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Abstract A three-dimensional (3D) multiscale moving
contact line model is combined with a soft matter cell model
to study the universal dynamics of cell spreading over elastic
substrates. We have studied both the early stage and the late
stage cell spreading by taking into account the actin tension
effect. In this work, the cell is modeled as an active nematic
droplet, and the substrate is modeled as a St. Venant Kirchhoff
elastic medium. A complete 3D simulation of cell spread-
ing has been carried out. The simulation results show that
the spreading area versus spreading time at different stages
obeys specific power laws, which is in good agreement with
experimental data and theoretical prediction reported in the
literature. Moreover, the simulation results show that the sub-
strate elasticity may affect force dipole distribution inside the
cell. The advantage of this approach is that it combines the
hydrodynamics of actin retrograde flow with moving con-
tact line model so that it can naturally include actin tension
effect resulting from actin polymerization and actomyosin
contraction, and thus it might be capable of simulating com-
plex cellular scale phenomenon, such as cell spreading or
even crawling.

Keywords Adhesive contact · Cell spreading ·
Moving contact line · Cell crawling · Soft matter

1 Introduction

Cell spreading is a fundamental biological process that plays
a vital role in many cellular processes such as cell crawling,
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1 Department of Civil and Environmental Engineering,
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proliferation, wound healing, tumor metastasis, drug deliv-
ering and artificial culture design for tissue engineering. Cell
spreading process can be categorized into two distinct stages
(Cuvelier et al. 2007; Dobereiner et al. 2004; McGrath 2007):
the early stage and the late stage. In the early stage, the cell
initially contacts with the extracellular matrix (ECM) and
senses the ligands on the substrate. Generally speaking, the
early stage cell spreading is a passive process, in which the
cell remains in suspension and presents a roughly spheri-
cal morphology. During this stage, the cell deformation is
purely mechanical, which disrupts the cortical cytoskeleton.
Due to the lack of focal contacts, the interaction of the cell
and the ECM is very weak. Once the contact area reaches a
threshold along with the disruption of the cortical cytoskele-
ton, the cell spreading will enter the late stage, in which
the cell is activated by the rapid increase in certain proteins
resulting from the ligand–receptor adhesion. These proteins
will cause steady-state polymerization of the cortical actin
in the cytoskeletal network, leading to an increase in the
protrusive forces and ligand–receptor adhesion sites. These
protrusive forces will facilitate the motion or extension of
the lamellipodia and filopodia, causing the cell spreading
area continuously increase. Aside from actin polymerization,
another feature of the late stage cell spreading is contractility
of the cell cytoskeleton, accomplished by the actomyosin-
based stress fibers linked to focal adhesions. The contractile
forces serve as the dynamism to detach the cell from the
substrate or compress and reconstruct the corresponding
extracellular matrix. It is worth noting that the late stage of
cell spreading is governed by both the actin polymerization
and myosin dependent contraction. It is the combination of
the two that decides the cell margin will extend or contract
(Cai et al. 2006; Wakatsuki 2003). Despite its complexity
and diversity, it is believed that there is a universal dynamics
in the spreading process of a living cell.
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Recently there have been a lot of efforts on the modeling
of cellular behaviors, like adhesion, spreading or crawling.
Zemel et al. (2010) investigated the shape, symmetry and
polarization of stress fibers during the process of cell spread-
ing. It was demonstrated, by combining a simple elastic
model and experiments on stem cells, that the alignment
of actomyosin forces increases monotonically with matrix
rigidity when the cell spreading is sufficiently asymmetric,
in sharp contrast to the previous understanding that the align-
ment is generally non-monotonic. Using a simple mechanical
model, together with experimental measurements, Nisenholz
et al. (2014) analyzed the temporal force balance between
cell and the substrate during cell spreading. It is found that
cell area and force increase simultaneously during spread-
ing, but the force presents with a delay relative to increase in
cell area, which reflects the strain-stiffening property of the
cytoskeleton. By conducting experiments on human endothe-
lial cells, Brill–Karniely et al. (2014) also found that cell
area and force increase simultaneously with different rates,
which are explained by three complementary mechanisms.
Vernerey and Farsad (2014) proposed a mathematical model
that couples cell adhesion, contraction and spreading. It is
shown that the model is able to capture the dependency
of cell spreading and contraction on substrate stiffness and
the effect of chemistry, which to some extent suggests the
importance of mechanics in the process of cell spreading.
Bischofs et al. (2009) introduced a mechanical model that
can predicts cellular force distributions during cell adhering
(Bischofs et al. 2009). Albert and Schwarz (2014) proposed a
three-dimensional (3D) Potts model to capture dynamic and
steady states of cell shape and forces without any prior knowl-
edge on the cell spreading process on a given micro-patterned
substrate (Albert and Schwarz 2014). Giomi and DeSimone
(2014) employed a model of active nematic droplets that
is embedded in an isotropic Netwonian fluid, and they suc-
cessfully captured the spontaneous division and motility, a
reminiscent of the behaviors from a typical living cell (Giomi
and DeSimone 2014). These modeling efforts on cellular
motions are successful in their respective fields or perspec-
tives. Nevertheless, investigations on the spreading of living
cells are mainly studied through experiments (Dubin-Thaler
et al. 2008; Fardin et al. 2010; Li et al. 2014; Vianay et al.
2010), accompanied by some intuitive or phenomenologi-
cally explanations. To the best of the authors’ knowledge,
there are very few direct 3D modelings and simulations
by computational mechanics/soft matter physics on cellu-
lar motions that can successfully capture the cell spreading
process, if there is any at all.

Contact angle is a crucial physical concept in explaining
a variety of phenomena occurred at liquid–solid interfaces,
such as durotaxis of cells, capillary action and floating of
a water droplet on a lotus leaf and etc. The dynamic wet-
ting process of a water droplet upon a solid substrate can be

modeled by using the moving contact line (MCL) hydrody-
namics theory (Blake 2006; Minaki and Li 2014). However,
this continuum approach faces great challenges, because of
its assumption on no-slip condition, which states that no rela-
tive motion is allowed at the liquid–solid interface (definition
of the MCL), leading to an infinite shear stress value on
the solid substrate at the MCL (Blake 2006; Minaki and Li
2014; Shikhmurzaev 2006). In this paper, a multiscale mov-
ing contact line (MMCL) theory is developed, and it can be
employed to simulate droplets spreading on various elastic
substrates. The MMCL uses a coarse-grained contact model
(CGCM) (Sauer and Li 2007a, b, 2008) to treat the adhesive
contact interaction between liquid phase and solid phase,
so that the water droplet is levitated by the intermolecular
forces between the liquid and the corresponding substrate,
and hence the singularity problem of the conventional MCL
is resolved.

Recently, Style et al. (2013) found that water droplets can
spread or even move, by simply modulating the stiffness of
the underlying substrate (Style et al. 2013). These striking
behaviors of water droplets present great similarities to those
of living cells. In fact, several researchers have proposed to
treat cell spreading process as that of the traditional wet-
ting transition (Douezan et al. 2011; Frisch and Thoumine
2002; Sackmann and Bruinsma 2002). In addition, Gabella
et al. (2014) incorporate the contact angle concept into the
migration of living cells, by considering the actin tension
forces generated through polymerization of the cytoskeleton
or actomyosin contraction at the cell leading edge (Gabella
et al. 2014).

In this work, we propose to combine the MMCL theory
with a soft matter cell model (Zeng and Li 2012), so that
we can conduct quantitatively study of cell spreading over
elastic substrates. In our simulations, cells are modeled as
nematic droplets, which have been used to simulate cellular
level behaviors by many researchers (Joanny and Prost 2009;
Julicher et al. 2007; Zeng and Li 2012). And without loss of
generality, the substrate is modeled as a St. Venant Kirch-
hoff elastic medium. The main novelty and distinction of the
present work are the synergy of the following two aspects: (1)
A MMCL theory is developed so that it can simulate dynamic
droplet spreading, and (2) the active effect (actin polymer-
ization or actomyosin contraction) is incorporated into the
MMCL framework. The combination of the two enables us to
model complex active cellular phenomena, such as extensive
cell spreading or even crawling (Dubin-Thaler et al. 2008).

The model is implemented in a Lagrange type of Galerkin
finite element weak formulations. Early stage cell spreading
simulations are first performed. In the early stage spread-
ing, the main driving force comes from the surface energy
of the cell membrane and the corresponding substrate adhe-
sion/contact. Then late stage cell spreading simulations with
the active effect from actin polymerization or actomyosin
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Fig. 1 Schematic illustration of
three-phase interacting system

contraction are carried out. Simulations of cells spread-
ing upon substrates with different stiffness are conducted,
hoping to shed some light on the mechanotransduction of
living cells. The simulation has shown that complete 3D cell
spreading modeling can be accomplished by the model pro-
posed. In addition, the numerical data of spreading area verse
spreading time at different spreading stages obtained from
the simulation results indicates a power law, which is in
good agreement with experiments and theoretic prediction
in the literature. Moreover, comparison studies of the cell
spreading upon substrate with various elasticities revealed
the mechanotransduction between cells and their surround-
ing environment.

The presentation of the paper is organized as follows: In
Sect. 2, a general description of the theoretic model is offered,
with special attention on the incorporating of the actin poly-
merization and possible actomyosin effects. In Sect. 3, a few
numerical examples are presented. In Sect. 4, we close our
presentation by making a few remarks.

2 Simulation model

Before proceeding to any detailed theory, we would like to
present the global picture of the model problem. In specific,
we are considering the following triple-phase system that
consists of a cell�c, an extracellular matrix�s and surround-
ing extracellular medium�m , as shown in Fig. 1. Throughout
this paper, the bulk index c, sandm refers to the cell, the
extracellular matrix and the extracellular medium, respec-
tively. The interfaces of the triple-phase system are labeled
as �cs, �ms and �cm. The moving contact line is denoted as
�mcl = �cs∩�ms∩�cm. The three phases are subjected to the
conventional equations of motion in the bulk, a series of sur-
face equations of motion, mutual interaction forces among
the three phases and the active effects (actin polymerization
or actomyosin contraction) from the cell.

2.1 Incorporating the active effects

In this section, we aim to present a very simple demonstra-
tion in explaining the basic idea on how the active effect can
be incorporated. Consider the 2D case of a cell placed on
an elastic substrate embedded in the ambient space with per-
missable conditions, as shown in Fig. 2a. Using the MMCL
theory, the nodal force on the node at the moving contact line
�mcl can be obtained as (this equation will be provided later
in the paper),

Fs
I = −

(∫
�cs

∂NI

∂x
· γcsI(cs)

s ds +
∫
�lg

∂NI

∂x
· γcmI(cm)

s ds

+
∫
�gs

∂NI

∂x
· γmsI(ms)

s ds

)

= −γcs

(
1
0

)
− γcm

(
cos θ

− sin θ

)
− γms

(−1
0

)

=
(−γcm cos θ + γms − γcs

γcm sin θ

)
.

At a steady state, the dynamic surface tension nodal force
should be zero in the horizontal direction, i.e.,

γcs + γcm cos θ − γms = 0, (1)

which is the famous Young’s equation (Young 1805), relat-
ing the surface tensions between the three phases merging
at the contact line �mcl. Following Gabella et al. (2014), the
extra surface tension γactin induced by the active effect can be
directly included in the Young’s equation. The physical ori-
gin of this actin tension γactin on cell membrane is from two
different cellular activities: actin polymerization and acto-
myosin contraction (Gabella et al. 2014; Ofer et al. 2011).
Actin polymerization happens right after the onset of the late
stage cell spreading, while actomyosin contraction occurs
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Fig. 2 Incorporating the active
effects through the moving
contact line

later than actin polymerization. In fact, actomyosin con-
traction can facilitate cellular scale actin polymerization or
depolymerization during cell crawling (Wilson et al. 2010).

In this work, the actin polymerization is incorporated into
the formulation through two ways: (1) the director field h,
which will be discussed in Sect. 3, and (2) the actin tension
γactin that is integrated into the surface tension force balance
equation at the moving contact line (or fringe of the cell). For
the sake of simplicity, in this paper, we do not consider the
interaction of the two, and instead we set the actin tension
γactin to be a constant during the late stage cell spreading, by
assuming that the cell will spread isotropically.

With the actin polymerization or actomyosin contractile
mechanism, the force balance at the moving contact line�mcl

is first broken, and then the system will reach another steady
state with a new contact angle θ ′. The original interphase
tensions γcs, γcm and γms, which are in general material con-
stants, together with the active effect-induced tension γactin

and the new contact angle θ ′, will satisfy the following bal-
ance equation:

γcs + γcm cos θ ′ − γms = γactin (2)

or

γcs + γcm cos θ ′ − (γms + γactin) = 0 (3)

In Eq. 3, the actin tension can be simply viewed as an extra
contribution to the surface tension on�ms. If the active effect-
induced surface actin tension γactin is uniform along �mcl,
then one would expect the cell to spread isotropically, as
shown in Fig. 2b. On the contrary, with non-uniform actin
tension, one might see anisotropically movement of the cell,
possibly resulting in cell crawling event. In the current work,

we mainly focus on the universal dynamics of cell spread-
ing. To model the universal spreading process, we make the
following assumptions:

(1) The early stage spreading can be completely treated as
a mechanical process, similar to the dynamic wetting
process of a water droplet;

(2) The adhesion strength between the cell and the ECM
is only dependent on the stiffness of the substrate, i.e.,
independent of the cell morphology or any other factors
in the spreading process;

(3) In the late stages, actin polymerization and actomyosin
contraction-induced actin tension is uniform and the cell
spreads isotropically.

2.2 The multiscale moving contact line theory

In this part, we introduce a novel MMCL theory and its
computational formulations, which are the main technical
ingredient in simulations of passive cell spreading. In con-
trast to conventional hydrodynamics moving contact line
theory, the proposed MMCL adopts the Lagrangian descrip-
tion. Besides, surface governing equations are taken into
account, which is of great importance considering the force
transmission at the contact line. At macroscopic scale, we
can treat each phase of the triple-phase system by using con-
tinuum mechanics modeling, and the equation of motions of
each phase are

∇x · σα + ραbα = ρα üα, ∀x ∈ �α, α = l, s, g (4)

where σα is the Cauchy stress tensor, ρα the density, bα the
body force per unit mass and uα the displacement for each
phase, correspondingly.
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Here we want to point out that there are some very suc-
cessful contact line models in literature that can evaluate the
ability of a partial-wetting liquid in deforming the under-
lying substrate, notably the recently developed rival contact
line models (Bostwick et al. 2014). The major contribution of
the present MMCL is that it can capture the dynamic spread-
ing process of the liquid phase over the solid substrate. In the
corresponding formulas, the inertia effects are thus included
in the system.

2.2.1 Interaction forces between two distinct phases

The MMCL theory makes use of the adhesive/contact force
between the two distinct bodies to separate the cell and the
ECM, i.e., it levitates the cell in the middle extracellular
medium such that it removes the shear stress singularity at
the conventional MCL, and the cell is free to move under the
driving force of surface energy difference. During the cell
spreading process, the interaction between three interphases
should be considered. In our simulation, the body–body inter-
action between the cell and the ECM is modeled by the recent
developed CGCM (Sauer and Li 2007b, a, 2008). The key
technical ingredient of CGCM is to introduce an adhesive
contact potential of the two bodies, based on the homoge-
nization of molecular interaction between individual atoms
or molecules. The kinematic description of two interacting
bodies is shown in Fig. 3. Consider the interaction of two
distinct bodies at the current configurations �1 and �2. The
total potential energy of the whole system can be written as

	 =
2∑

I=1

(
	int,I −	ext,I

)
+	ac, (5)

where 	int,I and 	ext,I are the internal energy and external
energy for body�I , I = 1, 2.	AC denotes the homogenized
interaction energy due to the interbody adhesive contact.

Suppose that there are two particles located at x1 and x2

interacting with each other via an interatomic potential φ,

Fig. 3 The kinematics of two interacting bodies

which is a function of the current bond length r := |x1 −x2|.
φ(r) can be any potential suitable for the specific physical
bonding. In this work, we use the Lennard–Jones potential,
i.e.,

φ(r) = ε
(σ0

r

)12 − 2ε
(σ0

r

)6
, (6)

where ε is the potential well (in the unit of energy) and σ0 is
the steady-state distance. The LJ potential is chosen to rep-
resent the specific and non-specific binding forces between
the cell and its ECM, and such simplified approximation has
been adopted by other researchers, (Roy and Qi 2010). In
the present work, we do not distinguish the cell-substrate-
specific or non-specific forces (Huang et al. 2011; Sackmann
and Bruinsma 2002). We would like to emphasize here that
although an interacting potential of the 12-6 LJ form is cho-
sen in the CGCM, it does not necessarily mean that our model
can only simulate system in nano- or submicro-scale. This
LJ potential only serves to represent the attraction or repul-
sion forces between the cell and the ECM. As a matter of
fact, the CGCM can be employed to simulate macro scale
simulations through a second-level Coarse-Graining. Inter-
ested readers can consult (Sauer 2006) for details. Moreover,
one can easily switch to a different form of potential based
on the present framework, if necessary. Summing up all the
interbody interactions between atoms in the two bodies, one
may arrive at the final form of the homogenized interaction
energy for the adhesive contact

	ac =
∫
�1

∫
�2

β1β2φ(r)dv2dv1, r = |x1 − x2|, (7)

where β1 and β2 represent the current particle densities
located at points x1 ∈ �1 and x2 ∈ �2. The first variation of
the homogenized interaction energy 	AC can be written as

δ	ac =
∫
�1

∫
�2

β1β2

(∂φ(r)
∂x1

· δu1 + ∂φ(r)

∂x2
· δu2

)
dv1dv2

= −
∫
�1

β1b1 · δu1dv1 −
∫
�2

β2b2 · δu2dv2, (8)

where the body forces are defined as

b1(x1) := −∂Φ2

∂x1
, Φ2 :=

∫
�2

β2φ(r)dv2;

b2(x2) := −∂Φ1

∂x2
, Φ1 :=

∫
�1

β1φ(r)dv1.

For the detailed theory and the computational implementa-
tion of the CGCM, the reader may consult to (Sauer and Li
2007b, a, 2008).

The original CGCM formulation is basically a computa-
tional formulation for the body–body interaction. As shown
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Fig. 4 A schematic for the surface–surface interaction

in Eq. (8), the body–body approach requires a double layer
integration over the two deformable bodies, which is in need
of great computation efforts, especially for realistic 3D sim-
ulations. Consider two bodies �1 and �2 interacting with
each other, as shown in Fig. 4. Following the approach out-
lined by (Jagota and Argento 1997), we can condense the
body–body interaction forces directly to a surface–surface
interaction. The adhesive contact force applied on an infin-
itesimal surface element da1 ⊂ ∂�1 due to the presence
of an infinitesimal surface element surface da2 ⊂ ∂�2 is
expressed as,

dF1 = {β1β2 (n2 ⊗ s12) · n1ψ(s)} da1da2 (9)

where n1,n2 are the unit surface out-normal at surface points
s1 and s2, respectively, and

ψ(s) = 1

s3

∫ ∞

s
φ(r)r2dr,with

s = |s12|, s12 = s2 − s1 = −s21 (10)

For the interatomic potential φ(r) given by Eq. (6), one can
easily perform the integration above and get

ψ(s) = 2

3
ε

[
1

6

(σ0

s

)12 −
(σ0

s

)6
]

(11)

Similar to Eq. (9), the adhesive contact force applied on an
infinitesimal surface element da2 ⊂ ∂�2 due to the presence
of an infinitesimal surface element surface da1 ⊂ ∂�1 is
expressed as

dF2 = {β1β2 (n1 ⊗ s21) · n2ψ(s)} da2da1 (12)

2.2.2 Interface equations and surface tension effects

In the MMCL, surface tension effects are included in the
triple-phase system. In addition to the conventional equa-

tions of motion in the bulk (Eq. 4), a set of surface traction
boundary conditions, similar to the Gurtin–Murdoch inter-
face formulation (Gurtin and Murdoch 1977), is considered,

∇S · σ S
α + tα = ρsαaα, α = l, s, g (13)

where the subscript α denotes the corresponding quantity
in each phase. ρsα is the surface mass density, σ S

α is the
surface stress, tα is traction vector, and aα is the mass material
acceleration. ∇S is the surface gradient operator, defined as

∇S := ∇ − n(n · ∇) (14)

where n is the unit out-normal of the surface at the point of
interest.

2.2.3 Galerkin weak form formulation of the MMCL theory

In this section, the Galerkin weak formulation of the MMCL
theory is presented. We consider a triple system in a total
Lagrange description,

L =
∑

α=c,s,m

[
Tα − (	int

α −	ext
α )

]
−	ac,

and S =
∫ t2

t1
Ldt, (15)

where α = c, s,m denotes the gaseous, liquid and solid
phases; Tα are the kinetic energies;	int

α are the internal ener-
gies;	ext

α are the external energies; and	ac is the interaction
potential energy among interphases.

Considering the least action or the stationary action prin-
ciple, δS = 0, we have

δS =
∫ t2

t1
δLdt =

∫ t2

t1

{ ∑
α=c,s,m

[
δTα − (δ	int

α

−δ	ext
α )

]
− δ	ac

}
dt = 0,

∀δul , δus, δug ∈ H1(�l) ∪ H1(�s) ∪ H1(�g), where
δul , δus and δug are the variation of displacements in the
gaseous, liquid and solid phases. The variation of the kinetic
energy is given by

δTα =
∫
�α

ραu̇α · δu̇αdvα, α = l, s, g; (16)

where ρα are the mass density in the current configuration.
The variation of the internal energy is given by

δ	int
α =

∫
�α

σα : ∂δuα
∂x

dvα, α = l, s, g. (17)
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The variation of the external energy is given as

δ	ext
α =

∫
�α

ραbα · δuαdv+
∫
∂�α

tα · δuαds, α = l, s, g,

(18)

where bα are the body forces and tα are the surface traction.
The variation of the interaction energy is given in terms

of the body–body interaction method as

δ	ac =
∫
�α

∫
�β

βαββ

[
∂φ (r)

∂xα
· δuα

+∂φ (r)
∂xβ

· δuβ
]

dvβdvα, (19)

or in terms of the surface–surface interaction method,

δ	ac =
∫
∂�α

∫
∂�β

βαββ
{[(

nβ ⊗ sαβ
) · nαψ(s)

] · δuα
+ [(

nα ⊗ sβα
) · nβψ(s)

] · δuβ
}

daαdaβ (20)

where the interphase pair αβ : lg, gs, and ls.
Finally we can obtain following variational equations,

∫ t2

t1

{ ∑
α=c,s,m

[∫
�α

ρvα · δu̇αdv −
∫
�α

σα : ∂δuα
∂xα

dv

+
∫
�α

ραbα · δuαdv +
∫
∂�α

tα · δuαds

]
−

∫
�α

∫
�β

βαββ(
∂φ (r)

∂xα
· δuα + ∂φ (r)

∂xβ
· δuβ

)
dvβdvα

}
dt = 0,

∀αβ = lg, gs, and ls. (21)

or

∫ t2

t1

{ ∑
α=c,s,m

[∫
�α

ρvα · δu̇αdv −
∫
�α

σα : ∂δuα
∂xα

dv

+
∫
�α

ραbα · δuαdv +
∫
∂�α

tα · δuαds

]

−
∫
∂�α

∫
∂�β

βαββ
{[(

nβ ⊗ sαβ
) · nαψ(s)

] · δuα
+ [(

nα ⊗ sβα
) · nβψ(s)

] · δuβ
}

daαdaβ
}

dt = 0,

∀αβ = lg, gs, and ls. (22)

This is the Galerkin weak form of the MMCL Theory. Note
that in Eq. (22), the traction force tα on ∂�α does not include
the adhesive traction due to the Derjaguin approximation. If
we absorb the adhesive traction force into tα , the weak form
is then simplified as the conventional expression,

∫ t2

t1

{ ∑
α=c,s,m

[∫
�α

ρvα · δu̇αdv −
∫
�α

σα : ∂δuα
∂xα

dv

+
∫
�α

ραbα · δuαdv +
∫
∂�α

tα · δuαds

]}
dt = 0. (23)

For the sake of simplicity, details of the FEM discretization
are omitted. Here, we only provide the formulation of the
traction boundary condition to the surface force on the nodes
at the boundary ∂�l ,

Fs
l = −

NSnode∑
Is=1

{∫
�cs

∂NIs

∂x
: σ S

csds

+
∫
�cm

∂NIs

∂x
: σ S

cmds +
∫
�ms

∂NIs

∂x
: σ S

msds

}
. (24)

where NSnode is the total number of surface element nodes
and NIs (x) are the surface finite element shape functions.
Readers interested on how to obtain Eq. (24) may consult
(Minaki and Li 2014) for the details.

2.3 Constitutive modelings

The constitutive modelings for the nematic droplet, the elastic
substrate and its corresponding surface elasticity are dis-
cussed in following sections.

2.3.1 Modeling cells as active nematic droplets

In this work, we adopt the constitutive equation from
(Edwards and Yeomans 2009) in simulations of the nematic
flow. The presence of nematic order in cells is because of
the polarity field of F-actin filament. In fact, F-actin itself
is a nematic liquid polymer solution (Viamonte et al. 2006;
Viamontes and Tang 2003), i.e., each F-actin monomer has a
plus end and a minus end, and the actin monomers all orient
with their cleft toward the minus end of the actin filament,
which is responsible for many cellular functions and motil-
ities, such as treadmilling, contractile force and retrograde
flow.

The Cauchy stress in the active nematic model of the
aggregated actin filament is given as follows,

σ = κ ln(J )1 + 2μd + λ

2
(h ⊗ s + s ⊗ h)

−1

2
(h ⊗ s − s ⊗ h)− ξh ⊗ h (25)

where κ is the bulk modulus of the cell;μ is the viscosity; d is
the rate of deformation tensor; h is a director field that mimics
the nematic order of F-actin filaments at coarse grain level;
s = −η∇2h is the molecular field conjugate to the director
field (Edwards and Yeomans 2009); and λ, η are positive

123

Author's personal copy



H. Fan, S. Li

constants. The last term in Eq. (25) i.e., −ξh ⊗ h is the so-
called active stress term. It provides modeling of prestress and
energy input during F-actin polymerization from isotropic G-
actins by ATP hydrolysis (Joanny and Prost 2009). The active
stress term, −ξh⊗h, may also provide a contractile force that
can generate internal treadmilling for actin cytoskeletons.
This is because that the active stress term is the contribution
from a dipolar force generated by the director field. In all the
calculations done in the work, we choose ξ = 1.0×10−5 Pa.

The Cauchy stress defined in Eq. (25) is a nonstandard
Cauchy stress. Besides the displacement field u, the Cauchy
stress inside the nematic droplet is also dependent on the
director field h, and it is asymmetric. Thus, in order to solve
the equations of motion for the nematic droplet, extra gov-
erning equations for the director field are needed. In our
simulation, these governing equations for the director field
h are based on that of (Edwards and Yeomans 2009; Joanny
and Prost 2009), except that we add a Landau–Ginzburg type
of potential as a free energy, which serves as a penalty to reg-
ulate the magnitude of the director field,

Dh̃
Dt

= γ {∇ · (∇ ⊗ h)− r(h)} − ν1dh − ν2tr(�)h,

∀x ∈ �1(t) (26)

where

� = ḞF−1, and d = 1

2
(� + �T ) (27)

and F is the deformation gradient, v = vi ei is the velocity
field, γ is the director elastic constant, and ν1 and ν2 are
positive constants. r is the force vector resulting from the
Landau–Ginzburg type free energy,

r = dR(h)
dh

= h
ε2 (‖h‖2 − 1), and R(h) = 1

4ε2 (‖h‖2 − 1)2

(28)

One may note that in Eq. (26), a corotational convected time

rate
Dh̃
Dt

is used, which is very important for large deforma-

tion dynamic computations, because it ensures the objectivity
of time integration. In this work, we set

Dh̃
Dt

= Dh
Dt

+ �T h. (29)

2.3.2 Constitutive equations of the ECM

For the extracellular matrix, we use the St. Venant–Kirchhoff
material model (see Holzapfel 2000). It is a full nonlinear
model in the displacements, and thus it can be used for large

displacement calculations with a formulation similar to small
strain case. The free energy density function is given as

W (E) = λ

2
(trE)2 + μtrE2, (30)

where E is the Green–Lagrange strain tensor and λ and μ
are the Lame constants. The second Piola–Kirchhoff stress
tensor S can then be derived as

S = ∂W

∂E
= λ (trE) I + 2μE (31)

where I is the unit second-order tensor in 3D space.

2.3.3 Surface elasticity

Without considering surface diffusion and friction, the fol-
lowing surface constitutive relations are chosen,

σ S
m = γmI(2)S (32)

σ S
c = γcI(2)S + ∇SγcI(2)S + μS

2

(
∇S ⊗ v + (∇S ⊗ v)T

)
(33)

σ S
s = γsI(2)S + ∂�S

∂εS
+ γs∇S ⊗ u. (34)

where u and v are displacement and velocity fields; μS is
the surface viscosity; γs, γc and γm are the surface tension in
different phases; �S is the solid surface strain energy; εS is
the surface strain tensor; ∇S is the surface gradient operator
defined in Eq. (14); and the operator ⊗ is the standard nota-
tion for tensor product in tensor algebra or analysis. Finally,
we use the symbol, I(2)S , to denote the unit second-order ten-
sor in tangent space of the surface or interface.

For the case of infinitesimal deformation, Gurtin and Mur-
doch proposed the following quadratic form of the surface
strain energy (Gurtin and Murdoch 1977),

�S = 1

2
εS

i j C
S
i jklε

S
kl , i, j, k, l = 1, 2 (35)

in which the surface elastic tensor is related to surface tension
γS as well,

C S
i jkl =

(
λS + γs

)
δi jδkl + μS (

δikδ jl + δilδ jk
)
,

i, j, k, l = 1, 2 (36)

where λS and μS are the surface Lame constants. Hence, the
surface constitutive equations for the solid phase become

σ S
s = γSI(2)S + 2

(
μS − γs

)
εS

+
(
λS + γs

)
tr(εS)I(2)S + γs∇S ⊗ u (37)
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Subsequently, one can readily derive the interface constitu-
tive relation, for instance,

σ S
cs = γcsI

(2)
S + ∇SγcI(2)S + 2

(
μS − γs

)
εS

+
(
λS + γs

)
tr(εS)I(2)S + γs∇S ⊗ u

+μS

2

(
∇S ⊗ v + (∇S ⊗ v)T

)
(38)

where the surface strain εS is determined by projecting the
bulk strain onto the local tangent space of the surface, i.e.,

εS := P · ε · P (39)

Note that I(2)S denotes the unit tensor in the tangent space
of a smooth surface or two-dimensional manifold, which is
defined as

I(2)S := PI = P, (40)

where I is the unit tensor in a 3D Euclidean space and P is
the projection tensor defined as

P := I − n ⊗ n, (41)

where n is the unit out-normal of the surface at the point of
interest. In some part of the text, in order to emphasize the
material properties of the manifold, we write it as I(α)S , α =
c, s,m or cs,ms and cm etc., in a manner that is self-evident.
One may note that

∇S · I(2)S = ∇S · P = 2κn (42)

where κ is the local mean curvature of the surface.

2.4 Force dipole field and the corresponding distributed
moment

Because of the presence of the director field, which is the
mesoscale representation of the polarized actin filaments, the
Cauchy stress tensor is no longer symmetric (see Eq. 25).
This will lead to a local force dipole distribution inside the
cell. We can calculate the force dipole moment inside a cell
as

m = εi jkσ jkei (43)

where εi jk is the permutation symbol. To investigate the effect
from the interaction between the cell and the substrate, we
define the dipole moment field as

p(x, t) = m(x, t)− m0(x). (44)

where m0 is the initial dipole moment field induced by pre-
stress.

For simplicity, we choose an initial state so that the initial
direction of the director field is along the radical direction,
i.e., h(x, 0) = n(x, 0) = n0(x). In fact, by doing so, the
prestress state due to the initial director field h(x, 0) is purely
dilatational and hence m0 = 0. In this case, one may find the
initial molecular field,

s0 = − η

r2 h0 (45)

where r is the radial distance between the center of the droplet
to the point under consideration. Under this condition, the
polarization field is the dipole moment field, i.e., p = m.
During the spreading of the cell over the elastic substrate, we
can calculate the projection of the polarization vector onto
the original director filed axis n,

cos θ̄ := p̄ · n, p̄ := p
|p| , (46)

where n(x) is the direction of the local nematic axis, and it
may be interpreted as the chosen direction of the actin stress
fiber. In this paper, we name cos θ̄ as the orientation order
parameter.

3 Numerical examples

3.1 Dynamic spreading of a living cell

In this section, the simulation of a living cell spreading upon
the ECM is presented. The cell is modeled as a nematic
droplet, while the ECM is treated as an elastic substrate.
The cell was initially in suspension and placed above the
elastic substrate, as shown in Fig. 5a. We have carried out
the simulation, attempting to capture the different features
at different stages of the spreading process, i.e., early stage
spreading (Fig. 5b) and the late stage spreading (Fig. 5c).
As indicated in the three assumptions made in Sect. 1, only
physical interactions among the cell, the ECM and the extra-
cellular medium are considered for early stage spreading.
We expect that the cell will show a weak contact/adhesion
on the substrate, resembling a “ball-up” phenomena. In the
late stage, an actin tension force γactin is introduced, applying
at the moving contact line, parallel to the ECM surface, as
shown in Fig. 5c. Due to the effect of the actin polymeriza-
tion and/or actomyosin contraction, the cell will then spread
over the substrate.

Initially, the cell is set as a perfect sphere with a radius
r = 5 µm, which is discretized into 4000 eight-node brick
elements with 4341 nodes. The elastic substrate is a thick
cylinder plate with the dimension H = 4.75 µm, R =
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Fig. 5 Illustration of different
stages of a spreading cell

20.0 µm, which is discretized into 2916 eight-node brick ele-
ments with 4036 nodes. The computational model is shown in
Fig. 6. The material properties of the cell and the simulation-
related constants are: densityρc = 1.0×103 kg/m3, viscosity
μ = 1.0 × 10−2 Pa s, bulk modulus κ = 2.2 × 108 Pa, η =
5.0 × 10−8, ν1 = 2.0, ν2 = 2.0, ε = 1.0 × 10−4and γ =
1.0×10−4. The material parameters for the St. Venant Kirch-
hoff elastic substrate are density ρs = 1.0 × 103 kg/m3,
Young’s modulus E = 220 KPa and Possion’s ratio ν =
0.493. Most of these parameters are taken from (Zeng and
Li 2011a), other than the two coefficients ν1 and ν2, which
are chosen according to (Julicher et al. 2007). The Lame
constants can be obtained by

λ = νE

(1 + ν)(1 − 2ν)
(47)

μ = E

2(1 + ν)
. (48)

The atomic densities are set to be that of water βc = βs =
3.3 × 1028/m3. The surface tensions between the three dif-
ferent phases are chosen according to the average membrane
tension (8.0 × 10−2 N/m) and the contact angle of the cell
(60◦) (Hategan et al. 2003): the cell and the extracellular
medium γcm = 7.28 × 10−2 N/m; the cell and the extracel-
lular matrix γcs = 1.35 × 10−2 N/m; the cell extracellular

Fig. 6 Computational model of the nematic droplet and the elastic
substrate

matrix and extracellular medium γms = 9.85 × 10−1 N/m;
the actin tension γactin = 6.3×10−2 N/m. In our simulation,
we do not distinguish specific or non-specific forces between
the cell and the substrate. The other coarse-grained parame-
ters of the adhesive contact are given as σ0 = 1 µm, ε =
5.0 × 10−16 J, which usually results in an average gap
of 400 nm between the cell and the elastic substrate. We
would like to point out that the adhesive strength ε is chosen
according to the magnitude of the surface tensions, material
properties of the cell and the substrate (stiffness in particular),
such that the cell can successfully adhere to the substrate and
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 7 Temporal evolution of the cell spreading over an elastic substrate. a t = 0.04t0, b t = 0.08t0, c t = 0.24t0, d t = 0.32t0, e t = 0.4t0,
f t = 0.48t0, g t = 0.64t0, h t = 0.72t0, i t = 0.8t0

spread over on it once the actin tension is involved, within
an acceptable amount of simulation time. During the simu-
lation process, the bottom part of the substrate is fixed. The
cell is prescribed with the prescribed director field boundary
condition, i.e., the director h in the out-layer of the droplet
is fixed in out-normal direction of the surface. The choice
of this essential boundary for the director field is based on
the mechanical structure of the cell membrane, which is a
lipid-bilayer.

Figure 7 presents a time sequence of snapshots of the cell
spreading process. The simulation time step is dt = 1.25 ×
10−10 s, with a total amount of time t0 = 20 µs. The total
simulation time is not sufficient for a real cell to completely
spread (Hategan et al. 2004). The computational cost for sim-
ulation of a complete cell spreading process is so large that
we have to choose a larger adhesive strength ε, which might
be viewed as an acceleration factor (like in the steered molec-
ular dynamics, Izrailev et al. 1999) to speed the computation
process, so as to mimic the real cell spreading. To capture the
dynamic spreading process as a whole, we divide the total
simulation time into two parts. The first part is pure mechan-
ical, by which we mean that the cell is treated as a passive
object. In the second part, the actin tension γactin is applied
at the MCL. The steady-state shapes of the cell at the end of
each part are shown in Fig. 7e, i, respectively. We would like

to mention the importance of the role the actin tension force
γactin played in the spreading process. As can be seen from
Fig. 7, the cell first adheres to the substrate (a–d), guided by
the contact/adhesion force from the CGCM, resembling the
“ball-up” shape. Without the effect of the actin tension, the
cell would stay there, with no further spreading. At the mov-
ing contact line �mcl of the triple phase system, a net force
parallel to the surface of the substrate, pointing to, approxi-
mately, the out-radius direction of the cylinder, is applied to
the fringe of the cell. Thus, the cell continues spreading till
another steady state is achieved (see Fig. 7e–i). The MMCL
is highly dependent on the contact model, and one is always
required to detect the current location of moving contact line.
It is this MMCL model, combined with the treatment of the
actin tension effects that makes the spreading possible for
the cell spreading on the substrate. The spreading areas are
measured during the simulation, and they are compared with
experimental observation. In our simulation, the spreading
area is calculated and obtained based on the position of the
moving contact line front. Due to the discrete feature of finite
element method, the MCL is approximated by the surface ele-
ment edges of the cell. The positions of the moving contact
lines are obtained using a surface-to-surface contact detec-
tion algorithm, which is omitted here in order to focus on the
content of cell mechanics. Figure 8 shows several examples
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Fig. 8 MCLs at three different instances during the cell spreading process, the red rings in the fringes of the contact regions represent the MCLs:
a early stage soft contact/adhesion, b intermediate stage of spreading, c late stage of spreading

Fig. 9 Temporal evolution of the cell spreading area over the elastic substrate. The units are A0 = 78.54 µm2 and t0 = 20 µs. a Spreading area
A versus simulation time t. b loglog plot, ln(A/A0) versus ln(t/t0)

of the MCLs in the spreading process. Using the coordinates
of the nodes at the MCL, one can readily obtain the average
radius of the contact region and hence the spreading area.

Figure 9 shows the spreading area versus time evolution
of the entire process. Initially, the long-range attractive force
between the cell and the substrate drives the rapid spread-
ing of the cell (A). A steady state is reached (B) through
the balance between the forces from the contact/adhesion
and the passive surface tensions. The early stage spreading
process corresponds to the range t = 0 to t = 0.12t0 in the
figure. With the introduction of the actin tension γactin, the
early stage steady state is broken, and the system will reach
a new steady state (D), with the increase in the spreading
area (C). The late stage spreading starts from t = 0.40t0.
The spreading of cells over elastic substrates has been stud-
ied by many researchers (Cuvelier et al. 2007; Dobereiner
et al. 2004; Douezan et al. 2011; McGrath 2007; Sun et al.
2009; Vernerey and Farsad 2014; Wolfenson et al. 2014). It
is found that the evolution of contact radius follows specific
power laws, for a wide range of cell types and substrates. In
particular, Cuvelier et al. (2007) demonstrates from experi-
ments that for early stage cell spreading, the contact radius
versus spreading time follows a square root law

√
A ∼ √

t or
A ∼ t , where A is the spreading area and t is the spreading
time. Li et al. (2014) and Chamaraux et al. (2005) show that
the power law relations do not even dependent on the time
scale of the spreading process (Chamaraux et al. 2005; Li
et al. 2014).

As can be seen from Fig. 9a, the temporal evolution of the
cell spreading area approximately follows the trend A ∼ t
in the early stage. For better illustration, a log–log plot of

the spreading area versus time curve is shown in Fig. 9b.
Both the early stage (A) and late stage (C) are well fitted by
straight lines, which indicates both the early stage and the
late stage cell spreading satisfy the power laws. We want to
make a remark on the late stage spreading that the isotropic
spreading behavior lies in the assumption that the actin poly-
merization or actomyosin contraction-induced actin tension
is uniform around the moving contact line �mcl. In reality,
this is not always the case. In fact, we believe that a spe-
cific asymmetrical actin tension effect resulting from actin
polymerization or actomyosin induced might lead to the cell
crawling phenomenon.

3.2 Investigation of the cell mechanotransduction and
the force dipole field

In this section, cell spreading simulations over substrate
with various stiffness are studied, in an attempt to probe the
mechanotransduction due to the interaction between the cell
and the extracellular environment. Here it is assumed that the
adhesion strength is larger in substrate with higher Young’s
modulus (Huang et al. 2011; Lo et al. 2000). The potential
wells of the three coarse-grained potentials, which charac-
terize the surface and interface energies of three substrates,
are chosen as εI = 2.0 × 10−16 J, εII = 5.0 × 10−16 J and
εIII = 1.0 × 10−15 J. Other material parameters used in the
simulations for the cell are the same as those in the previ-
ous example. We set E0 = 20 KPa, ν0 = 0.493 as the base
Young’s modulus value, and the Young’s modulus for the
three different substrates is subsequently represented as
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Fig. 10 Temporal evolutions of the cell spreading areas over various
elastic substrates. The units are A0 = 78.54 µm2 and t0 = 20 µs

Substrate I : E SI = 2E0; νSI = ν0 (49)

Substrate II : E SI I = 5E0; νSI I = ν0 (50)

Substrate III : E SI I I = 10E0; νSI I I = ν0 (51)

where E denotes the Young’s modulus and ν is the Possion’s
ratio. The relationship between spreading area versus time
for the three different substrates is given in Fig. 10. It reveals
that the stiffer the substrate, the more (large area) the cell
spreads (see Fig. 11). Despite the similar spreading trend,
at the same instance, the spreading areas of the cell on the
three different substrates are quite different. Specifically, for a
fixed instant, the stiffer the substrate, the larger the spreading
area, which is in good agreement with results reported in
literature.

To study the internal dipole moment field inside the cell,
we make horizontal cuts of the cell at different heights, with
the cutting plane parallel to the XOY surface (substrate sur-
face). Figure 12 shows the distributions of the orientational
order parameters for the dipole moment field of a same cell
spreading over three substrates with different elastic stiff-
nesses. One may find that the distributed dipole moment field
seems to exert torques on the center area of the droplet, where
the cell nucleus is supposed to reside. A recently study by
Kumar et al. (2014) on the rotation of the nucleus by acto-
myosin contractility must be mentioned here (Kumar et al.
2014), in which it is found in the experiment and explained

in numerical simulation through a hydrodynamics modeling
that actomyosin contractility plays a crucial role in the phe-
nomenon of nuclear rotation. By comparing the numerical
model in the present work with that in Kumar et al. (2014),
we find that there are several similarities. First, both models
consider a director field, which is assumed to be a unit vector
attached to each material point. Second, the evolution of the
director field is related to the symmetric and antisymmetric of
the velocity gradient. And third, the total Cauchy stress ten-
sors are the same. One can see that the stress tensor in Eq. (25)
or the corresponding one in Kumar et al. (2014) is in general
asymmetric, leading to a distributed dipole moment at each
material point in the system. It is possible that the active stress
term speeds up the rotational process, but from the mechan-
ical point of view, we believe that the most direct reason
for rotation is the distributed dipole moment or torque. In the
present work, the substrate stiffness and the adhesive strength
are correlated. For a higher stiffness, the adhesive strength is
larger. At the same time instance, the cell on the three dif-
ferent substrates will have different stress distributions. As
one would expect, for the substrate with higher stiffness, the
stress is in general larger in magnitude, leading to a larger
distributed moment or torque in the cell and hence the dis-
tinct pattern of the orientational order parameter. Overall, this
observation implies that: (1) Substrate elasticity can activate
and then transduce dipole moment distribution inside the cell,
which may provide an overall or effective signaling pathway
for mechanotransduction other than the specific molecular
cellular signaling pathways, and (2) The distinct distribution
pattern of the order parameter may provide a viable measure-
ment or quantification for mechanotransduction of substrate
elasticity.

4 Discussions

Despite the fact that cell spreading is a fundamental biolog-
ical process that plays a key role in many important cellular
behaviors, investigations on the spreading of living cells are
mainly conducted through experiments (Dubin-Thaler et al.
2008; Fardin et al. 2010; Li et al. 2014; McGrath 2007;
Vianay et al. 2010). Although some phenomenological cell
models have been developed at continuum level (Karcher
et al. 2003; Sun et al. 2009; Vernerey and Farsad 2011a, b),

Fig. 11 Final state of a cell spreading over substrates with different stiffness: a Substrate I, b Substrate II, c Substrate III
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 12 Horizontal views of the orientational order parameter distribution cos θ̄ (x) in a deformed droplet for three different substrates, with the
section distances to the substrates as 1500 nm above the substrate (a–c), 1000 nm above the substrate (d–f), 500 nm above the substrate (g–i)

there are very few soft matter cell models that can directly
simulate 3D cell spreading based on the intrinsic character-
istics of living cells.

In this work, a novel MMCL theory is developed and com-
bined with a soft matter cell model. The MMCL theory is a
Lagrange-based continuum model that can be used to simu-
late dynamic droplets spreading over elastic substrates, using
a coarse-grained contact algorithm and the Gurtin–Murdoch
surface elasticity theory, which levitates the droplet above
the substrate, so that it can spread under the surface energy
difference. By incorporating the actin tension effect resulting
from actin polymerization or actomyosin contraction, the cell
spreading simulations are carried out under specific assump-
tions in different stages.

It is revealed that the present soft matter cell model can
successfully simulate cell spreading over elastic substrates.
In particular, the temporal evolutions of the cell spreading
area followed the experimentally observed specific power
laws in different spreading stages. The early stage spread-
ing is a passive spreading process, and our assumption that
no actin tension effect exists may be valid, according to the
literature. As for the late stage spreading, we assumed that

both the actin polymerization and actomyosin contraction-
induced tension effects are isotropic, which may not always
be the case, especially for the contraction part. It is the
combination of the actin polymerization and actomyosin con-
traction that leads to cell crawling phenomenon. In fact, we
believed that with the introduction of certain asymmetrical
actin tension effect, one may be able to quantitatively study
the cell crawling phenomenon from a numerical perspective.

In addition to the universal cell spreading law, investiga-
tions on the effect of substrate stiffness on the cell spreading
area as well as the dipole moment distributions inside the cell
are also performed. It is found that for a fixed time duration,
the stiffer the substrate, the larger the final spreading area.
The patterns of the order parameter seem to indicate that the
distributed moment field actually exerted torques on the cen-
ter of the cell, which might provide a viable measurement for
mechanotransduction of substrate elasticity.

It should be noted that the behaviors of cells are com-
plex biological phenomena. The proposed soft matter cell
model is only intended to model mechanical behaviors of
cells at mesoscale level, which may not and cannot explain
the molecular mechanisms of cellular processes such as cell
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division or proliferation. A complete understanding the mole-
cular mechanism of the cellular process requires an in-depth
study of every aspects of molecular cell biology including all
relevant biochemical, biophysical, as well as biomechanical
factors and their interactions at different scales.

Nevertheless, developing active soft matter models for
cells may help us understand mechanobiology of cells. It has
been shown in this work that the soft matter cell model may
offer a unique approach that is sound in thermodynamics and
statistical biomechanics, and it provides much more insights
on interaction between the cell and its mechanical niche than
that of conventional hyperelastic or viscoelastic cell models.
In some cases, the soft matter model has even shown its pre-
dictive power, such as cellular morphology change and the
origin of cell motility (Zeng and Li 2011a, b, 2012).

Overall, the proposed model provides a unified framework
for understanding the universal cell spreading by focus-
ing on the collective aspects of the cell whose behavior is
determined by its coarse-grained microstructure and mater-
ial properties. It is worth mentioning that there are a variety
of different molecular based cellular models, which sug-
gests that a macroscopic model that focuses on the collective
material properties of the cell may be sufficient to explain
experimental data. The predictive ability of the present soft
matter cell model may provide both scientific insight and
clinic guidance to many of healthcare problems, such as
regenerated medicine and drug design problems.
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