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Abstract — We proposed a novel multiscale molecular-dynamics model in order to apply
macroscale boundary conditions to microscale molecular systems, which is difficult for classi-
cal molecular dynamics. Unlike in statistical mechanics, in which macroscale quantities such as
temperature and pressure are collected from molecular information, the proposed approach is a
reversed procedure to find optimal molecular states when macroscale conditions such as trac-
tion are enforced. The model is originated from Parrinello-Rahman molecular dynamics but
extends it to solve finite-size, inhomogeneous molecular-dynamics problems by generalizing the
representative volume element to a “material point” in continuum mechanics. An example of
compressing a nickel nanowire is presented to demonstrate the capacity of the method to simulate
localized phase transition in a finite-size molecular system, which validates the effectiveness of the

method.

Copyright © EPLA, 2015

Introduction. — Due to the fast development of com-
puter and computational technology, molecular dynamics
(MD) today has ability to trace the evolution of an atom-
istic system across vast spatiotemporal domains. Typi-
cally, millions of atoms and microsecond time scale are
considered as routine [1]. In the predictable future, we
will be empowered to develop engineering models by us-
ing molecular dynamics with incomparable precision at
the atomistic level. For instance, we may use molecu-
lar dynamics to simulate the mechanical performance of a
smart phone, design a future automobile, or even simulate
an aircraft under extreme conditions.

However, even with unlimited computing power,
it is questionable how to apply realistic macroscale
boundary conditions such as traction in classical molec-
ular dynamics. Based on our understanding, mechani-
cal loads are applied on boundary particles in classical
molecular dynamics [2,3]. But that is not realistic be-
cause most experiments or engineering models are im-
plemented in macroscopic environments. In realistic cases
with macroscopic definition, constraints on specific par-
ticles are strong since forces and displacements defined
in macroscale are actually in statistical or average senses
in the whole boundary domain. We term macroscopic
boundary condition as “weak” condition. Thus applying

“weak” conditions in molecular system is a cross-scale ma-
nipulation. Typically, the communication between macro-
scopic scale and atomistic scale include bottom-up and
top-down styles considering the direction of message pass-
ing. The bottom-up approach to interpret fundamen-
tal physics is in the category of statistical mechanics [4].
In this approach, the macroscopic quantities such as
temperature and pressure are derived from lower scale
atomistic positions and velocities in a statistical manner,
e.g. [5,6]. However, the reversed top-down procedure to
apply “weak” condition is not thoroughly described on
what the molecular state should be under specific macro-
scopic conditions like traction, and it is an up-coming chal-
lenging field. Much effort has been made on multiscale
simulation [7-10] to build connection between microscale
with atomistic resolution and macroscale with continuum
behavior. Those works mainly put emphasis on computa-
tional efficiency, while left the physical issues behind. In
this work, we are attempting to keep track of the response
of the particle system and to seek optimal molecular states
when “weak” conditions are enforced.

Early attempts were reported in the literature in
the 1980s. Andersen [11] first proposed an isoenthalpic-
isobaric ensemble molecular dynamics allowing the volume
of a cubic lattice cell to vary. Subsequently, Parrinello
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and Rahman [12,13] extended Andersen’s formalism to
anisotropic cases allowing both the volume and the shape
of a molecular-dynamics cell to vary. Since then, the
Parrinello-Rahman molecular dynamics (PR-MD) has be-
come the standard MD method to apply constant stress in
a static ensemble. Their approach for including macroscale
stress in molecular-dynamical simulation is insightful.
However, PR-MD is essentially based on a representative
volume element (RVE) with periodic boundary condition,
which is restricted to analyzing homogenous systems in
an equilibrium ensemble. It is inherently incapable of
studying inhomogeneous and non-equilibrium molecular-
dynamics systems that have defects, stress concentration
and localized phase transformation, etc.

In this paper, we propose a novel multiscale molecular-
dynamics model in order to involve macroscale quantities
into atomistic scale. In principle, this approach enables
us to apply “weak” (macro) boundary conditions in a
molecular system. The proposed multiscale molecular dy-
namics is influenced by the philosophy of PR-MD, but
it extends the PR-MD formalism to accommodate non-
periodical boundary conditions, inhomogeneous systems
and dynamic process. As a demonstration, we implement
the theory in simulating the dynamic behavior and phase
transition of a nickel nanowire under constant traction.

Multiscale model. — As shown in fig. 1, we divide a
system occupying domain 2 into several subsystems (su-
percells) ©,, where « is the index of supercells. The shape
of each supercell is not necessary to be regular, and thus
it can be made adaptive to fit the domain of the system.
Consider a representing atomistic position r; in the a-th
supercell by the following decomposition:

ri(t) = ra(t) + ¢a(t) : Si(t)v (1)

where r,, is the center of mass of the a-th cell, ¢,, is the
deformation gradient of the a-th cell which is uniform for
each cell and i is the index of atoms. The deformation gra-
dient ¢, is a continuum mechanics concept that is used to
describe the deformable state of a “material point”, which
is a supercell in the molecular model. Each individual su-
percell is subjected to rotation and stretch under ¢, as the
“material point” in continuum mechanics. However, conti-
nuity among supercells is not required because there might
be gaps and overlaps in atomistic resolution when mate-
rial defects are involved. Breaking the continuity ensures
the independency of each cell. s; is the independent local
coordinate of the i-th atom inside the supercell as internal
degrees of freedom which control the pattern of atomistic
distribution but do not influence ¢, which is the shape
or contour of the cell. The product ¢, - s; is interpreted
as the relative position to the center of mass. In contin-
uum mechanics, the motion of a “material point” consists
of rigid body translation, rotation and stretch, which are
described by the deformation gradient. However, in the
proposed multiscale molecular model, to capture atomistic
motions, we require an independent variable s;(¢) that is a

Fig. 1: (Color online) A molecular system is divided into several
supercells. Each supercell is a material point standing on the
level of continuum mechanics. The decomposition r; = ro +
¢a - s; gives the atomic positions inside each cell. Boundary
cells exposed to surface traction are marked in dark color, while
the light color is used for interior cells.

function of time. Owing to the independence of each par-
ticle in the supercell, the decomposition (1) is equivalent
to the full-scale atomistic representation. Thus, we estab-
lish a complete multiscale structure for a molecular system
that span from continuum macroscale to atomistic scale.
The multiscale kinematics structure offers convenience to
study the statistical behavior of a molecular system. The
Lagrangian of the a-th supercell is proposed as

ﬁa - iMaI.'a : I.'a + iJa : (¢£¢a)

1 .
+ 5 Zmlsl . Ca . $1' — Votm — V;It,

[ASyeY

(2)

where M, is the total mass of the supercell; m; is the mass
of the i-th atom; Jo = >, m;s;(t) ®si(t) = >, misi(to) ®
si(to) is the Euler inertia tensor of the a-th cell, which
is approximately invariant in time [14]; C, = ¢Ldq;
vint = 1% +; p(rij) is the internal potential energy given
by pair interaction ¢ with 7;; the distance between i-th
and j-th atoms inside the a-th cell, and V,#** is the external
potential. Note that the kinetic energy in the Lagrangian
is decoupled to the three terms which represent rigid body
translation, cell motion and internal motion, respectively.
The mix kinetic energy with cross-terms is negligible com-
paring with other terms. This simplification is suggested
by Parrinello and Rahman [12,13], and it is explained
in [15].

The essential part of the proposed Lagrangian is the
external potential V¢!, Several sources may contribute
to this term. The first contribution is from the interaction
of particles surrounding the a-th cell, which gives

Vel = p(ry).

i€, j¢a

(3)

Besides interatomic force, a supercell is sometimes exposed
to external loads applied at remote distance. Loads in this
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circumstance are macroscale forces, and they are usually in
the form of surface traction t, and body force b, catego-
rized in continuum mechanics. External potential energy
of this kind can be expressed as

ysurface — _ 60t .r,, and V2O = —Q%b,, 1., (4)
where S0 is the surface area exposed to t, in the referen-
tial configuration, and Q0 is the referential volume of the
a-th supercell. In eq. (4), we apply forces at the center
of mass by assuming that higher-order terms such as ro-
tation are negligible. The total external potential for the

a-th supercell reads as

Vaemt _ Vo?tom + V;urface + Vo?Ody' (5)
There is one more case worth noting in which a supercell
may also have a prescribed stress state. In this case, the
external potential energy should be the work conjugation
of stress and strain. As an example, we prescribed the
first Piola-Kirchhoff (PK-I) stress P [16] at the traction
boundary, and the external potential energy is
Vares = =P g, (6)
Stress is an overall effect of thermodynamical states of the
particle ensemble, so that we can replace V,¢*t by V/ stress
in eq. (5) depending on the problem of interest.
The Lagrange equations of motion based on variables
re, @o and s; are derived through standard procedure,
and they are written as

Mofa = Y f£ij+ Sota + Qb (7)
i€a,jda
7 o ext int 0
B+ Jo = (P —PI)OS, (8)
m;Cq - 8; = Zfij - o —miCa - 81, 9)

i

where f;; = ¢/(r;;)t;; is the pair force with ;; being the
unit vector point from the i-th atom to the j-th atom, and

. 1 1

pint — o Z(_gz)amisi ®8; + 3 Zfij ® Sij)» (10)
A ica JEQ
1

’PZH = Q_O Z f” X s; (11)
@ i€a,jda

define the internal and external first Piola-Kirchhoff
stresses, respectively. Note that the applied external PK-I
stress is a dead load, which is independent of the surface
traction t, and surface body force b,. The above equa-
tions are derived for the case in eq. (5). However, if the
case of eq. (6) is considered, we simply replace P by a
prescribed value.

Equations (7)-(9) are essential but incomplete for the
proposed multiscale MD model. Note that the decompo-
sition in eq. (1) is not unique. For example, at a given

time ¢, atomistic position can be

ri(t) = ra(t) + dalt) - si(t)
=1, () + @, (1) - si (1)

for different sets of r, ¢, and s;. However, as discussed
before, physical interpretations of r,, and ¢, must be hold,
namely, ¢, and r, should represent the deformation gra-
dient and the center of mass, respectively. Recall that s;
only changes the internal pattern of atomistic distribution
(the microstate). After the decomposition, the motion in
s; space should be constrained so that it will not intro-
duce macroscale deformation or rigid body motion of the
supercell (the macrostate). With these considerations, we
need to impose constraints to enforce these conditions. In
practice, we may recalculate r,, after a fixed number time
steps by using

(12)

ro, = Zmiri/ Zmi. (13)
i i

Considering that the deformation gradient may be non-

unique, we may use the following map to pull ¢, back

t0 o
Go - Si = Qb VoY, s

This manipulation can ensure the uniqueness of ¢, if we
can find a proper v,. The detailed technique on how to
construct 1, will be reported in a separate paper.

Moreover, as mentioned before, there is no requirement
on the initial cell shape, so that it can be anything that
fits the boundary geometry. However, during evolution,
we describe the deformation by a uniform ¢,, in each cell.
Thus, the shape change must be homogeneous, or piece-
wise constant. From this consideration, the cell size can-
not be too big. Note that the homogeneous deformation
has nothing to do with the internal pattern s;. It is about
the contour of the cell at the macroscopic level. On the
other hand, the cell size cannot be too small. This is be-
cause a minimum number of particles is required, so that
it guarantees the average quantities of each cell being sta-
tistically meaningful.

(14)

Example. — We have studied dynamical responses and
phase transition of a nickel nanowire under constant trac-
tion with the proposed multiscale model. Mechanical be-
haviors of bulk Ni such as stress-strain relations [17], phase
transition [13], etc. were extensively studied. Finite di-
ameter nanowire, which is different from bulk metal, has
mechanical properties largely depending on the surface-
volume ratio, surface energy, crystallographic orientation,
etc., and it has attracted much attention in the past
decade, see e.g. [18-21]. Equations (7)—(9) enable us to
describe the behavior of a nanowire when the macroscale
traction is applied to the end boundary of the nickel
nanowire, as shall be discussed subsequently. The example
is for demonstration purpose rather than solving a realistic
large scale problem.
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(d) t=9.7ps

(e) Final equilibrium state

Fig. 2: (Color online) Initial (a), final (e) configuration of the nanowire when a constant surface traction of t = 1.66 GPa is
symmetrically applied on its both ends, and snapshots (b)—(d) of the propagation of phase transition. Gradient colors are used

to distinguish cells.

The simulation model of the nickel nanowire is divided
into 5x 1 x 1 supercells, and each supercell has 5x 5 x5 unit
cells. As is shown in fig. 2(a), different colors were used
to distinguish the five supercells. The nanowire consists
of 2500 atoms in total. Atomic positions were generated
as face-center-cubic (F.C.C.) structure according to metal
crystallography. The lattice constant ¢ = 0.352 nm which
makes the length of the Ni nanowire 8.8 nm, and the cross
section of the nanowire is 1.58 x 1.58 nm?. The axial ori-
entation of the wire is (100) along the z;(x)-coordinate,
and lateral directions (010) and (001) correspond to x2(y)
and x3(z) coordinates. The Ni lattice is modeled using
the pairwise Morse potential [22] with the parameters fit-
ting to the lattice constant and elastic constants. During
the entire procedure, the temperature is controlled around
350 K by the standard thermostat technique in molecular
dynamics. The equation of motion, eq. (7), is integrated
by using the Velocity Verlet method [23], and egs. (8), (9)
are solved by using a sixth-order predictor-corrector algo-
rithm [24]. The integration time steps used in simulation
are 0.0015 ps, 0.0012 ps and 0.00015 ps for each scale.

At the beginning of the calculation, the nanowire is re-
laxed in a stress free state for 5000 steps in order to reach a
minimum energy configuration. The change of wire length
and the change of the cross-section area are less than 1%
comparing to the initial configuration. We then apply
compressive traction t = 1.66 GPa on both ends of the
nanowire as shown in fig. 2(a). The traction remains con-
stant throughout the simulation in the (100) direction.

Figures 2(b)—(d) show a series of snapshots of the loading
history. At the beginning, when ¢ < 3 ps, an elastic wave
propagates through the nanowire, and the entire struc-
ture is in a state of linear elastic deformation with non-
uniform stretches along the wire as observed in fig. 2(b).
However, during this stage, the entire nanowire almost
stays in the F.C.C. phase. Subsequently, phase transfor-
mation initiates at both ends, and it quickly propagates
to the center, as shown in fig. 2(c), (d). After ¢ = 10ps,
the entire nanowire turns into the hexagonal-close-packed
(H.C.P.) phase. Based on the morphology of the final equi-
librium configuration shown in fig. 2(e), the original {001}
planes in F.C.C. switches to {0001} closely packed planes
in the H.C.P. phase. The phase transformation results
in lattice constant changes, and the new lattice constants
a = 0.249nm and ¢ = 0.41 nm indicate the formation of a
H.C.P. structure. To this end, the length of the nanowire
changes to 6.25 nm that is 0.71 times the original length.
Note that these values are averaged throughout the entire
nanowire.

We have recorded the evolution history of the nanowire
length in time under the surface traction of different mag-
nitudes. We plot the curves of the stretch (L/Lg) for sev-
eral compressive loads t, in fig. 3. For t, = 0.33 GPa
and t, = 0.67 GPa, the stretch oscillates for about 50 ps
then gradually reaches an equilibrium state around 1. The
periods of vibration are about 11ps and 12ps, respec-
tively. Since the length does not change significantly, the
lattice structure is still F.C.C. with some sort of elastic
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0.33 GPa ||
0.67 GPa
0.83 GPa | |
0.91 Gpa
1.00 Gpa
1.66 Gpa | |

1.3} ®o o

12¢

11t

Length(L/L;)

0.6
0

10 20 30 20 50 50
Time(ps)

Fig. 3: (Color online) Convergence of normalized length (L/Lo)
with time. For small traction, i.e. t, = 0.33 GPa and t, =
0.67 GPa, the nanowire went through oscillation but still in the
elastic limit of F.C.C. for bigger traction from ¢, = 0.83 GPa
to t; = 1.0 GPa, the normalized length gradually converged to
about 0.7 and rest in that new H.C.P. configuration. For even
bigger traction, the nanowire experienced long oscillation as
for small traction after a rapid phase transition.

deformation, and the vibration of the curve reflects the
elastic wave propagation. We also observe that when
t, = 1.66 GPa, the curve has a similar dynamic response
of vibration with a period about 5 ps. But the final stretch
of the nanowire in static state is around 0.7. Compared
to the result discussed above, this is the stretch ratio
between H.C.P. and F.C.C. lattices. Before the elastic
vibration in the new H.C.P. configuration, the stretch
approaches quickly to the value about 0.7 within 10 ps.
This is the time frame for phase transition. If we ex-
amine fig. 2, the loading history shown is in the range
of 0-10ps. The curves at t, = 0.83 GPa t, = 0.91 GPa
and t, = 1.0 GPa reveal a critical gradual damping pro-
cess. When the stretch reaches 0.7, the nanowire simply
stops vibration. The speed of convergence increases as
the traction increases. The range around the above trac-
tions is the critical domain that can activate the phase
transition.

We have also calculated the traction-stretch relation for
the nanowire, and we plot the result in fig. 4. As the
compressive surface traction increases, the stretch (nor-
malized length) decreases following the curve in Path I,
until a critical value is reached at about 0.8 GPa. The
structure then jumps to another curve which is marked
as Path II. These two paths reflect the linear elastic de-
formations of the two distinct structures of F.C.C. and
H.C.P. within their own ranges, and they are separated at
a critical point. As we unload the traction gradually from
the new H.C.P. structure (Path IT), we find that the curve
goes straight up (Path III) without turning back to the
original F.C.C. structure. Apparently the new structure
is stable under further loading/unloading. Note that all
the data are obtained from the final equilibrium states.

0.0

oses,|

1
=
N

I
S
o

S
'S
.0000“"..‘...

|
&
™

Traction(GPa)
|

|
54
N

|
e
a

Path I: FCC loading
Path 11: HCP loading
Path I1I: HCP unloading

=16

0.6 07 0.8 09 10 11
Length(L/L,)

Fig. 4: (Color online) Traction-length relation for the nanowire
in equilibrium state. The loading and unloading directions are
all along the axial direction of the nanowire.

Summary. — In conclusion, the proposed multi-
scale molecular dynamics can seamlessly incorporate
macroscale quantities into molecular systems, so that we
can apply macroscopic boundary conditions such as trac-
tion in molecular simulations. Moreover, the proposed
method generalizes PR-MD to solve realistic problems
without the restriction of periodic boundary condition,
while all salient features of PR-MD are preserved. In other
words, the proposed multiscale MD can solve finite-size,
inhomogeneous, dynamic problems. As an example, we
use the method to calculate the dynamic evolution and
phase transition of a nanowire to illustrate the capabil-
ity of the theory of handling traction boundary condition.
We showed that original F.C.C. nickel nanowire transits to
H.C.P. configuration when the compressive load exceeds a
critical value. The surface traction also leads to dynamic
vibration either in elastic range of F.C.C. or in new phase
of H.C.P. except in the critical transition domain. The
loading-unloading process further examined the material
property before and after the transformation. The results
demonstrate that this new multiscale molecular-dynamics
method is promising, and it has some potential applica-
tions that may not be achievable by conventional molecu-
lar dynamics.
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