W VA A A B B A B BA B

B A

x x x x x x xx x
x xS

(27)

Notice ∇ −( ) = −∇ −( )x xx x x xB AW WA B A B is used during the
derivation.

Combining Eqs. (25) and (26), one may construct a corrected gra-
dient operator

∇ −( ) = − ∇ −( )−
x x xx x x xA A AW M WA B A B

1 (28)

where the matrix Mx A is defined as

M x x x xx
x

x
x

A

B A

AB A A B BW V:= −( )⊗∇ −( )
∈
∑

S
(29)

By substituting the corrected gradient operator into Eq. (27), one
can get

〈∇ ( )〉 = ( ) ∇ −( )[

− ( ) ∇ −

−

∈

−

∑f f W

f W

A A A B

B A B

A A

B A

B B

x x M x x

x M x x

x x
x

x x

x

1

1

S

(( )]VB

(30)

With these basics, we directly write the discretized SPH equa-
tions of motion for the simulation of explosives as,

D
Dt

m WA
B B A B AB

B A

ρ = −( )⋅∇ −( )
∈
∑ v v x xx

x xH

(31)

D
Dt

m
p p

WA
B

A

A

B

B
AB B AB

B A

v
x xx

x x

= − + +⎛
⎝⎜

⎞
⎠⎟
∇ −( )

∈
∑ ρ ρ2 2

Π
H

(32)

De
Dt

m
p p

WA
B

A

A

B

B
AB A B B AB

B A

= + +⎛
⎝⎜

⎞
⎠⎟

−( )⋅∇ −( )
∈
∑1

2 2 2ρ ρ
Π v v x xx

x xH

(33)

D
Dt

A
A

x
v= (34)

where ρ, v, e, p are the density, velocity, internal energy and pres-

sure at the corresponding particle.
D
dt
( )

represents the time

derivative of the quantity in the bracket. ΠAB is the standard Mon-
aghan viscosity [23], as shown in Eq. (11). p e= −( )γ ρ1 is the pressure
resulting from a (TNT) explosive charge model. For details of these
equations, the readers may consult Reference 9.

3. Coupling scheme of the two methods

Before proceeding to the details of the coupling, we want to
mention that the state-based peridynamics is based on Lagrangian
formulation and the SPH methodology is based on Eulerian formu-
lation. Thus the influence function of the state based peridynamics
ω X A B→( ) is a Lagrangian kernel and the smoothing function of
the SPH method W B Ax x−( ) is an Eulerian kernel. In the
peridynamics–SPH computational domain, there is an interphase
zone, consisting of both peridynamic and SPH particles. The cou-
pling of peridynamics and SPH method mainly requires the related
force and deformation transmissions over the interphase zone. In
general, a Lagrangian kernel only exists for a peridynamic particle
and an Eulerian kernel merely exists for an SPH particle. But for the
purpose of the coupling, it is assumed that for any particle in the
interphase zone, there are both a Lagrangian kernel and an Eulerian
one. In this section, the following two passes of transmissions in
the interphase zone are first discussed: (1) the contribution of an
SPH particle to the governing equations of a peridynamic particle

(see Eqs. (4)–(10)) and (2) the contribution of a peridynamic par-
ticle to the governing equations of an SPH particle (see Eqs.
(31)–(34)). Then the choice of the smoothing function (for SPH) and
influence function (for PD theory) are presented, by assuming the
equivalence of the two methods in the current configuration.

3.1. An SPH particle to a peridynamic particle

For an SPH particle X XB A∈H , one can directly treat XB as a
peridynamic particle by constructing the same influence function
ω X A B→( ) , and the shape tensors KXB , NXB . Combining Eqs.
(4)–(10) and the force applying on a peridynamic particle can be
written as

f X P K X X P K XX X X X
X X

A A B A B B A B A BA A B B

B A

V= ( ) ⋅ − ( ) ⋅[ ]→
−

→ →
−

→
∈
∑ ω ω1 1 0

H

(35)

For the SPH particle, the only quantity unknown is the first
Piola–Kirchhoff stress tensor PXA , which does not exist in the hy-
drodynamics system that is based on Eulerian formulation. Luckily,
at any SPH particle XB, there is a pressure pB that can be viewed as
a Cauchy stress

s X IB pB= (36)

where I is a second-order identity tensor. The Cauchy stress tensor
can be transformed into the first Piola–Kirchhoff stress tensor by
using the formula

P FX X XB B BJB
T= −s (37)

where FXB is the deformation gradient at particle XB and
JB B= [ ]det FX .

Notice that the deformation gradient FXB can be approximated
by Eq. (10), using the corresponding Lagrangian kernel of the SPH
particle XB. Practically, it might be easier to first construct the fol-
lowing two similar shape tensors using the Eulerian kernel. But the
problem is that one can never guarantee that the matrix KXB is
always invertible (if the Eulerian kernel is adopted), given that
one cannot control the number of active bonds in the current
configuration.

3.2. A peridynamic particle to an SPH particle

For a peridynamic particle x xB A∈S , one needs to construct its
corresponding SPH quantities, such as the density ρB, velocity vB and
pressure pB, in order to account for its effect in the SPH governing
Eqs. (31)–(34)). In fact, the velocity vB is always available
for a peridynamic particle. In addition, the density ρB can be
calculated as

ρ ρB
B

B
J

= 1 0 (38)

and the pressure pB can be obtained by

p tr
J

trB B
B

T
B B= ( ) = ( )s 1

P FX X (39)

where ρB
0 is the initial density at particle XB and JB B= [ ]det FX .

3.3. The kernel functions

In the peridynamics–SPH coupling framework, there are two dif-
ferent types of kernel functions: the influence function ω X XB A−( )
(for PD theory) and the smoothing function W B Ax x−( ) (for SPH
methodology), which are defined in the horizon HXA and support-
ing domain SXA , respectively.
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In the original work of peridynamics, the only requirement for
the influence function ω X XB A−( ) is to be zero outside the family
HXA and nonzero inside, that is

ω δ
ω

X X X X
X X

XB A B A

B A

A−( ) = − >
−( ) ≠

⎧
⎨
⎩

0
0

,
, otherwise

(40)

In contrast, a smoothing function has to satisfy a number of con-
ditions, such as the compact condition, the unity condition, and the
delta function property [21]. Mathematically, these three condi-
tions can be expressed as

W h
W

W dV

B A B A

h
B A B A

B A B

x x x x
x x x x

x x x
x

−( ) = − >
−( ) = −( )

−( )
→

0

0

,
lim

for
δ

S AA
∫ =

⎧

⎨

⎪
⎪

⎩

⎪
⎪ 1

(41)

In the interphase zone, an SPH particle within the horizion of a
peridynamic particle needs an influence function, so as to provide
the right contribution. Therefore, it might be of great significance
that the right influence function and smoothing kernel function are
selected in the whole framework. In this work, the shape and size
of the horizon and that of the supporting domain are chosen to be
the same.

To better characterize the form of the two different kernels,
we would like to look at the force density of PD and the SPH
formulation, both in the current configuration. In classical contin-
uum mechanics, without considering body forces, the equations of
motion is

ρ��u = ∇ ⋅x s (42)

Following Eq. (30), in the SPH formulation, the force vector ap-
plying on particle xA can be written as

f x x M x xx x x x x x
x x

A
SPH

A B A B BA A A B B B

B A

M W W V= ⋅∇ −( )− ⋅∇ −( )[ ]− −

∈
∑ s s1 1

S

== − ∂ −( )
∂

⋅ − ⋅( )
→ →

−
→

−
→

∈

1 1 1

x
W

x
V

A B

A B

A B
A B B A BA A B B

B

x x
M x M xx x x x

x x

s s
S AA

∑
(43)

where

M
x x

x xx
x x

A
B

A
x

W
x

V
A B

A B

A B
A B A B B= − ∂ −( )

∂
⊗⎛

⎝⎜
⎞
⎠⎟→ →

→ →
∈
∑ 1

S

(44)

Notice that we can also derive the force vector in Eq. (35) for the
PD theory based on the current configuration,

f x K x K xx x x x
x x

A
PD

A B A B B A B A BA A B B

B A

x V= ( ) ⋅ − ( ) ⋅[ ]→
−

→ →
−

→
∈
∑ ω ωs s1 1

H

(45)

Comparing the force vector applying on a peridynamic particle
(see Eq. (45)) with that acting on an SPH particle (see Eq. (43)), one
can see that if we choose

H Sx xA A= (46)

ω x
x x

A B
A B

A B

A Bx
W

x
→

→ →
( ) = − ∂ −( )

∂
1 (47)

then one would have

K Mx xA A= (48)

and

f fA
PD

A
SPH= (49)

Therefore, in the PD-SPH coupling domain, it might be better to
choose the horizon, influence function in PD theory and the sup-
porting domain, smoothing kernel function in SPH method such that
the conditions in Eqs. (46) and (47) are satisfied. For instance, if the
SPH kernel function is

W x
h

exp x hn( ) =
( )

−( )1
2 2

2 2

π
, (50)

then the PD influence function should be of the form

ω
π

x
x

dW x
dx h h

exp x hn( ) = − ( ) =
( )

−( )1 2
2 2 2

2 2 . (51)

where n is dimension of the problem and h is the smoothing length
(or horizon size).

4. Soil modeling

4.1. Drucker–Prager plasticity model

The state-based peridynamics can be termed as a continuum
theory in an integral form, owing to the fact that it can incorpo-
rate classical stress–strain models through the force state (see Eq.
(5)) that is based on an equivalence of the strain energy density func-
tion. Soils usually present great nonlinearities after plastic yielding,
with pressure-sensitive yield surfaces. In the literature, there are
several successful constitutive models for soils, such as the Drucker–
Prager (DP) model, the Mohr–Coulomb (MC) model and the
Matsuoka–Nakai (MN) model. In this work, the Drucker–Prager (DP)
plasticity model [13] is adopted to characterize the plastic behav-
iors of the soil. The DP model has been extensively used in numerical
simulations of soil, rock and concrete structures [15]. The materi-
al parameters of the DP model for soils are well documented with
experimental calibrations. In this section, a brief review of the DP
model is first offered, mainly focusing on the constitutive updates
for a nonlinear finite deformation, which are then expressed in the
corresponding peridynamics formulations.

The yield function of the DP model is given as
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(52)

where s is the deviatoric stress tensor, c′ the effective cohesion (Pa),
p′ the mean effective stress and ϕ′ the effective friction angle. β = 1
and β = −1 approximates two cases of the DP model, i.e, the triaxial
extension (TE) corners and the triaxial compression (TC) corners of
the MC yield surface, respectively [24]. For a non-associative flow,
the DP plastic potential function can be expressed as
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(53)

where ψ′ is the effective dilation angle. If ϕ′ = ψ′ = 0, Eqs. (52) and
(53) are identical (the yield function and potential function over-
laps), and the DP model reduces to a form similar to J2 plasticity,
which is very useful in approximating the undrained shear strength
of soil. The Helmholtz free energy function ρsΨ per unit deformed
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soil volume can be decomposed into elastic and plastic parts
as,

ρs
e e e eΨ e z e e z z, : :( ) = + ⋅ ⋅1

2
1
2

D H (54)

where εe is the elastic strain tensor, De is the elastic modulus tensor,
H is the hardening/softening modulus matrix and ζ is a set of strain-
like internal state variables (ISVs) associated with plastic hardening/
softening, representing the evolution of the underlying soil
microstructure phenomenologically related to the experimentally-
observed behavior. With the Helmholtz free energy in Eq. (54), the
rate equations of stress (σ′) and stress-like ISVs (qζ) can be derived
as,
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where εp is the plastic strain tensor and qζ are the specific internal
states qζ φ ψ= ′ ′ ′{ }c T, , . For the sake of simplicity, it is assumed that
the ISVs are to evolve under an independent, linear hardening/
softening model, i.e.,
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where Hc, Hφ, Hψ are the linear hardening/softening moduli for c′,
φ′, ψ′, respectively. Based on the plastic potential function (see Eq.
(53)), the evolution of plastic flow can be derived as
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where II is the second order identity tensor. The evolution equa-
tions of the ISVs are defined as,

� �q H h qζ ζγ= ⋅ ( )s , (58)
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where h is a hardening function. Using the principle of maximum
plastic dissipation, one can get
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Using the consistency condition �f = 0, the plastic multiplier �γ
can be obtained as
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Eqs. (55), (56) and (61) are the equations of constitutive update
of a non-linear plastic constitutive model. The three sets of un-

knowns s , ,qζ γ�( ) are coupled in the non-linear evolution equations,
which can be solved by the Newton–Raphson iteration method [25].
For simplicity, the following explicit update algorithm is adopted
in this work,

′ = ′ ++σn
tr
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where the supscript tr stands for the corresponding trial items.
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Fig. 1. Configuration of the soil column specimen.

Fig. 2. Step loading function profile.

Table 1
Material parameters of Drucker–Prager model.

E ν φ ψ c β

98,454,200 Pa 0.25 0.738663 0.738663 208,848 Pa − 1
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′ = ′ − ′( ) +( )+ + +s sn n
tr

nKB1 1 12, Δγ ψ μI n̆ (65)

q q H h qn n+ = + ⋅ ( )1
ζ ζ ζγΔ s , (66)

The trial stress is calculated based on Eq. (62), under the as-
sumption of small deformation. But in general, the soil under blast
loading shall undergo finite deformation with large rotations. Thus
it should be replaced with a nonlinear one accounting for finite de-
formation. In this work, the nonlinear equations of the Hughes–
Winget algorithm [26] are adopted.

In the Hughes–Winget algorithm, an intermediate configura-
tion at time step n + α is defined

x x un n+ = −( ) +α α α1 Δ (67)

where α is a scalar and it is set to be 0.5, without the loss of gen-
erality. Following the derivation of the approximated deformation
gradient in Eq. (10), the deformation gradient at the configuration
xn+α can be represented as,
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In addition, the gradient of Δu with respect to the reference con-
figuration can be written as,
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Using the chain rule, one can then get deformation gradient
increment

G
u
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αD 1 , (70)

which can be split into the following strain and rotation increments,

g = +( )G GT 2 (71)

w = −( )G GT 2 (72)

The objective effective stress increment can then be evaluated
as,

Δ ′ =s De : g (73)

In the end, Eq. (62) is replaced by the following set of
equations:

′ = ′ + ′+s s sn n1 ˘ Δ (74)

˘ ′ = ⋅ ′ ⋅s sn
T

nW W (75)

W = + −( ) ⋅−I I αw w1 . (76)

4.2. Adaptive dynamic relaxation

In practical application, it is very important that a numerical so-
lution can be verified by experiment or reliable computational result.
But in general, experiments are conducted under static condition.
Thus the Adaptive Dynamic Relaxation (ADR) is adopted [27], in
which an artificial damping is introduced into the system, such that

Fig. 3. Comparison and convergence of the peridynamics simulation results to the FEM solutions.

Table 2
Comparison between DP peridynamics and ANSYS results.

Vertical displacement Value

(lr)1-1 (lr)2-4 Load (kPa) 1 2 4
(lr)1-1 (lr)2-4 ANSYS solution (m) 0.846E-4 0.169E-3 0.339E-3
Peridynamic solution (m) 0.856E-4 0.171E-3 0.342E-3
Relative error (%) 1.18 1.18 0.885

Fig. 4. Layout of Spherical shell (left) and cut through mid-section (right).
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the steady-state (static) solution is retained. To determine the most
effective damping effect, the damping coefficient is changed
adaptively in each time step. In particular, by introducing the inertia
and damping terms, the peridynamics governing Eq. (4) become

L L�� �U X U X f U U X X, , , , , ,t c t dV( ) + ( ) = ′ ′( ) ′∫H
(77)

where L is the fictitious diagonal density matrix λ ρAA A= . U is the
displacement vector of the particles and f U U X X, , ,′ ′( ) is the sum-
mation of the internal and external forces. The Ath components of
U and its force state are,

U u xA A t= ( ), (78)

F b x T X X T X X X
x

A A
A

A A B B B At dV B
A

= ( )+ ( ) − ( )[ ]→ →∫, , ,
1

0ρ H
(79)

The damping coefficient c are computed every time step to obtain
the fastest path to the steady-state solution. It is determined by the
Rayleigh’s quotient

cn
n T n n n T n= ( )( ) ( )( )2 U K U U U ,

(80)

Fig. 5. Average stress vs. time of an expanding peridynamics spherical shell due to internal pressure modeled by SPH particles.

Fig. 6. Relation between numerical and analytical values of the hoop stress along the radial position of the peridynamics spherical shell.
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in which, Kn is the diagonal localized stiffness matrix, given as

K F F tuii
n

i
n

ii i
n

ii i
n= − −( ) ( )− −λ λ1 1 2Δ � (81)

where the superscript n denotes the n-th time step and there is no
summation for the subscript i. Interested readers may consult Ref-
erence 27 for more details.

5. Numerical examples

5.1. Verification of the soil constitutive in the PD theory

In this example, numerical tests have been carried out to vali-
date the peridynamics implementation of the Drucker–Prager (DP)
model for soils. As shown in Fig. 1, we are considering a soil column
with a square cross-section of side length L = 1 m and height H = 10 m.
The soil column is discretized into 10,300 particles. The column is
subjected to a pressure load f(t) on the top boundary. Both the step
and harmonic loading functions are considered, as shown in Fig. 2.
The other five boundaries are fixed with zero normal displace-
ments. The simulation time step Δt is set to be 0.0001 s and the
duration of the simulation is t = 10 s. The material parameters of
the Drucker–Prager model are given in Table 1, which are taken from
Reference 16. The Adaptive Dynamic Relaxation method is em-
ployed to obtain the static solutions, which can then be used to
compare with the static finite element solutions from ANSYS
software.

Fig. 3 shows the vertical displacements at the top of the column
for three different load magnitudes all converge to the finite element
solutions (ANSYS). As shown in Table 2. The relative errors for all
the three cases are less than 1.2%.

5.2. Validation of the peridynamics–SPH coupling scheme

In this section, we present a simple benchmark problem of an
expanding spherical shell composed of peridynamic solid par-
ticles and SPH gas particles in the interior.

In the proposed coupling alogrithm, particles in the
peridynamics–SPH interphase zone will experience forces from both
methods. In order to ensure consistency between the two methods,
the pressure imposed by SPH particles is converted to an equiva-
lent peridynamic force state, and vice versa. The main objective in
this simulation is to verify that as the SPH gas expands, the forces
will transfer correctly to the peridynamic particles and will produce
stresses comparable to the corresponding analytical solution.

The geometry consists of a rubber sphere with an outer diam-
eter of 1 m and inner diameter of 0.8 m. Both the peridynamics and
SPH particles are spaced at Δ = 0.1 m apart in the x, y, and z direc-
tions. The horizon size of the peridynamic particles is δ = =3 0 3Δ . m .
The material parameters of the rubber are: Young’s modulus 50 MPa,

Poisson’s ratio 0.499 (nearly incompressible), and a density: 1200 3

kg
m

.

The layout of the rubber spherical shell is shown in Fig. 4.
For simplicity, we consider a quasi-static uniform pressure loading

and infinitesimal displacements. To accommodate these consider-
ations in the simulation, we allow the SPH particles’ pressure,
velocity, and acceleration to update until reaching an average (within
the SPH domain) value of 25 kPa. Once the average pressure value
is reached, the physical variables of the SPH particles are main-
tained such that the pressure is held constant at 25 kPa for the
remainder of the simulation.

As the internal pressure increases to its maximum value, the
forces imposed by the SPH particles will transfer to the peridynamic
solid shell particles. In this process, the peridynamic particles will
oscillate about the steady-state solution. In order to show a clear
convergence to a steady-state solution, a damping term was added
to the external force vector of the peridynamic particles. Note that
the addition of this extra term does not change the final value of
the steady-state solution; it simply dissipates the motion of the par-
ticles thus providing a quasi-static solution.

The computed stress for both SPH and peridynamic particles con-
siders the average of the diagonal terms of the Cauchy stress tensor
σ (the components represent stress in the standard Cartesian co-
ordinates, i.e. σ xx , σ yy , and σ zz ). In both cases, the off-diagonal terms
were ignored since they were comparatively negligible. As illus-
trated in Fig. 5, the average stresses of the peridynamic particles
correspond very closely to the imposed pressure by the SPH par-
ticles once the oscillations dissipate and the peridynamic stresses
reach steady-state. This result indicates that the physics translates
accurately between SPH and peridynamics. In other words, con-
verting between peridynamic force states and SPH pressures (and
vice versa) will provide a steady-state equilibrium solution in the
quasi-static case.

With the given geometric parameters, the shell can be viewed
analytically as a thick spherical membrane whose hoop stresses may
be computed using the following equation:

σθθ =
−
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3
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32
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where p is the average internal pressure, do and di are the inner and
outer diameters of the sphere (respectively), and r is the position
of interest along the shell. In our configuration, the inner diame-
ter is set as 0.8 m. This means that any particle whose distance is
less than 0.8 m from the center of the sphere is an SPH particle.
However, since our grid consists of meshless particles, the actual
boundary between the peridynamics and SPH particles may lie any-
where in between the assigned value of 0.8 m and 0 8 2 0 6. .m m− =Δ .
In order to validate our numerical results with the analytical results
obtained from Eq. (82), we will use the average stress value from
the simulation to back-calculate a value of the shell’s inner

Fig. 7. A soil cylinder buried with a spherical TNT bomb: (a) geometrical configuration; (b) representation of the domain with 327,709 discrete particles, of which 326,616
are peridynamic particles (blue) and 1093 are SPH particles (red).
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diameter. For two given shell particles at the coordinates 0 0 0 40, , .( )
(particle A) and 0 0 0 50, , .( ) (Particle B), the computed hoop stresses
are 29,878 kPa and 15,311 kPa (respectively). Substituting the value
of r that corresponds to the particle coordinates, the computed hoop
stress, and an outer diameter of 1 m into equation Eq. (82), we obtain
a corresponding inner diameter of 0.72 m and 0.66 m for particles
A and B respectively. Since both of these values lie within the range

of possible inner diameters, we can conclude that they corre-
spond to the analytical solution for a thick-walled sphere.

We can compute the analytical hoop stress along the radius of
the shell assuming that the inner sphere diameter is 0.692 m, which
is the average of the calculated values of particle A and B. As shown
in Fig. 6, the analytical solution produces comparable hoop stress
values to those provided by the numerical simulation.

Fig. 8. Dynamic fragmentation/ejection process of soil cylinder; view from the top. Contour color: velocity magnitude.
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5.3. Soil fragmentation under blast loading

In this example, a numerical simulation is conducted to test the
capability of peridynamics to capture shock wave induced soil frag-
mentations caused by blast loads of the buried explosive. In
particular, we are considering a flat three-dimensional soil cylin-
der, with a spherical TNT bomb located right at the center. As shown
in Fig. 7a, the dimension of the soil cylinder is R h× = ×0 03 0 02. .m m,

and the radius of the spherical bomb at the center is r = 0 00375. m .
The motivation for this simulation is to predict soil fragmentation/
ejection caused by shock waves generated from buried explosives.
As shown in Fig. 7b, the whole domain is discretized into 327,709
particles, consisting of 326,616 peridynamic particles (blue) and 1093
SPH particles (red). In fact, the soil cylinder is first discretized by
an FEM mesh, with 327,709 nodes and 314,928 hexahedron ele-
ments, which are then used to generate the particle positions (nodes),

Fig. 9. Dynamic fragmentation/ejection process of soil cylinder; view from a vertical cross section. Contour color: velocity magnitude.
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associated volumes and their corresponding horizon sizes δX or
smoothing lengths hx. The SPH particles represent the computa-
tional domain of the spherical TNT bomb, and the peridynamic
particles represent the rest of the cylinder domain. The few layers
of particles at the bottom of the cylinder are fixed with zero dis-
placements in the vertical direction throughout the simulation, so
that there is no particle penetrating through the bottom. Mean-
while, no gravitational force is considered in the simulation. The
whole system is subjected to the peridynamic–SPH particle inter-
action, together with the artificial viscosity (to avoid particle inter-
penetraction) and the essential boundary at the bottom. The material
parameters of the DP model are the same as those in Table 1. The
simulation time step is Δt = × −6 125 10 8. s . The initial energy of
the SPH particles (denotation energy per unit mass) is
e J0

64 29 10= ×. kg , which is well documented in the literature
[9]. Time sequences of the dynamic soil fragmentation/ejection pro-
cesses are presented in Fig. 8 (view from the top) and Fig. 9 (view
from a vertical cross section).

From Fig. 8, one can see that due to the blast of the buried TNT
(SPH particles), peridynamic particles close to the top of the cyl-
inder are pushed up and form a spherical dome. In the beginning,
the dome is very shallow (see Fig. 8a–c) and it then becomes larger
and larger (see Fig. 8d–f). This is easy to understand, because the
outmost peridynamic particles in the top of the soil cylinder will
gain most of the momentum from the buried explosive, which can
be seen from the velocity contours in the figure. In fact, peridynamic
particles at the top of the spherical dome always have the highest
velocities, compared with that of the peridynamic particles in the
rest of the dome. Thus these peridynamic particles on the dome top
move much faster and consequently cause the dome to grow larger
and larger.

From Fig. 9, one can see that the SPH particles gain very large
momentums at the first few steps (see Fig. 9a). The shock waves
propagate through the interphase zone (see Fig. 9b), and continu-
ously expand in each direction. After the first wave hits the top of
the soil cylinder, the spherical dome is gradually formed by the
peridynamic particles at the top.

A full blown-out soil fragmentation profile is displayed in Fig. 10.
From Fig. 10, one can measure the height of soil ejection profile and
relate that to the explosive strength in experiment data.

To check the validity of this PD-SPH coupling in the simulation
of buried explosion, a separate simulation is carried out, in order
to compare with the experiment conducted by Bergeron et al. [28].

Fig. 11 shows the schematic of the experiment setup. A cylindrical
barrel with the radius of 45.72 cm and the height of 71.07 cm is fully
filled with soil. A 100-g cylindrical-disk shape C4 explosive charge
is buried into the soil along the axis of the barrel with its faces par-
allel with the soil surface. The distance between the top face of the
explosive and the soil surface is defined as the depth of burial (DOB).
Two different overburdens with DOBs 3 cm and 8 cm are consid-
ered in the following simulations. The whole domain is discretized
into approximately 1 million particles (generated from an FEM mesh
of 949,437 nodes and 928,464 elements), of which 949,132 are
peridynamic particles and 305 are SPH ones. Instead of using the
ideal-gas gamma–law relation p e= −( )γ ρ1 , the Jones–Wilkins–
Lee (JWL) equation of state is used for the C4 explosive charge,
defined as:

p A
R dF

e B
R dF

e
e

V
R dF R dF= −⎛

⎝⎜
⎞
⎠⎟ + −⎛

⎝⎜
⎞
⎠⎟ +− −1 1

1 2

1 2
ω ω ω

, (83)

where p is the pressure, V is the volume, w is the Gruneisen pa-

rameter, dF is the volume ratio V
V0

(V0 is the initial volume) and A,

R1, B, R2, ω (given in Table 3) are constants of the C4 charge. The

Fig. 10. Detailed view of dynamic fragmentation/ejection process of the soil cylinder.

Fig. 11. A schematic illustration of the experiment setup used in Reference 28.
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material parameters for the soil and C4 charge are taken from Ref-
erence 29. The simulation time step is chosen to be Δt = × −0 25 10 6. s,
with the total time t = × −0 8 10 3. s. A parallel PD-SPH code is devel-
oped by using the OpenMP (an application programming interface
for shared-memory parallel programming). The simulation takes
around 20 hours in an Intel core i7-4700HQ processor with 8 threads
involved in the computation. The early soil deformations (soil bubble
shapes at the ejecta front) obtained from the simulations are com-
pared with those from the experiments. The time development of
the soil bubble height at the ejecta front for both the 3-cm and 8-cm
overburdens are plotted in Fig. 12. One can see that the simula-
tion results are in general agreement with that of the experiment,
which validates the proposed peridynamics soil model to a certain
extent.

In Fig. 13, we show the simulated soil explosion profile that is
obtained in the numerical simulation of the real experiment (see
Fig. 11), in which one million peridynamics particles are used.

6. Conclusions

Numerical simulations of fragmentation generated by shock
waves from blast loading of the buried explosive has been an out-
standing challenge in modeling and simulation. In this work, a hybrid
PD-SPH approach is employed to simulate soil fragmentation/
ejection. In the coupling PD-SPH framework, a standard Monagphan
type artificial viscosity is incorporated into the peridynamics for-
mulation to help in preventing nonphysical particle interpenetrations.
For a consistent force and deformation transmissions, by assum-
ing the equivalence of PD-SPH formulations in the current
configuration, we have proposed a coupling algorithm of PD-SPH.
A Drucker–Prager plasticity soil model is presented at finite strain,

with the Hughes–Winget algorithm rephrased in state-based
peridynamics framework for the constitutive update.

From the three numerical examples presented, we have found
that (1) the Drucker–Prager soil model and its implementations in
the state-based peridynamics theory are successful; (2) the pro-
posed PD-SPH coupling scheme works, and (3) the PD-SPH coupling
scheme can be used to capture soil fragmentation/ejection induced
by the shock waves from blastic loads.
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Table 3
EOS material parameters of the C4 charge (m-kg-s units).

ρ A B R1 R2 ω E

1601 5.98 × 1011 1.38 × 109 4.5 1.5 0.32 8.70 × 109

Fig. 12. Comparison of the soil bubble heights at the ejecta front with experiment results, for both 3-cm and 8-cm overburdens. The height is measured from the top of the
soil surface. The experiment data are taken from Reference 28.

Fig. 13. Soil explosion profile from the numerical simulation of the real experiment.
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