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Synchronized reproducing kernel interpolant

via multiple wavelet expansion

S. Li, W. K. Liu

Abstract In this paper, a new partition of unity - the
synchronized reproducing kernel (SRK) interpolant - is
derived. It is a class of meshless shape functions that ex-
hibit synchronized convergence phenomenon: the con-
vergence rate of the interpolation error of the higher order
derivatives of the shape function can be tuned to be that of
the shape function itself. This newly designed synchro-
nized reproducing kernel interpolant is constructed as an
series expansion of a scaling function kernel and the as-
sociated wavelet functions. These wavelet functions are
constructed in a reproducing procedure, simultaneously
with the scaling function kernel, by directly enforcing
certain orders of vanishing moment conditions. To the
authors knowledge, this unique interpolant is the first of
its kind to be constructed, and to be used in numerical
computations, both in concept and in practice. The new
interpolants are in fact a group of special hierarchial
meshless bases, and similar counterparts may exist in
spline interpolation method, other meshless methods,
Galerkin-wavelet method, as well as the finite element
method.

A detailed account of the subject is presented, and the
mathematical principle behind the construction procedure
is further elaborated. Another important discovery of this
study is that the 1st order wavelet together with the scaling
function kernel can be used as a weighting function in
Petrov-Galerkin procedures to provide a stable numerical
computation in some pathological problems. Benchmark
problems in advection-diffusion problems, and Stokes
flow problem are solved by using the synchronized re-
producing kernel interpolant as the weighting function.
Reasonably good results have been obtained. This may
open the door for designing well behaved Galerkin pro-
cedures for numerical computations in various con-
strained media.
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Introduction

The study of meshless methods has become an area of
active research in computational mechanics in the past few
years. Recent surveys can be found in Belytschko et al.
(1996) and Liu et al. (1996). The main focus is still placed
on their abilities to circumvent the formidable task of
structured or unstructured mesh generation, which is re-
quired in regular finite element methods. On the other
hand, since the stringent mesh requirement is dropped,
meshless methods allow more freedom in building their
interpolation structures, which can lead to some nice and
almost unexpected properties that are not apparent in the
finite element method. This is particularly evident for re-
producing kernel particle method (RKPM) because of its
intrinsic structure (Liu et al. 1995; Liu et al. 1996; Liu et al.
1997). One of these interesting features is the so-called
synchronized convergence phenomenon, discovered by Li
and Liu (1996), which comes as a surprising result in the
convergence study.

There are two types of synchronized convergence phe-
nomena; each occurs under quite different situations. The
first type of synchronized convergence phenomenon is an
interior estimate, or local estimate, and it occurs for reg-
ular RKPM shape function on a uniform particle distri-
bution with specific choices of dilation coefficients (Li and
Liu 1996). By identifying the existence of such a conver-
gence behavior, we hope to explain some phenomena
observed in practice, such as the high convergence rate
that occurred in numerical computations and the relief of
“locking” for computations in constrained media. The
second type of synchronized convergence phenomenon is
a global estimate that is valid for all the admissible particle
distributions, but the reproducing kernel used is different
from the original reproducing kernel. Moreover, as far as
the accuracy is concerned, the local estimate of the first
type of synchronized convergence rate goes up with res-
pect to the optimal convergence rate, because of the
smoothness of the window function, whereas the global
estimate of the second type of synchronized convergence
rate goes down with respect to the optimal convergence
rate due to the construction to meet the desired property.
Nevertheless, the synchronized reproducing kernel inter-
polants give us many other advantages in numerical
computations, which is the main focus of this paper.

A major contribution of this study is the utilization of
the notion of synchronized convergence to construct
multiple wavelets to form a robust partition of unity,
which can be built in random particle distributions. This



type of shape functions are quite different from the regular
RKPM shape function, or moving least square interpol-
ants. The newly constructed synchronized reproducing
kernel interpolant is an expansion of multiple scale re-
producing kernels. Precisely speaking, the synchronized
reproducing kernel interpolant designed here has two
parts: a fundamental part - scaling function kernel, and a
higher order part - its associated wavelet functions. It has
been found that by enforcing certain vanishing moment
conditions one can construct a m-term wavelet series on
the original particle distribution. By combining the scaling
kernel function and the wavelet functions, the so-called
“synchronized reproducing kernel” is formed.

The term wavelet used in this paper follows from the
rigorous mathematical definition. Nevertheless, the wavelet
used to construct the synchronized reproducing kernel is a
novel one, which is different from the familiar wavelets in
the literature, though it may not form an orthonormal basis.
In addition, the method used to generate the wavelet is also
different from the popular multiresolution process, and it is
also entirely different from the procedure used in Liu and
Chen (1995). In recent years, wavelet analysis has achieved
much success, both theoretically and pragmatically. Its
applications span several areas, signal processing, image
processing, digital information analysis in general; acoustic,
electromagnetic wave propagation, etc. .. .. Nevertheless,
the application of wavelet methods to numerical analysis,
i.e. the Galerkin-wavelet method, had only a limited success.
Its usefulness is limited by many factors, such as uniform
discretization, rectangular domain, periodic boundary
conditions, among others. The restrictions are severe that
they cast an impression that the method can not deal with
complex engineering computations. The approach adopted
in this study is an original one, which does not follow the
Galerkin wavelet method. It appears to us that the wavelets
constructed in this paper may have some potential in
multiple scale numerical computations.

Another remarkable discovery of this study is that if the
synchronized reproducing kernel is used as a weighting
function in Petrov-Galerkin procedures, it can stabilize
numerical computations. Numerical experiments have
been conducted to solve two types of constrained prob-
lems, advection-diffusion problem and the Stokes flow
problem, by using the synchronized reproducing kernel
interpolants. It is confirmed that the synchronized repro-
ducing kernel interpolant can support almost all the cur-
rent stabilized methods. This obviously furnishes a new
method for designing multiple scale shape functions in
standard Galerkin and Petrov-Galerkin procedures for a
large class of stabilized Galerkin methods.

This paper is aimed as an independent research docu-
mentation; thus, it is arranged in a self-contained manner.
In Sect. 2, the formulation of the regular reproducing kernel
particle method is outlined with an emphasis on the mo-
ment expansion. In Sect. 3, the concept of synchronized
convergence is introduced and elaborated. The main tech-
nical content is given in Sect. 4, where a complete procedure
of constructing wavelet functions is described, and subse-
quently, the construction of synchronized reproducing
kernel interpolants are illustrated. In Sect. 5, applications of
the synchronized reproducing kernel method are discussed.

Specific computation procedures, implementations, and
numerical results on advection-diffusion problems, and the
Stokes flow problem are documented.

2
Formulation of reproducing kernel
In this section, the formulation of the reproducing kernel
method is outlined. The multiple index notation is im-
plicitly assumed (Adams 1975). For more detail informa-
tion, readers may consult Liu et al. (1995) and Liu et al.
(1997).

Choosing a polynomial basis P(x), such that

P:={P,P,,...,P/}(x)
with P;(x) =1 and P;(0) =0, i # 1.
The m-th order reproducing kernel formula for a con-

tinuous function u(x) in a bounded region Q C R” is de-
fined as

A u(x) = /Q A oly - x.x)uly) dQ |
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(1)

(2)

np
Ryu(x) =Y A (%1 — %, X)u(x)AV; (3)
=1
where the superscript m denotes the order of the gener-
ating polynomial basis; ¢ is the dilation parameter, which
is the characteristic radius of the compact support. In most
cases, 0 = ah, where h is the distance between two parti-
cles, and a is the dilation coefficient. The subscript & in
Eq. (3) indicates that this is a discrete interpolation form.
In Eqgs.(2)-(3), the scaling function kernel and the as-
sociated correction function are defined as follows,

%@(Y - X, X) = (gQ<Y - X, X)d’g(Y - X)

—X
€,y — x,x) ::P<y )b(x)

Y
where b(x) is an undetermined vector.

As one can see, the scaling function kernel %", is ba-

sically a modified window function, i.e. the product of a
window function and a correction function. The correction
function is defined in such a way that the following m-th
order reproducing conditions are satisfied,

/Pj<y_x>,%fg(y—x,x)d(2: 0,
Q Q

1<j<,

(4)
(5)

(6)

Consequently, the unknown vector b(x) in Eq. (5) can be
determined by the following algebraic equation

M(x)b(x) = P*(0) .
More explicitly,

(7)

n Min b, 1
my1 My b, 0
mi; = : ) (8)
: : 0
My Mym bn
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where the components of moment matrix are defined as’

mij(x) = /Q( ) Pi(y —x)Pi(y —x)p(y —x)dQy . (9)
The correction function is then determined as

G,y — x,%) = P<ygx>M_1(x)Pt(0) . (10)

One may note that Eq. (8) is the basic formula of repro-
ducing kernel method (Liu 1995; Liu et al. 1997).
If one chooses the polynomial basis as

P(x) ={l,x,...,x* ...,x'}, (11)
both the continuous reproducing kernel and the discret-

ized reproducing kernel satisfy the following m-th order
reproducing conditions

[y] = m

/(y_") Koy —%%)dQ =05y, |d|<m (12)
Q Q

P x—x\*

Z( ) H (X1 — X, X)AV, = 40, || <m (13)
I=1 =

where o is a multiple index in R”, such that

n

o= (o, 0y e v ey Op)y |0 ::Z“i’ % = 0 (14)
i=1

ol 061!062!"'0671!, x* = XTIX;Z _..X‘:‘ln ; (15)

(16)
Define the moments of the scaling function kernel as,

M,(x) ::/Q(ygx)z%@(y—x,x) dQ, . (17)

The m-th order reproducing kernel conditions can be in-
terpreted as the m-th order moment conditions,

oo, o] A0 o
DY = 310 -

M, = 0qq, lo] < m (18)
or,
My=1;, M,=0, 1<|u<m. (19)

Subsequently, the following m-th order completeness
conditions hold?,

/ (‘/ — ) D’ 1o oy — %, %) dQy = by (20)
Q Q

np X — X o

Z( . > Df/g,%/g(xl X, X)AV; = ald,p (21)
I=1 =

which can also be interpreted as the following moment
identity:

MP) = 515, (22)
where

— X
MP) (x) = /Q <YT> Dl #,(y - xx)dQ, . (23)

! There are two types of moments: moments of window function,
m;j, and moments of kernel function, M,
2 In this paper, we also refer them as consistency conditions

The interpolation formula (2) can be expressed as an ex-
pansion of moments,

-3 o

|o|=0

)M, (x)o"
T Qm+1

laf=m-+1 /sz Ou(%) (Y g X) a

X Aoy —x,x) dQy

where X:=y+0(x—y),and 0 < 0 < 1.
1

O"u(x) == —D"u(x) |of<m+1.
ol

By a similar procedure, one may find that

-3l

|o|=0

<3 [orun (M)

|o|=m+1
x,x)dQy

X)MP () 4 g1 IB

B
D{({%Z’u

X DL A oy = (26)

Accordingly, the truncation errors of these quantities are

u(x) — 2y u(x) = —o""!

S [ous(I%) oty -s0do,

I%I m+1
(27)
D/f(u(x) — %mu<x)) - _ m+1_|m
le m+1 / ul < ) Df/e'%/g(y — X, x) dQ,
(28)

Based on the consistency conditions (20) and (21), a global
interpolation estimate has been established (Liu et al.
1997).

Theorem 2.1 Assume a continuous function u € H'(Q),
and a smooth window function ¢ € Hj(Q),s > ¢,

s > m+ 1, the interpolation error for reproducing kernel
interpolants, (2) and (3), yield the following optimal con-
vergence rate

[ — 27 ullgr ) < Crp”[|ull (o) (29)
I — Ryl i) < Cop™llull e (30)
where

o=min{{ —k,{+1—k}, with0<k<m.

(31)

3

Synchronized convergence

One of the technical ingredients of the reproducing kernel
method is to embed a very smooth window function into

3 If the sub-domain supp{¢(y — x)} N Q is star-shaped, it is
always true that X € Q.



the scaling function kernel. Thus, in order to achieve the
same optimal convergence rate, an extra computation ef-
fort is needed in comparison with the finite element
method. This is true because the optimal convergence rate
of RKPM is controlled by the order of generating poly-
nomial basis, regardless of the smoothness of the window
function. A natural question is: can we exploit the situa-
tion? The answer is yes. After careful study, we find that if
one can enforce the correction function to be constant in a
local region, and the embedded window function satisfies
certain smoothness condition, such as the higher order
Strang-Fix condition (Strang and Fix 1973; de Boor and Jia
1985), one can expect a synchronized convergence phe-
nomenon, that is, within a certain range, the convergence
rates of all the relevant H-norm will increase from their
optimal rate to the convergence rate of L, error norm.
Although this is a significant improvement, it only hap-
pens under severe restrictions such as uniform particle
distributions, and integer dilation coefficients. Subse-
quently the method loses its meshless flavor. Moreover,
the synchronized convergence estimate obtained in Li and
Liu (1996) is only a local estimate, which may or may not
have background effect on quasi-uniform particle distri-
bution, though it is believed that this is one of the reasons
why moving least square based meshless methods can
relieve “locking” for computations in constrained media.

Nevertheless, to understand the mathematical principle
behind the synchronized convergence may be more im-
portant than the numerical phenomenon itself. By doing
so, the convergence mechanism can be controlled and
utilized towards our advantages in numerical computa-
tions.

3.1

An heuristic example

We start with a simple, one-dimensional example to il-
lustrate the basic notion of synchronized convergence.
Assume that the generating polynomial order is one, i.e.
m=1.

P(x) = (L,x) , (32)

and the embedded window function ¢ € H*(R),s > 2. For
a continuous function u € H(Q), the continuous repro-
ducing kernel formula reads as

/ Aoy — x,x)u(y) dO (33)

By Taylor’s expansion, we arrive at a particular form of
Eq. (24),

= [ Ay =2l + sy —

() (y — ) )y

2!
= u(x)Mo(x) + ouV (x) M, (x)
+ ) ()M () + L) ()M x)
+Z| () My (x) + 0(¢°) (34)

where
u™ = D"u(x)

Proceeding similarly, one may derive

DA u(x)} = /Q DA oy — x, x)u(y)dQ

(35)

- éu(x)Mg”(x) +u (x) M (x)
+5u 2)<x)M2 (x )

S0 CM () + L u ()

x MY (x) + 0 (")

(36)
where
j Y=
o= [ (= ) DL Ay - xx)d0y  (37)
and
DA} = [ DAy = . x)uly)a
b Q
1 1
= M )+ u M ()
1 2)
+ 2 (oMY (x) + 5 () M ()
2
+ e oMY ()
+0(0%) - (38)
In Table 1, the three quantities, (u — Ryu), Dx(u— Ay u),

and D}(u — #;'u), are tabulated in the order of dilation
parameter g. By reproducing conditions, the following
moment conditions hold,

Table 1. Pointwise truncation .
Completeness conditions

Truncation errors

errors
u—Ryu= u(l—My) —ouVM, f%zlu@)Mz f%ju(3)M3 f%‘:u“)M‘;
0(0%) 0(0*) O(e*
Dy(u— ') = —éuM((,l) uM(1 M§1)) —%umM;l) —%Z;H(S)Mgl) —i—?u“)Mil)
() 0(e%) o(@’)
D2(u— A7u) = —Q%uM(()Z) ——u(l)M@ u®(1 - %Mf)) —%u“)MgZ) _%”M)Miz)
0(0") U(e) ()
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M() = 1, M] =0 5 (39)
from which, one can further deduce that
MV =0, MP=0; (40)

MV =1, MP=o0. (41)

From Table 1, it is quite clear that the conditions (39)-(41)
enforce the truncation errors for quantities (u — #7'u),
Dy (u — A3 u), and D(u — #'u) to be in the order of
(%), 0(g) and O(1), respectively. This also implies that
the global interpolation error for L,, H; and H, norms are
in the order of ((¢*), ((g), and ()(1), correspondingly,
which are the usual optimal convergence rates, as indicated
in Theorem 2.1.

3.2

Synchronized convergence

If there is any possibility that synchronized convergence
could happen, i.e. the L,, H;, and H, error norm have the
same convergence rate, the local truncation errors of
(u— Zy'u), De(u— Ry'u), and D(u — #'u) have to be at
the same order, as the pattern indicated in Table 1. In
other words, all the quantities below the shaded “ladder”
in Table 1 should be zero. This requires additional mo-
ment conditions as indicated in Table 2. That is

MY =0 (42)

MP =2 MY =0 (43)

One can verify that these additional moment conditions
(42)-(43) are satisfied, if moments M,, M; are constants.
In general, they are not constant, because for the case

m = 1 only two moment conditions are enforced, i.e.

Eq. (39). Exception arise, if one can enforce the correction
function to be constant. In that case, in the interior do-
main, M,, Ms, and even higher order moments take
constant values. But, there is another difficulty, i.e. in ac-
tual computations, generally speaking, the discrete mo-
ments M}, M} are always functions of x, because

M) = S (F=x) A
HOEDY . A o(x1 — X, X)Axp

I=1

(44)

Mi(x) = zp: <"’ - "> 3y/Q (x1 — x,x)Ax; | (45)

=\ ¢

even if M, = constant, M3 = constant. However, the diffi-
culty can be circumvented if the embedded window func-
tion has nice properties, such as it satisfies the higher order
Strang-Fix conditions (Strang and Fix 1973; Li and Liu
1996). In that case, indeed, the higher order discrete mo-
ments can be constant on uniform particle distribution, i.e.

Table 2. Moment conditions

Moment conditions Additional conditions

MO =1 M1 =0
MV =0 MY =11 MY =0
MY =0 MP =0 MP =21 M =0

M! = M, = constant, M! = M; = constant (46)

Consequently, the additional moment conditions in Table 2
are automatically satisfied, as proved in Li and Liu (1996).
Under these particular circumstances, the reproducing
kernel interpolants can achieve the so-called synchronized
convergence. For detail information, readers can consult
Li and Liu (1996). The main result is listed as follows.

Define the Fourier transform of the window function ¢
as,

30 = [ (e exp(-ite)da

and the set of functions that satisfy the p-th order Strang-
Fix condition as,

SEP) .= {p|$(0) = 1,Dg¢3(27”j> 0, VjeZ"\{o0},
lof <p} .

(47)

(48)

Theorem 3.1 Assume that u € H"(Q), ¢ € SFS”;SH)
where a = ¢/h, and the correction function

%"(y — x,x) = const. Vx € Q) C int(Q). Then, the m-th
order RKPM interpolants can achieve a synchronized
convergence rate in €, i.e.

lu— Ryl gy < Ce@™ Nl gninirq,)y 0<k<s .
(49)

Remark 3.1. The synchronized convergence result stated in
Theorem (3.1) is a striking improvement in comparison
with the usual optimal convergence rate. The primary
reason responsible for synchronized convergence is the
smoothness of the window function, which is not being
utilized if the particle distribution is random, or irregular.
However, if the particles can be arranged into a uniform
distribution in a local region, one may take advantage of
the smoothness of the window function embedded, and
observe the leap in the convergence rates.

Example 3.1 Numerical tests have been performed to verify
the theorem. We used both the cubic spline (¢ € SFY) and
the fifth order spline (¢ € SF'®)) as window function with a
polynomial basis (1,x) in a uniform particle distribution
(0 =1-h) to form the reproducing kernel partition unity
in 1-D line segment [0, 1]. Then, these shape functions are
employed to solve the following ODE in a standard
Galerkin procedure,

2

d
—@u—i—u:f(x), X € (0,1) (50)
du B du| s .
e . 6, &l 6; f(x)=x"—30.0x" ;

(51)
The convergence rates are measured from different set of
computations, in which the number of particles varies from
21 to 201. Taking out a segment 5% of total length at each
end, we plot the error of numerical solutions in Fig. 1. One
can observe the synchronized convergence phenomenon.
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However, one should be reminded that the results plotted in
Fig. 1 are not the actual interpolation error; they are the
errors of numerical solutions.

4
Synchronized reproducing interpolants
via multiple wavelet expansion
The synchronized convergence Theorem 3.1 is a local es-
timate in nature, because, for most practical problems, the
correction function near the boundary is not constant.
Moreover, Theorem 3.1 is only valid for uniform particle
distribution as required in the theorem, which suggests
that, in order to achieve the desirable convergence rate, we
have to sacrifice the prime virtue of meshless method.
On the other hand, we have learned that synchronized
convergence can be achieved by maneuvering moment
conditions to control the truncation errors. Thus, based on
the same convergence mechanism, one may design a
particular kernel function, whose truncation errors have a
“ladder” structure, as illustrated in Table 1. Consequently,
this kernel interpolant will genetically possess the syn-
chronized convergence property. Followed this idea, we
propose a constructive approach to design a new type of
reproducing kernel - synchronized reproducing kernel,
which has synchronized convergence property inherently,
and is also valid for any admissible particle distributions.

4.1

Multiple wavelet expansion

The so-called synchronized reproducing kernel interpol-
ants are constructed through a multiple scale expansion
process. Let %~ 5 denote a synchronized reproducing
kernel interpolant. For a basis of m-th order generating
polynomial, we define the synchronized reproducing ker-
nel as

A (-

Z CpA Q/j )
1B|=0
where f§ is a multiple index. Hereafter the Greek letter, or

number in the square bracket of a superscript indicates the
order of the kernel function as defined in (52); meanwhile

(52)

the letter in parenthesis in the superscript remains to de-
note partial derivatives as defined in either (35) or (37). In
Eq. (52), X'} s and A, O are referred to as the synchronized
reproducmg kernel and the scaling function kernel res-
pectively. The scaling function kernel is the regular re-
producing kernel defined in (2), which carries the
information of the fundamental scale. For the rest of the
series, A~ [Q/f]’ f # 0, are called the wavelet functions, which
carry information of higher order scales.

To keep a consistent notation, we distinguish the mo-
ments from different kernels i.e.

M (x) :—/<u> %Lﬂ](y—x,x)dﬁy .
a\ ¢

Then the consistent conditions for every kernel function,
AP, can be described in an unified manner

0

(53)

;
M =1, (54)
MP =0, a#p, |of<m. (55)
Equivalently,
_ A\ P
/ <y_x> e%fgﬂ (y—x,x)dQ, =1, (56)
a\ ¢
o
[(2) oty -, =0
a\ ¢ )
p#o, fof<m. (57)
There is no summation on f in (54) and (56).
It is obvious that if | §| # 0 then kernel f Pl satisfies

|| — 1 order vanishing moment conditions, i.e.

y—x\
/g(T) %gj](y—x,x)dﬁyzo, 0<|of <|p]—1
(58)

In other words, it is always true that 4

In the infinite domain, such as R”, or interior domain

dist(x, 0Q) > 0, Jf/[’f](z X) = J/L]( )

33
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vIpl # 0

In our construction, we always assume that the window
function ¢ € L,(R), and it is also compact supported;
thus, %”E,ﬁ € Li(R") N Ly(R"). Therefore,

Ao =1%o,

which immediately leads to (see Chui 1992; Daubechies
1992 for details)

o0

B _
AP (2)dQ, =0, (59)

R"

(60)

Cy /2=m (61)
This is precisely the admissible condition of wavelet
(Kaiser 1994). As a matter of fact, based on the definition
of Grossmann and Morlet (Meyer 1993; Chui 1992), a
wavelet is a function \ in L,(R) whose Fourier transform
V() satisfies the condition

| ors =1

Hence, the higher order kernels .%f ,|B| # 0, in our for-
mulation differ at most a coefficient factor with the usual
wavelet (meaning the orthonormal wavelet!). Thus, indeed,
they are legitimate wavelets, though in most of cases, they
may not form an orthonormal basis. This is the reason
why we call 7! o as wavelet function, when || # 0. A
detailed analysis of the mathematical aspect of this par-
ticular class of wavelets is prepared in a forthcoming paper
(Li and Liu 1997).

To demonstrate the construction procedures, we pro-
ceed with the construction of several commonly used
kernel functions.

dc -
LA OF <+

(62)

Example 4.1 Assumem = 1 and P = (1,x). The associated
synchronized reproducing kernel interpolant can be ex-
pressed as

B,y = 2000, 0.
A (o) = AP )+ A, () (63)
in which, the scaling function kernel satisfies the funda-
mental moment conditions,

MYl =1, M=o (64)

Since,

X

A _p(2—
XL](y—x,x)—P< p

L4

)MW@%@—@, (65)
Eq. (64) is equivalent to

my m bgo) (1
my  m, bgo) —\o

On the other hand, the first “wavelet” function has to
satisfy the following moment conditions,

(66)

M=o,  M"=1, (67)

Assume

1 _p(2—
,}{//g](y—x,x)—P< >

&

X

)UW@%O—@, (68)

The unknown vector b\V) is determined by

my m, bgl) . 0
m; mp bgl) o 1

The scaling function kernel and wavelet constructed in
Example (4.1) is plotted in Fig. 2. The cubic spline is used
as the window function; the dilation parameter is chosen
aso=1-h

(69)

Example 4.2 Let m = 2 and P = (1,x, x*). The associated
synchronized reproducing kernel can be expressed as

Ay =3 ) (70)
=0
where
. y—x
=52 =2 (P o), ),
0<p<2 (71)
In (71), b, bYW, and b? satisfy the following algebraic
equations respectzvely,
my m; My b(lo) 1
my  m; ms béo) =10 (72)
0
my Mms 1My bg ) 0
my m; my bil) 0
m; mp; ms bgl) = 1 (73)
1
my M3z My bg ) 0
my m; My biz) 0
m my ms || BP | =0 (74)
my; ms My bgz) 1

The scaling kernel function and its associated wavelets in
Example (4.2) are plotted in Fig. 3. In Fig. 3, the fifth order
spline is used as the window function, and the dilation
parameter ¢ = 1.1 - h. One may notice that in Fig. 3b the
2nd wavelet resembles an upside down Mexican hat; it is,
however, compact supported unlike the formal Mexican
hat wavelet (Daubechies 1992).

1.0 : 1.0
0.5} /\ 1 os}

0 0
05} { o5}
%5 0 05 %5 0 0.5
a b

Fig. 2a, b. Scaling kernel and wavelet for basis (1,x): a Scaling
function kernel: b Wavelet function



1.0 - 1.0 1.0 v Fig. 3a-c. Scaling function kernel
and wavelets for basis (1,x, x?):

05 ] 05t 0.5+ 4 a Scaling function kernel; b The
1st wavelet; ¢ The 2nd wavelet

0 0 0

-0.5F ] 051 -0.5}

! 90.5 0 0.5 ! E)0.5 0 0.5 90.5 0 0.5

a b ¢

Example 4.3 Let m =3 and P = (1,x,x%,x*). The associ-
ated synchronized reproducing kernel is

3
=2 G

A B (75)
where

[l —pi(2 X Cx
APy~ x,x) = P(Q) Wby —x)  (76)

in which the unknown vectors, A
moment conditions,

, are determined by the

M =1, MP=0, a#£p, |f<m. (77)
That is
my mp; mp M3 bEO) 1
my mMp; M3 My bg()) _ 0 (78)
my ms My Ms b§°> 0
ms my ms mg b 0
My mp mp; M3 bgl) 0
moomy omy omy || 6|1 (79)
my ms My Ms bgl) 0
ms my ms Mg bil) 0
nmy mp; mp; M3 bEZ) 0
my mp; Mz My ng) _ 0 (80)
my my omyoms || b 1
ms my M5 Mg b2 0
my my; My M;3 bg?)) 0
mp mp; Mz My bgs) _ 0 (81)
m; ms3 My Ms b?) 0
ms My Ms Mg b(3) 1

The scaling function kernel and its associated wavelets in
Example (4.3) are displayed in Fig. 4. In the actual con-
struction, the fifth order spline is used as the window
function, and the dilation parameter is chosen as
o=11-h.

Example 4.4 This is a 2-D example. Assume m = 1 and
P = (1,x1,x,). The associated synchronized reproducing
kernel is

)= o

A V(- AP (82)

where

2Py —x.x) =P LX) p¥) —

f@ (y X,X) =P ( 0 >b (X>¢)g(y X),
0<|pl<1 (83)

and f is multiple index, i.e. f = (f;,,), and

Bl =B+ B, - (84)

The unknown vectors, b(o.o), b<1’°), and b<0’1)7 have to sat-

isfy the following synchronized reproducing moment con-
ditions,

M}jﬂ]: MLﬁ]IO» atpB, 0<|af<1. (85)
1.0 - 1.5
10}
05}
05}
0 0
0.5}
05} 1
4.0}
q. : . :
1095 0 05 %5 0 0.5
b
05
02}
0
0
02} .
04}
05 5 05 %5 0 05
o d

Fig. 4a-d. Scaling function kernel and wavelets for basis
(1,x,x%,x*): a Scaling function kernel; b The 1st wavelet; ¢ The
2nd wavelet; d The 3rd wavelet
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Define

mii(x) : / yhd(y

The moment conditions (85) can be explicitly expressed as
follows

(86)

Moy M9 Moy bg 1
My My My bg""’) =10 (87)
Moy My My bgo,o) 0

1,0
Moo Myo Mo bﬁ ) 0
My Mo My bgl’o) =11 (88)
M1 My My bglvo) 0

0.1
Moy My Moy b§ ) 0
My My My bg‘“) =10 (89)
Moy My M bg(“) 1

The resulting scaling function kernel and wavelets are
shown in Fig. 5. In this case, the 2-D cubic spline is used as
the window function, and the dilation vector is

21 =1-hy, szl'hxz-

Example 4.5 In this example, an incomplete second order
polynomial basis is used. It can produce a partition of unity
for the particle distribution on a 2-D square domain, which

satisfies essential boundary condition. Let P = (1,x1, %3, x;
x;), and

(90)

(o1)

satisfy the following mo-

)bw)( X)

where the unknown vectors b
ment equations,

Mo Mi0 M1 M bgo,o) 1
myp My My My b§°*°> _ 0 (92>
M1 My Moy My bgo,o) o
muy My My My bio’o) 0
0.5 0.5

04 04
-0.5 4 -0.5.
50 50
50
a 00 b 00

Moo Mo Moy My bgm) 0
my My My My b§1*°> R (93)
Mo my Moy Mi bgm) 1o
my My My My bil’()) 0
Moo Mo Mo My bgm) 0
My My My My bg"*” 10 (94)
Moy my Moy My bgo"l) 1
my My My My bio"” 0
Moo Mo Mo M bglll) 0
My My My My bgl"l) 10 (95)
Moy My Moy My bg“) 1o
my My My My bil’l) 1

The constructed scaling function kernel and wavelets are
shown in Fig. 6. The window function used is a cubic
spline. The components of the dilation vector are
lel'hxla szl'hx2~

4.2

Convergence rate of interpolation error

To this end, we are in a position to examine the conver-
gence rate of this newly formed interpolants.

Recall

A B Z Cp AV

181=0

Define the synchronized reproducing kernel interpolation
formula as

@Zu(x) = /!2%5] (y — x,x)u(y)dQ

and the moments of synchronized reproducing kernel
interpolants are

My (x) = /Q (V;") #(y - x,x)dQ0 .

(%6)

(97)

(98)

It is clear that

c 00

Fig. 5a-c. Scaling function kernel and wavelets for basis (1,x;,x,): a Scaling function kernel; b The 1st wavelet; ¢ The 2nd wavelet
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Fig. 6a-d. Scaling function kernel and wavelets for basis (1, x;,x,,x1x2): a Scaling function kernel; b The 1st wavelet; ¢ The 2nd
wavelet; d The 3rd wavelet

N m My=1, M, =M, =0, M 0 102
() = 3 cpml) (o9 Mo= L M =HLZ0 MG Z0 o)
=0 i subsequently,

In what follows, Example (4.2) is used as a model example ~((]1) =0, ]\7151) =1/ ]\7151) = 0;

to demonstrate the convergence rate of the synchronized . ;) ~(2) ~(2) |

reproducing kernel. My” =0, M;” =0, My” =2 . (103)
Let the coefficient Cy in Eq. (96) be: Obviously, there is no synchronized convergence effect,
_ P and the corresponding local truncation errors are shown

C=106=6=0. (100) in Table 3. From there, one can deduce that the conver-

In this case, the new interpolant is exactly the same as the gence rate of the global interpolation error is still optimal,

regular reproducing kernel, i.e. Le Ly IEO§H1 is in 0(¢’), Hy norm is in ¢(¢*), and H, norm
is in O(g).

. g 0 = . .
%Ef](" )= /[g](" ) (101) In the second case, we choose the coefficient Cp in
Consequently, the moments of the new reproducing kernel Eq. (96) as
interpolant are unchanged, i.e. Co=1C =0, C=1. (104)
Table 3. Optimal convergence . - _ _ ~ N
rates Moment conditions My=1 M, =0 M, =0 M; = M;(x)

L u—Aru = u(1 — My) —ouV M, —%u(”lf/[z —%u(3)M3
(e 0(e*) o(e’
H, Dy(u— Au) = —%uMél) u (1 — ) _%u<2>M§1> _g_ju@)Mg”
0(e) o(e®
H, Di(u—Aru)= — i ubtl?) - uMp? u?(1-Lm 2y £ u® M
0(e°) 0(e)
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Subsequently, we have

]\’440:17 Ml :0, andMZ:I y (105)
and

M =0, MY =11, M) =o;

7(2) o7(2) 7(2) (106)
M,” =0, M{” =0, M;” =2! .

Since M, is no longer zero, it pushes down the truncation
error for the term, (u — #,'u), consequently, the L, error
norm is one order lower than that of the optimal rate, i.e.
((@?). Therefore, the convergence rate with respect to L,
norm and H; norm are “synchronized”, as indicated in
Table 4, while as the convergence rate in H, norm remains
unchanged.

This synchronized behavior becomes even more ob-
vious in the third case, if we choose,

Co=0 C=1, C,=0. (107)
Consequently,

My=1, M;=1, and M, =0, (108)
and

=0, =1 =2

mMP =0, MP =0 M»=2. (109)

Because M, # 0 and Mgl) # 0, they further push down the
order of truncation errors for both (u — #;'u) and
Dy (u — #7'u). Accordingly, the convergence rates for both
L, norm and H; norm retrieve one order lower than the
optimal convergence rate, as indicated in Table 5. Thus,
this particular wavelet expansion results in an synchro-
nized interpolating scheme, in which the convergence
rates of L, norm, H;, norm, and H, norm are in the same
order, i.e. ().

In general, for an m-th order generating polynomial, we
can choose an integer n, 0 < n < m, and let C,, # 0, such
that the convergence rate of the interpolation error of Hy

norms, 0 < k < m+ 1 — n, can be synchronized at order
n, i.e. O(g"), as stated in the following theorem.

Theorem 4.1 Assume u € H"™(Q), ¢ € H*(Q), where

s > m + 1. For the m-th order synchronized kernel inter-
polant, by fixing n, 0 < n < m, and choosing Cy = 1;

Cp # 0, || = n, the following interpolation error estimate
holds,

e — Ry ||+ < Cr@™ [l || 0

0<k<m+1-n (110)
The proof of the Theorem 4.1 is omitted. A detailed
mathematical analysis will be presented in a forthcoming
paper (Li and Liu 1997).

To validate the Theorem 4.1, we used synchronized
reproducing kernel interpolants to interpolate function
sinx in a 1-D line segment [0, 1]. Three polynomial bases
are used (m = 1,2,3). The numerical results are displayed
in Fig. 7. In Fig. 7, based on Eq. (110), we fix the index of
synchronized convergence rate n. Then, for different ap-
proximation order m, one can calculate the range of af-
fected error norm H*, 0 <k <m + 1 — n. For m = 1,2,3,
Fig. 7 presents a complete set of results. As can be seen,
the reproducing kernel interpolant has synchronized ef-
fect. For m = 1, the cubic spline is used as the window
function; for m = 2, 3, the fifth order spline is used as the
window function. The dilation parameters are chosen as
0 = ah, where a = 1.0 for m =1 and a = 1.2 for m = 2, 3.
One may note that there is a distinction between the
synchronized convergence phenomenon discussed in
Sect. 3 and the synchronized reproducing kernel inter-
polants presented in this section. Unlike the synchronized
convergence phenomenon demonstrated in Sect. 3, where
the higher order H-norm convergence rates go up, the
convergence rates of higher order H-norm remain the
same, whereas the convergence rates of lower order error
norms go down to match that of the higher order

Table 4. Synchronized con- .

X
X
X

vergence rates (C, # 0) Moment conditions M, =1 M =0 =1 3 = M;(x)
L, u— ﬂiZ’u = u(1 — My) —ouM M, - ;—? u® M, - (;—3, u® M;
“(0) 0(e*) 0(@)
H, D u— yj??u) = féuM((,l) uM(1 M(l)) ,%u(z)fwgl) ,%u(s)Mgl)
0(e) 0(e*)
H, DXu-— 0)(’)”“) = fg%uM(()z) f—u“)]f/[iz) u?(1 -4 ~§2)) f%u(e’)Mgz)
0(e%) “(0)
Table 5. Synchronized con- . N N N N
vergence rates (C; # 0) Moment conditions My=1 M =1 ;=0 M; = M;(x)
L, u— @(’}”u = u(1 — M) —ou VM, - ;—T u® M, - ‘;—3, u® M
“(0) 0o o@’
H De(u—"u) = —Lum) u(1— MYy —ey@pY —2u®pY
1 x A, o WMo 2 2 3l
(o) (o)’
H, D(u-— Ry u) = —g%uM((f) —éu(”MiZ) u@(1 — % §2>) —%u(3>M(2)
0(e") “(e)
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Fig. 7a-f. Convergence rates of
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H-norms. Also, in Sect. 3, the particle distributions have to
be uniform, whereas the synchronized reproducing kernel
interpolant discussed here is still a meshless interpolant.
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Application to the finite element method

The synchronized convergence phenomenon may exist in
other interpolation schemes, such as Galerkin wavelet
method, other meshless methods, and the finite element
method as well. Certainly, it will be interesting to examine
these counterparts in different interpolation frameworks.
In the following examples, we shall apply the synchronized
convergence concept and construction procedure to finite
element method and observe the consequence.

Assume that in each element every single node is attached
with an equal weight AV}, and the total weight is either the
length, area, or volume of the element, i.e. Z?:l AV = Q.
We define the finite element shape functions as

NPl(x) := %Lﬁ] (x1 — x,X)AV;
NI[S](X) = %5] (x — x,X)AV} .

(111)
(112)

interpolants; a Basis (1,x); b-c
Basis (1, x,x*); d-f Basis
(17 x’ x27 x3)

Accordingly,
NP (x) == > cpN(x) (113)
Bl=0

Example 4.6 Consider an 1-D linear master element. The
master element is defined in the segment & € [—1,1]. There
are two nodes in the element, residing at &, = —1 and

&, = 1 respectively. Based on the procedure of constructing
synchronized shape function, the following set of discrete
moment conditions are enforced:

MM =1, M =0, |p=0; (114)
My =0, m"=1, |p=1, (115)
which yield the following equations

1 1 N\ (1
R N ) o) 9
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and

(—3—élié><ﬁ¥2>:<?)7

The solutions of (116) and (117) are the familiar linear
isoparametric element shape functions, and their 1st order
derivatives:

NI\ (ta=-9
(NZ“”(@) N (%(1 +é))
NU©E Y\ (-1/2
<sz(€)> - ( 1/2 )

From (119), one can see that we recover the linear iso-
parametric finite element, and its synchronized part is just
the 1st order derivatives. Obviously, the synchronized re-
producing kernel is a natural generalization of the iso-
parametric finite element. The solution (119) also has an
interesting interpretation. Let us look at the node at £ =1
in an extended domain —1 < £ < 3. The synchronized
part N[ ](f) will be

1/2 Vée[-1,1)

(117)

(118)

(119)

ey
Denote
1 —b
basls) = (20 (121)
Then, sz(é) is simply the Haar wavelet (&), where

(1 vxelo,1/2)
V() ‘_{—1 Vx € [1/2,1)

In Fig. 8, we plot both sz (x) and the Haar wavelet for
comparison.

(122)

Example 4.7 Again, take the line segment [—1,1] as the
master element. Choose &, = —1, &, =0, and {3 = 1. By
enforcing the m-order vanishing moment conditions for
scaling function kernel (m = 2), i.e

M([]O]h

=1, M =0, and, MY =0 (123)

We have the following equation

¥ (x)
NI
; Ny X) ————
+——
2]
=t 12 i1 3
772 N R S—
1 k- I

Fig. 8. Comparison between Haar wavelet and the derivative of
FEM shape function

1 1 1 N1 (&) 1
“1-¢ =& 1-¢ [N |=(0
1+ & (1-9*) \N:(9) 0

(124)
The solution is
Ny (&) 3E(¢-1)
NE = 1-¢& , (125)
N;(¢) 1E(¢&+1)

which is exactly the same as the standard, quadratic, iso-
parametric shape function.

Accordingly, two sets of “vanishing moment” conditions
can be imposed as

1k

M=o, M =1, MV =0 ; (126)
MP" =0, M =0, M = (127)

The following two linear algebraic equations can be ob-
tained,

1 1 1 N 0
“1-¢ ¢ 1-c N =1
1+8* & 1-9°) \Nl 0

(128)
and

1 1 1 NP 0
—-1-¢ ¢ 1-¢ [N =10
1+8* & 1-9°) \Nl 1

(129)
The solutions are
N 12¢-1)
N [ = -2 |, (130)
Mo/ e
N7 (8) 1/2
N = (131)
N () 1/2

From (117), one may Verzf%/ that N ) are the first de-
rivatives ofN ( ), and N; (&) are proportzonal to the

second derivatives of N[ ]( )

Example 4.8 This example is a 2-D linear four-nodes
quadrilateral element. Take &, n as the local coordinate for
the master element. The four nodes have the local coordi-
nates

(C1om) = (=1,-1), (&,ny) = (1,-1),
(537773) = (17 1)7 (5477]4) = (_17 1) .

Imposing the four moment conditions for the four sets of
kernel functions yield

(132)



1 Ny 1
1-p Ns[(o,o)] = 1o (133)
—(1+81-n) [(0,0)] 0
N4
. NI 0
-1 - é Nz[(lao)] B 1
- N | = (o (134)
(1A =n) /] \ ylool 0 41
1 MO\ o
1o¢ JSICEN I
1—p SO (135)
14+ —n) [(0,1)] 0
N4
RV
—1-¢ NP o
1—p N3[(1,1)] = 1o (136)
—(1+&)(1—n) [(1,1)] 1
N4

1 1
_1 — 17 —-1- ’7 1- ;7
Y1417 —(1=81+n) (1-801—n)
I 1
—1 —¢ 1-¢ .
_1 — ;1 -1 - ’7 1- 7]
I+ +m —1=A+n) (1 -E1~n)
) 1
_1 — 1/] -1 ’7 1- ’/]
J1tn) 1= +n) 1-91-n)
) 1
_1 _ ;1 —1—n 1—7
JX+n) —1=8)1+n) (11— -n)
The solutions are
NI g ) 7(1=8(1-n)
N | | fa+ o -n (137)
Ny || O )
NSO, ) (1= +0)
NEN =t
NE | ta=n | (138)
NIOle ) {1+ ]
N E ) —aEn)
() 319
NOYenm | | —ta+o | (139)
NV ) i
NSV ) (-9
Nﬁiiﬂ (& n) i
NEn) | | 1 140
N ) i "
NG\

Once again, {NI ( n)} and {NI [0.1)] (f 1)} recover the
1st order partlal derlvatlves of the shape function {N; @,
(¢, ;1)} and {N( ](6 n)} are exactly the same as
QNI )l jocan.

5

Applications of synchronized reproducing

kernel interpolants

There are immediate applications of the synchronized
reproducing interpolants developed here. Here, main in-

0)]

terests are in its application to numerical computations.
We have employed them as weighting functions in a Pet-
rov-Galerkin procedure. It appears that we have found a
class of new shape functions that can provide excellent
stabilized effect in the computations of hyperbolic partial
differential equations.

5.1

Advection-diffusion equation

We first start with the one-dimensional advection-diffu-
sion problem, which is, sometimes, called convection
dominated problem. We consider the following model
problem,

- Kq),xx + u(p,x :fa € (07L) CR (141)
@(0) = ¢, @(L) = ; (142)
where @, : dx P sz, and the source function f eR

is given. In Eq (141), « is the diffusive coefficient, u is the
advective velocity; both of them are given positive con-
stants.

Define the weighting function and the trial function
space as follows,

v = {w|we H([0,L]),w(0) = 0,w(L) = 0;} (143)

S = {plo € H'([0,L]), p(0) =g, o(L)=¢y; } (144)

The synchronized reproducing kernel shape function is
defined by

Nf(x) == A0 (x; — x,x)Ax; , Vxg € (0,L) (145)
N (x) == %S](xl —x,x)Ax; , Vx; € (0,L) , (146)

In the one-dimensional case, one can construct a trial
function basis, {N}' | NI' € "}, by selecting a subset of
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discrete kernel functions from reproducing kernel parti-
tion of unity. In other words, one may construct a basis

A= {,}{/‘g)] (XI — X, X) %[QO] (X], 0)
— A9 —L,1) =0, Vx€(0,L)} (147)

where A C {#%(x; — x,x) | x; € [0,L]} and we denote
the set Ay := {I| V%’LO] (x; — x,x) € A} as the index set of
A. Note the subtle differences between x; € [0, L] and
x1 € (0,L). Such a subset is not always available, espe-
cially, in multiple dimensional situations. Figure 9 shows
an 1-D example of such trial function space, and weighting
function space.

By virtue of the above argument, the following discrete
trial function and weighting function can be formed,

np
" (x) := Z (PI%/LO] (x1 — x,x)Ax;
I=1

= Z qol,%/'g)] (%1 — x, %) Ax;

IeAd
+ %[QO] (x0 — %, %) Ax0

+ %/g’] (%np — X, X)Axpppy (148)
wh(x) == Z C]Jifg)] (x1 — x,x)Axp (149)
IcAd
Wh(x) == Z clrfg] (xr — x,%)Axg (150)
IcAd

where 7 := cu/|u|, and parameter c, a stability control
parameter, is in the order (’(1). Let w"(x) := w"(x)+
Wwh(x). The weighted residual form reads

/Lwh(—mf){qxx%—uq)ﬁ( —f)dx=0 . (151)
A ,

Integration by parts yields

L L
/ (ﬁ/huqoﬁC + Wf’xfcgof'x)dx — ﬁ/hk(pﬁc\g = / thdx ,
0

0 (152)

which is an ideal Petrov-Galerkin weak form. Integration
by part for the term w"(x) only, the weak form (152) can
also be written as

L
/ (ﬁ/hu(pf} + wf‘xk<p{1x> dx

o : XV

L L
+/ W' (—ch{“xx + ug” —f)dx = / w'fdx .
0 ’ ’ 0
(153)

Note that w"(0) = w"(L) = 0.

The exact solution of (141)-(142) is
(P(x)_(/’oz l—exp(Pex/L) (154)

b — Po 1 — exp(P,)

where Pe is the Peclet number that is defined as

+
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Fig. 9a-d. A decomposition of partition of unity into A and dA: a The partition of unity; b Basis A for w"; ¢ The set 34; d A basis for w"
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Fig. 10. The solution of one-dimensional advection diffusion

ulL
Pe = — 155
- (155)
Choose
L=1,u=1, ¢,=0, oy =1 . (156)

Numerical computations have been performed to solve the
above equations. In the actual computations, the param-
eter ¢ is chosen to be 1. The synchronized shape functions
used are those constructed in Example (4.1), and the di-
lation parameter is chosen as ¢ = 1 - h. In Fig. (10), the
exact solutions are plotted against numerical solutions
obtained from the proposed Petrov-Galerkin procedure
(151) at different levels of Peclet number, Pe = 2.0, 10.0,
100.0,1000.0. The results shown in Fig. (10) are obtained
by using 101 to 201 particles. One can see that the nu-
merical solutions are stable, and have reasonable accuracy.

5.2

Multidimensional Petrov-Galerkin formulation

For multiple dimensional problems, a formulation similar

to that of the stream-line upwind/Petrov-Galerkin (SUPG)

can be conveniently formed as the counterpart of the SUPG

formulation proposed by Hughes and Brooks (1979, 1982).
Let Q C R" be a bounded region. A model multiple

dimensional advection-diffusion equation defined on Q is

described as follows,

Poh — —<Kij(PZ'> Huiglh=f, VxeQ (157)
o' =g, VxeTy (158)
rliKij(PZ' =h, vxely, (159)

where {x;} is the diffusivity tensor, and {u;} is the given
velocity of the flow field. Let

ot = Z go?%‘g’] (x1 — x,x)AV] (160)
IeAd

wh = Z a9 (x; — x, x)AV; (161)
IeAd .

where

Ad:={I|I1=1,2,...,np} (162)

Ad:={I|I€ Ad, and x; € Int(Q)} . (163)

Note that such a decomposition is not always possible.
Two appropriate choices will be given later in the same
section. For the moment, we assume that it could be done.
For || = 1, we define

W= awl (164)
Uj = Tull’ and ||ul]® == wiu; (165)
~J’7 = Z clfgfj] (xr — x,x)AV; , (166)
=4
where 0 <j <7 and || =1
Let
wh(x) == wh(x) + " (x) (167)
(.9~ [ feao (165)
B(wh,q)h) = A(whu7i¢ﬁ+wﬁxlj¢2)d9 (169)
L(w") == /QwhfdQ +/r whhdll), | (170)
h

where parameter 7 is a stability control parameter, which
is in the order of O(1). Then, a consistent weighted re-
sidual form is

(wh, Zo" —f) =0 . (171)
Integration by parts yields
B(w", ¢") — / rwhnmij(pg’.drg =L(w") . (172)
I, '
An alternative weak form can be proposed as
B(wh,(ph) + (rwh,$<ph) = L(wh) + (rﬁ/h,f) .
(173)

The benchmark problems tested are 2-D advection-diffu-
sion problems. Let x;; = xd;;. The following particular case
of Egs. (157)-(159) is studied,

—xV¢p+u-Vo=f(x), VxeQ (174)
o(x) =g(x), ¥xeoQ, (175)
(l) Viev;ing direction 1iO
! F_9n=0 ! —+1.0
Flow direction
0=0 0 ©,=0
- —T-0.2
¢=1
¢=1 0

Fig. 11. Advection skew to the “mesh”: Problem statement
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310 15 200
c 0=m/6 d

where the diffusive coefficient, k¥ > 0, and u is the given
velocity of the flow field.

The first numerical test is the so-called advection skew
to the “mesh”, which is the standard benchmark test
problem in the literature (e.g. Brooks and Hughes 1992).
Although there is no explicit mesh in our case, we still
follow the traditional name, and put the quotation mark to
make a distinction. The problem statement is described in
Fig. 11. Systematic numerical computations have been
done for this particular problem. A few results are selected
and displayed in Fig. 12. In Fig. 12, an uniform particle
distribution, 21 x 21, is used; no shock capturing term is

¢=0 0.5
Uy = -X 3
Up = Xy
Xo ¢
0=0 X4 oj=0
0 hid
A —_—
. ©=0 | « .| 05 o] A

I I
-0.5 Viewing direction 0.5

Fig. 13. Advection in a rotating flow field: Problem statement

Fig. 12a-d. Numerical results for
advection skew to the “mesh” a, c,
d with full integration; b with re-
duced integration

5 10 15 20
6=n/3

involved. From the results, one can see that stable, and
reasonable good numerical solutions are obtained.

The second test is the so-called cosine hill problem -
advection in a rotating flow field. The problem statement is
described in Fig. (13). Along the interior boundary, seg-
ment OA, the flow potential ¢ is prescribed as
%) :%[cos(élnxz +n)+1] . (176)
The numerical results are shown in Fig. 14. Part a of
Fig. 14 displays the profile of the function ¢, and the
part b of the figure shows the contour of advection-dif-
fusion field ¢. The computation is performed on a 30 by 30
particle distribution. The synchronized kernel function
used is the type discussed in Example (4.4), and again, the
dilation vector is chosen as 9; =1 hy; and g, =1 hy,.
The stability control parameter 7 is set at 1. In Fig. (14),
one can observe that there is no phase error caused by
numerical instability. In both cases, the diffusive coeffi-
cient x is taken as 107°

5.3

Stokes flow problem

It is well known that the Stokes flow problem, identical to
the problem of incompressible elasticity mathematically, is

30 7
25

o]

0s Liiah

a2 ?%é%%ééﬁ T 10
40 5

S

.

@ |
7

a 00 b 5

10 15 20 25 30

Fig. 14a, b. Numerical results for advection in a rotating field; a The profile of ¢; b The contours of ¢



suffering from instability in numerical simulations, if
standard Bubnov-Galerkin procedure is adopted. The
mathematical formulation of the problem is as follows,

V-o+f=0 (177)
V-u=0 (178)
where

6 = —pl+2pue (179)
e=1(Vu+ (Vu)) . (180)
And

u(x) =g(x) vxel, (181)
(6-n)(x) =h(x) Vxely (182)

Many computational strategies have been invented to deal
with the problem, such as penalty method, reduced inte-
gration, etc. .... It is fair to say that the best of all should be
the mixed method. However, in a mixed formulation, there
are certain restrictions that have to be met for displace-
ment interpolation and pressure interpolation. The cele-
brated Babuska-Brezzi condition is such a requirement
imposed by stability criterion. For example, it excludes the
equal-order interpolations in computations. Hughes et al.
(1986) proposed a Petrov-Galerkin formulation to cir-
cumvent the Babuska-Brezzi condition (CBB), such that
any consistent interpolation schemes can be employed in
computations. Here, following almost the exact same
Petrov-Galerkin formulation, we employ the first order
wavelets constructed in Example (4.5) as the additional
pressure weighting functions to perform the computation,
instead of using the gradient of the pressure trial function
as proposed in Hughes’ formulation. Let

7 ={v|ve H(Q),v(x) =0, x € T}
I = {s|s € H(Q),s(x) = g(x), x € Tz}

(183)
(184)

Assume that we can find a particle distribution that en-
dows a partition of unity,

A= {NI(X)|NI(X) = %/[@0]("1 _X7X)AV1a 0<I< l’lp} ’
(185)

such that the set A can be decomposed into two inde-
pendent parts,

A=A®oA (186)
where
A = {N;(x)|N; € A, Ni(x; — x,x) =0,
Vx € 0Q} (187)
0A := {N;(x)|N; € A, Vx; € 0Q} (188)

Remark 1 The decomposition is possible if and only if,
A= {N1|N[ € A_7 X; € Int(Q)} . (189)

As a matter of fact, we have used (189) as the definition of
A in (147) and (163). Not all the admissible particle dis-

tribution endow such decomposition. In those cases, extra
care have to be made to deal with the essential boundary
conditions. Nevertheless, in 1-D problems, this type of de-
compositions can be easily constructed (see Fig. 9). In 2-D
problems, it have been found that if particular bases are
used in the construction of %[QO], such decomposition can
also be achieved. For example, if we use the polynomial
basis, (1,x1,%y,%1x,), with the cubic spline window func-
tion, or (1,x1, X2, X3, X1X2, X5, X2 X2, X1X5, X2x3 ), with the fifth
order spline window function, the decompositions (186)
can be satisfied.

We choose the following equal-order interpolation for
displacements and pressure:

"= Zu;%fg)] (x; —x,X)AV;

I€A
+ Z {;F%/[Qo] (x1 — x,X)AV]
I€0A
=v'+g (190)
wh = ZWI%'E)] (xr —x,X)AV] . (191)
I€A
and
ph=) pr Vx - x,x)AV; (192)
IcA
q" = Z qp%fg)] (x; —x,xX)AV] . (193)
IcA
For f =1, let
q = {4145} (194)
- Q; - - .
=23 g - x 0, =12 (199)
1 IcA
where there is no summation on j, and

Then, the following CBB type of Petrov-Galerkin weak
form is used in the computation,

Bf(whv qhv Elh7 Vh7ph) = LT(Wh7 qh7 qh)
where
- (V : wh7ph) + (qha V- vh)
(", Tp" — 207 - (")) (198)

(197)

Xp
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N —
nn
[ e

U1=1,UZ=0

—— - — -

0 0
0 0

u
u

u
1 1 1
Uz 2

U1=U2=0

-
1 ! b

Fig. 15a, b. The cavity problem; a Problem statement; b Detail of
boundary condition at the corner
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and

L(w' q",q") :== (W' +1q".f) + (W', h),
— (e(w"),2ue(g") — (4", V - g")
+ (1q",2uV - €(g"))

where parameter 7 is the stability control parameter, which
is in the order O(1).

In numerical experiments, the well known cavity
problem is tested. It is a driven cavity flow problem with
“leaky lid” boundary condition. The problem statement is
shown in Fig. 15. The synchronized reproducing kernel
interpolants developed in both Examples (4.4) and (4.5)
are employed in the computation. Since the interpolation
field is assumed to be linear, the terms that involve second
derivatives are neglected, though they could be included.
The results presented in Fig. 16 and Fig. 17 are based on a
11 x 11 particle distribution on an unit square. In all the
computations, 2-D cubic spline is used as the window
function, and the dilation vector is chosen as
0; =1-hy,0, =1-h,,. Figure 16 shows the pressure
profile of the cavity problem. Part a is the numerical result
obtained from Petrov-Galerkin formulation based on
Eq. (197). Part b is the numerical results obtained from
regular Galerkin method, from which, the pressure dis-
tribution exhibits apparent spurious pressure mode. In
Fig. 17, the pressure contour and the velocity field, or the

(199)

50 ~

a

field of streamline, are displayed; both of them are ob-
tained from the Petrov-Galerkin formulation (197).

6

Conclusion

It is a novel attempt to combine scaling function kernel, a
partition of unity, and its associated wavelets to form a
synchronized reproducing kernel, which can result in new
options and yields positive ramifications in numerical
computations. The specific construction scheme shown in
this paper is under the framework of RPKM. It is possible
that the same concept is applicable to other meshless
methods, Galerkin-wavelet method, finite element method,
partition of unity methods in general. This new develop-
ment in interpolation construction may help us to design a
new generation of partition of unity methods with the
multiple scale computational capability.

Regarding to the applications of the synchronized re-
producing kernel interpolants, as have been discussed in
Sect. 5, the synchronized reproducing kernel interpolant
can be effectively used as a weighting function in a Petrov-
Galerkin procedure to stabilize the numerical computa-
tions. The contribution of this finding is that any com-
plete, consistent interpolant combining with a compatible
wavelet interpolant can provide a class of weighting
functions for relevant Petrov-Galerkin procedures. This
may be true not only for meshless methods, but also for
spline interpolants, and any other Galerkin wavelet

x 10*
37

0+

-1,
15

b

Fig. 16a, b. Pressure elevation: a Petrov-Galerkin solution; b Regular Galerkin solution
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Fig. 17a, b. Numerical results of cavity problem: a Pressure contours; b Velocity field



methods. This is the generalization of the early stabilized
recipe: weighting function = original interpolant plus the
Ist derivative of the interpolant. Instead, we offer a new
recipe: weighting function = original interpolant plus the
Ist wavelet. This gives us another angle to look at stabi-
lized methods, and deepens our understanding why the
old formula works.

There are some interesting and alluring questions left in
our analysis: are the wavelet functions generated here
linearly independent with the scaling function kernel? If
they are, will the wavelet solutions together with the
scaling kernel solution form the solution in the next scale?
These are the questions ultimately related with how mul-
tiple scale reproducing kernel should be formed. More-
over, one may also ask: do we find a new class of wavelets,
or a new method to construct wavelets with high regu-
larity? The significance is an obvious one. It may be too
early to draw any concrete conclusion, however, it seems
to us that the future is promising.
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