
A concurrent multiscale micromorphic molecular dynamics
Shaofan Li and Qi Tong 
 
Citation: Journal of Applied Physics 117, 154303 (2015); doi: 10.1063/1.4916702 
View online: http://dx.doi.org/10.1063/1.4916702 
View Table of Contents: http://scitation.aip.org/content/aip/journal/jap/117/15?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
Hybrid molecular-continuum simulations using smoothed dissipative particle dynamics 
J. Chem. Phys. 142, 044101 (2015); 10.1063/1.4905720 
 
Multiscale reactive molecular dynamics 
J. Chem. Phys. 137, 22A525 (2012); 10.1063/1.4743958 
 
A generalized Irving–Kirkwood formula for the calculation of stress in molecular dynamics models 
J. Chem. Phys. 137, 134104 (2012); 10.1063/1.4755946 
 
Multi-scale analysis of high-speed dynamic friction 
J. Appl. Phys. 110, 093520 (2011); 10.1063/1.3660194 
 
Rayleigh’s instability of Lennard-Jones liquid nanothreads simulated by molecular dynamics 
Phys. Fluids 18, 024103 (2006); 10.1063/1.2173620 
 
 

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

136.152.29.102 On: Wed, 15 Apr 2015 16:34:25

http://scitation.aip.org/content/aip/journal/jap?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1497494971/x01/AIP-PT/JAP_ArticleDL_041515/PT_SubscriptionAd_1640x440.jpg/6c527a6a713149424c326b414477302f?x
http://scitation.aip.org/search?value1=Shaofan+Li&option1=author
http://scitation.aip.org/search?value1=Qi+Tong&option1=author
http://scitation.aip.org/content/aip/journal/jap?ver=pdfcov
http://dx.doi.org/10.1063/1.4916702
http://scitation.aip.org/content/aip/journal/jap/117/15?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/142/4/10.1063/1.4905720?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/137/22/10.1063/1.4743958?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/137/13/10.1063/1.4755946?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/110/9/10.1063/1.3660194?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pof2/18/2/10.1063/1.2173620?ver=pdfcov


A concurrent multiscale micromorphic molecular dynamics

Shaofan Lia) and Qi Tong
Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720,
USA

(Received 21 December 2014; accepted 21 March 2015; published online 15 April 2015)

In this work, we have derived a multiscale micromorphic molecular dynamics (MMMD) from

first principle to extend the (Andersen)-Parrinello-Rahman molecular dynamics to mesoscale and

continuum scale. The multiscale micromorphic molecular dynamics is a con-current three-scale

dynamics that couples a fine scale molecular dynamics, a mesoscale micromorphic dynamics,

and a macroscale nonlocal particle dynamics together. By choosing proper statistical closure con-

ditions, we have shown that the original Andersen-Parrinello-Rahman molecular dynamics is the

homogeneous and equilibrium case of the proposed multiscale micromorphic molecular dynam-

ics. In specific, we have shown that the Andersen-Parrinello-Rahman molecular dynamics can be

rigorously formulated and justified from first principle, and its general inhomogeneous case, i.e.,

the three scale con-current multiscale micromorphic molecular dynamics can take into account

of macroscale continuum mechanics boundary condition without the limitation of atomistic

boundary condition or periodic boundary conditions. The discovered multiscale scale structure

and the corresponding multiscale dynamics reveal a seamless transition from atomistic scale to

continuum scale and the intrinsic coupling mechanism among them based on first principle for-

mulation. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4916702]

I. INTRODUCTION

In principle, the molecular dynamics (MD) can simulate

motions of any macroscale objects that contain as many

atoms as possible, provided that we had sufficient computing

power. However, a macroscale system has at least more than

1023 atoms in order to contain one mole material substance,

and it requires more than 1015 integration time steps for a

MD computation to achieve a second duration of real-time

simulation. These pose great challenges to computer speed,

CPU time, and data storage. Therefore, the main objective of

the current multiscale methods is mainly about how to device

a clever computation algorithm to save computing time and

resource rather than discovering new physics through multi-

scale analysis.

In this work, we would like to look from a different per-

spective. Suppose that if we had the exascale computing

capacity (capable of at least one exaflops 1018s�1), or maybe

zettascale computing capacity (capable of at least one zetta-

flops is 1021s�1), or even yottascale computing capability (ca-

pable of at least one yottaflops 1024s�1), which will allow us

conducting molecular dynamics simulation of a macroscale

system without worrying of computing speed, the question is

now: can we use first principle based molecular dynamics

simulation to find the motion or deformation of a macroscale

system? The answer is NO, and this is why: When we study

macroscale physics such as continuum mechanics or contin-

uum thermodynamics, we mainly deal with macroscale statis-

tical variables such as temperature, stress, diffusion

concentration or flux, etc., and we seek them as the solution of

various macroscale field models or governing equations, and

in these models we often use these statistical or

thermodynamics variable based macroscale boundary condi-

tions in solution procedures. For example, the displacement

boundary condition that we use in continuum mechanics is

not the atom displacement boundary condition, but a statistical

condition that characterizes the center of mass of a cluster of

atoms on the boundary. As matter of fact, the so-called Lees-

Edwards boundary condition is a special case of such macro-

scale boundary adopted in molecular dynamics, though it is

not an arbitrary macroscale displacement boundary condition

but a periodic macroscale boundary condition.9,12 This is also

true for the traction boundary condition in continuum mechan-

ics, and how to enforce the macroscale traction boundary con-

dition in molecular dynamics is still an open question.6,7

If we wish to use first principle based molecular dynam-

ics to find thermodynamics field variable distributions at

macroscale, we must know how to apply macroscale bound-

ary conditions to molecular dynamics simulations, or con-

duct MD simulation with macroscale boundary conditions.6,7

We must know how to prescribe and to extrapolate desirable

macroscale thermodynamics variable information for a given

microscale atomistic simulation, if we wish to relate first

principle atomistic simulation to macroscale experiments or

measurements. Without this knowledge, we cannot use first

principle atomistic simulation in macroscale or even nano-

scale engineering applications. In other words, the first

principle-based atomistic simulation may not be able to sim-

ulate a macroscale physics event without multiscale treat-

ments. The objective of this work is about how to construct a

multiscale micromorphic molecular dynamics (MMMD) that

is capable of solving macroscale continuum mechanics prob-

lems subjected by macroscale boundary conditions.

To set up a solid physical and mathematical foundation,

we start the presentation from the equilibrium (Andersen)-a)Electronic address: shaofan@berkeley.edu
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Parrinello-Rahman (APR) molecular dynamics. Thirty some

years ago, in his seminal work, Andersen1 first proposed an

isoenthalpic-isobaric ensemble of MD allowing the volume

of a cubic lattice cell to vary. Subsequently, Parrinello and

Rahman25,26 elegantly extended Andersen’s formalism to the

anisotropic case allowing both the volume and the shape of a

MD cell to vary. Since then the APR molecular dynamics

has become the standard protocol in molecular dynamics

simulations of structural transformation and phase transition.

However, the APR-MD approach has not been thor-

oughly understood, and this is reflected in both its physical

foundation as well as how to extend it beyond the restriction

of periodic boundary condition, so that it can bridge across

different length scales. Moreover, the APR-MD Lagrangian

has been viewed as an ad hoc construction, as Parrinello and

Rahman once commented in Ref. 26, “… Whether such a

Lagrangian is derivable from first principles is a question for

further study; its validity can be judged, as of now, by the

equations of motion and the statistical ensembles that it

generates.…”

In recent years, there have been renewed interests in

revising APR molecular dynamics, e.g., Refs. 11, 20, 21, and

27, which attempted to extend APR MD to non-equilibrium

condition and macroscale simulation. On the other hand,

there have been many efforts to formulate multiscale coarse-

grained molecular dynamics, e.g., Refs. 2, 13, 16–18, 28, 29,

33, and 36 among many others. In particular, in a series

work Chen and Lee2–5 have discovered that multiscale

decomposition of atomistic molecular dynamics will lead to

a multiscale micromorphic dynamics. In fact, the micromor-

phic continuum theory is an intrinsic multiscale theory,8 and

recently Vernerey et al. have found and utilized the multi-

scale micromorphic structure to construct multiscale homog-

enization methods.35 In this work, we unveil that there exists

a universal multiscale micromorphic microstructure in atom-

istic molecular dynamics that will allow us to apply macro-

scale boundary condition to nonequilibrium molecular

dynamics. Under general non-equilibrium conditions, APR

molecular dynamics can be extended to form a three-scale

particle dynamics from microscale to mesoscale, and finally

to continuum macroscale mechanics.

The objective of this work is threefold: (1) Partition first

principle based molecular dynamics into different scales to

achieve a multiscale molecular dynamics that can bridge at-

omistic scale with continuum scale; (2) develop a nano-

mechanics paradigm that can solve small scale engineering

problems in finite domains by applying macroscale boundary

conditions, and (3) simulate phase transition of crystalline

materials in an arbitrary local region under non-equilibrium

condition.

The paper is organized into five sections. In Sec. II, we

shall review and re-interpret the original APR-MD from

first principle. In Sec. III, we present the detailed mathe-

matical analysis of the MMMD, including the discussion of

multiscale decomposition. In Sec. IV, we shall validate the

proposed multiscale micromorphic molecular dynamics by

using it to simulate crystal phase transformation. Finally, in

Sec. V, we close the presentation by making few comments

and remarks.

II. THE ANDERSEN-PARRINELLO-RAHMAN
MOLECULAR DYNAMICS

As proposed by Parrinello and Rahman,26 a MD cell is

allowed to change its volume and shape, which is described

by a 3� 3 matrix h whose column vectors a, b, c are three

edges of the cell. The spatial positions of atoms ri; i ¼
1; 2;…;N thus can be written in terms of h and the local

coordinates Si, which is given as,

ri ¼ hðtÞ � SiðtÞ ¼ niaþ gibþ fic; (1)

where i¼ 1, 2,…, N is the index of the atoms, and ni, gi, fi

are the projections of the local atom position vector Si onto

the representative MD cell edge vectors a, b, and c. Note

that the local atom coordinates are with respect to the center

of mass of the MD cell, which is chosen as the origin of the

local coordinate for the representative MD cell.

Remark 1. First since based on definition the center of
the cell is the origin of the local coordinate Si, and

�0:5 � niðtÞ; giðtÞ; fiðtÞ � 0:5 :

Therefore, one may view Si as statistical coordinates or varia-
bles. Hence, in the rest of the paper, we call the ensemble of
local atom positions Si 2 BS as the (equilibrium) statistical con-
figuration of the atomistic system. Second, both the cell size and
local coordinates vary with time. Moreover, each MD cell is a
set with a fixed (controlled) number of atoms that have fixed
mass, but it allows the intrusion of the atoms from the other cells
without accepting their membership. Therefore it is neither a
fixed control volume (Eulerian), nor a closed control mass
(Lagrangian) ensemble.

The original Lagrangian of the Andersen-Parrinello-

Rahman molecular dynamics for an isoenthalpic-isobaric

(NPH) ensemble is given as,

L¼ 1

2

X
i

mi
_Si �G � _Siþ

1

2
WTr _h

T _h
� �

� 1

2

X
i

X
j 6¼i

V rijð Þ� pX;

(2)

where p is the hydrostatic pressure results from the environ-

ment, i.e., the interaction from the atoms outside the cell;

G ¼ hT � h; X is the current volume of the cell, mi is the

mass of the i-th atom; V is the interatomic potential; Tr(�) is

the trace operator, and W is a quantity with unit of

mass� length2, which was not thoroughly justified in the

original PR-MD formulation.

The Euler-Lagrangian equations of the PR molecular

dynamics25,26 are,

d

dt

@L
@ _h
� @L
@h
¼ 0; (3)

d

dt

@L
@ _Si

� @L
@Si
¼ 0 : (4)

Following the standard procedure, one may derive the equa-

tions of motion for each atom, which are given as follows:

€Si ¼ �
X
j 6¼i

V0 rijð Þ
mirij

 !
Si � Sjð Þ �G�1 � _G � _Si; (5)
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W€h ¼ �ðrvirial þ pIÞ � h�TX : (6)

In Eq. (6), rvirial is the virial stress that is defined as,

rvirial ¼
1

X

X
i

�mivi� viþ
1

2

X
j6¼i

V0 rijð Þ
rij� rij

rij

� � !
; (7)

where X is the volume of the MD cell in the current configu-

ration, and the fine scale velocity vi is defined as

vi ¼ h � _Si : (8)

The original APR-MD is actually a multiscale method,

and it couples the mesoscale kinematic variable h with the

microscale variables Si. It is probably the earliest attempt to

establish multiscale relationship between kinematic variables

at different scales. To describe the mesoscale more naturally,

Podio-Guidugli27 suggested an alternative formulation of

APR-MD based on the concept of nonlinear continuum

mechanics.19 The basic idea is using the well-defined defor-

mation gradient F to replace the shape tensor of a MD unit

cell, h, which is defined by

F ¼ hðtÞ � h�1
0 ; (9)

where h0 is a second order tensor that maps the MD statisti-

cal configuration (S-configuration) to a continuum referential

configuration (R-configuration), i.e., Ri¼h0 Si, so that we

can use the concept as well as the language of the material-

spatial configuration or the Lagrangian-Eulerian description

in continuum mechanics in atomistic computations. The

relationships among S-configuration, R-configuration, and

r-configuration are illustrated in Fig. 1.

In fact, the idea had been suggested in Parrinello and

Rahman’s original paper,26 and they suggested using

h0 ¼ hhðtÞi, which indicated that they had vaguely antici-

pated a reference configuration thirty years ago. Therefore, in

terms of the deformation gradient, we can write,

ri ¼ h � Si ¼ h � h�1
0 � Ri ¼ FRi; Ri ¼ h0 � Si; (10)

where ri are the local atom position (relative to the center of

mass) in the current configuration, whereas Ri are defined as

the local atom position in the referential configuration.

Remark 2. In continuum mechanics, the referential con-
figuration is often treated as the initial configuration, which
means that the configuration of the system is in its initial
state, or it is the frozen state of the system at initial time.

In an atomistic lattice system, it makes sense to specify
the initial lattice configuration, i.e., h0¼h(0) but it does not
make sense to specify the initial atomic vibration state,
because atoms are always oscillating in the lattice, and we
cannot freeze atom vibrations if temperature is not zero. The
atom vibration only stops when the temperature of the system
reaches to absolute zero. Therefore, in both S-configuration
and R-configuration, both Si(t) and Ri(t) are function of
time. In fact, one may want to distinguish the time scale as
well. For the time t in Si(t) and Ri(t), it is a fine scale time,
which has an atomistic time scale; whereas the time variable
t in h(t) has a much larger time scale, i.e., at mesoscale.

By introducing the second Piola-Kirchhoff stress,

S ¼ detðFÞF�1 � rF�T ; (11)

where r is the external Cauchy stress, one may set forth an

anisotropic Lagrangian as follows:

L ¼ 1

2

X
i

mi
_Ri � C � _Ri þ

1

2
WTr _F

T _F
� �

� 1

2

X
i

X
j6¼i

V rijð Þ þ Sext : EX0; (12)

where C¼FT F is the right Cauchy-Green tensor, E ¼ 1
2

C� IÞð is the Green-Lagrangian tensor, Sext is the externally

applied stress, and X0 is the referential volume. Thus, the

equation of motion

FIG. 1. Differential maps between dif-

ferent lattice configurations of APR-

MD, h ¼ ½aðtÞ; bðtÞ; cðtÞ�.
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€Ri ¼ �
X
j 6¼i

V0 rijð Þ
mirij

 !
Ri � Rjð Þ � C�1 � _C � _Ri; (13)

W €F ¼ �X0FðSvirial � SextÞ ; (14)

where X0 is the volume of MD cell in the referential configu-

ration, and

Svirial :¼ 1

X0

X
i

�
� mi

_Ri � _Ri þ
1

2

X
j 6¼i

V0 rijð Þ
rij

� Rj � Rið Þ � Rj � Rið Þ
�

¼ 1

X0

h0 �
X

i

�
� mi

_Si � _Si þ
1

2

X
j 6¼i

V0 rijð Þ
rij

� Sj � Sið Þ � Sj � Sið Þ
�
� hT

0 : (15)

Remark3. (1) The referential atom position is defined as
Ri¼ h0 Si, which is not a frozen initial configuration as that
of continuum mechanics. It is a referential equilibrium con-
figuration. In the rest of the paper, we refer the configuration
{Si} as the statistical configuration. (2) The anisotropic
Lagrangian given in Ref. 27 may have a typo.

In the above derivations, one can see that the approach of

using deformation gradient to replace the shape tensor is more

convenient to establish an anisotropic multiscale molecular

dynamics. However, the modified APR-MD is still limited to

a single representative volume element (RVE) cell under

equilibrium condition due to its periodic boundary condition

and constant stress condition. To overcome this limitation, in

Sec. III, we shall discuss a multiscale micromorphic molecular

dynamics that is applicable to arbitrary domain with arbitrary

macroscale boundary conditions, i.e., it is a multiscale

molecular dynamics that supports non-uniform stress field,

and it can be subjected to general non-equilibrium conditions.

One may note that in molecular dynamics, if spatial distribu-

tion of stress is non-uniform, the atomistic system may not be

regarded as a mechanical equilibrium state.

III. MMMD

In this section, we shall present a complete mathemati-

cal analysis of the multiscale micromorphic molecular dy-

namics (MMMD), which is an extension of the PR-MD to

non-equilibrium state and the molecular systems of finite do-

main with arbitrary macroscale boundary conditions.

A. Multiscale decomposition

To extend APR molecular dynamics to mesoscale and

continuum scale with arbitrary boundary conditions, we first

divide the whole atomistic system into many micromorphic

cells or local ensembles, and then we consider the following

micromorphic multiplicative decomposition for the spatial

atomic position in the ath MD cell,

ri ¼ ra þ rai; a ¼ 1; 2;…;M; i ¼ 1; 2;…;Na; (16)

where ri is the spatial position of the ith atom of the a-cell in

the deformed configuration; ra is the center of mass of ath

unit cell that is defined as,

ra ¼
X

i

miri=
X

i

mi : (17)

Since rai is the relative position vector with respect to the

center of the mass of the cell, and by the definition,X
i

mirai ¼ 0 : (18)

In Eq. (16),

rai ¼ /a � Si and /a :¼ Fa � va; (19)

where /a is the total deformation tensor of the ath cell, and

Si is statistical coordinates for the ith atoms inside the ath

cell. Here, the second order tensor va is the shape tensor of

ath cell, i.e., va ¼ ha. Instead of using Parrinello-Rahman’s

notation, in this paper we use a different symbol. On the

other hand, Fa ¼ FaðfrbgÞ is the coarse scale deformation

gradient that is determined by the overall motion of all cen-

ters of mass of every cells, and it is completely determined

by relative positions or distribution of centers of mass

(denoted by {rb}) of different cells. In Fig. 2, we show a dis-

tribution of centers of mass. Fa together with va constitute

the total deformation gradient /a.

Since the centers of mass are a set of discrete points, it

is not a continuous field, and we cannot take spatial deriva-

tive on it. In practice, however, we can still determine Fa by

using various numerical techniques. For example, we can

employ the approach adopted in reproducing kernel particle

method14 or the state-based peridynamics.30 Let

rab ¼ rb � ra; Ra :¼ rað0Þ; and Rab ¼ Rb � Ra ;

(20)

where the Greek subscripts are indices of the particles that

are the center of mass of micromorphic cells.

We can then construct the so-called moment matrix (see

Ref. 14),

Ma :¼
XNh

b¼1

xðjRabjÞRa � RabXb0; (21)

where � is the tensor product operator, Xb0 is the equilib-

rium volume of the bth cell, Nh is the number of neighboring

centers of mass, and xðjRabjÞ is a localized positive window

function. The local deformation gradient tensor can then be

constructed as

Fa ¼
�XNh

b¼1

xðjRabjÞrab � RabXb0

�
�M�1

a : (22)

Note that xðjRabjÞ is a localized positive window function,

and common choice is the Gaussian function or the cubic

spline function. The Gaussian is defined as

xh xð Þ ¼ 1

ph2ð Þd=2
exp � x � x

h2

� �
; (23)
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where d is the space dimension and h is the radius of

the support. The cubic spline function is often defined

as,

xhðxÞ ¼
A

hd

1� 3

2
x2 þ 3

4
x3; 0 � x < 1

1

4
2� xð Þ3; 1 � x � 2

0; otherwise

;

8>>>>>><
>>>>>>:

(24)

where again d is number of space dimension, h is the radius

of the compact support, and

A ¼
2=3 1d

10=ð2pÞ 2d

1=p 3d

:

8><
>:

The initial position of the center of mass, Ra¼ ra(0), is

designated for the center of mass for all MD cells. The defi-

nition makes sense because that the time scale in ra is a slow

scale. For all the atoms in a representative MD cell, say, ath

cell, we can define

Ri :¼ Ra þ Rai; where Rai ¼ v0Si : (25)

As mentioned above, this is the initial equilibrium configura-

tion but not the initial “frozen” configuration.

It may be noted that in the above equation, we define Ri

as the total position vector of the ith atom of the ath cell in the

referential configuration, whereas in the original PR-MD, i.e.,

Eq. (10), Ri is viewed as the relative atom position vector in

the representative cell in the referential configuration, which

is equivalent to Rai in Eq. (25). This is because that in PR-

MD the position of the center of mass in the representative

cell is the origin of the coordinate Ra¼ 0, because there is

only one MD cell; whereas in MMMD, the position of the

center of mass of a micromorphic cell no longer occupies the

origin of the global coordinate, i.e., Ra 6¼ 0, because there are

many MD cells.

By doing so, we can describe the equilibrium referential

configuration BR. One can see that this definition is consist-

ent with kinematic assumption,

ri ¼ ra þ rai ¼ ra þ Fa � va � Si : (26)

Based on Eq. (26), we may define an intermediate referential

configuration,

Ri ¼ Ra þRai ¼ Ra þ va � Si; (27)

so that the coarse scale deformation gradient becomes the de-

formation gradient in the rigorous sense of continuum

mechanics.

To summarize, in the proposed multiscale micromorphic

molecular dynamics, there are four configurations: the statis-

tical configuration BS, the equilibrium referential configura-

tion BR, the intermediate configuration BI, and the current

configuration Bc. In Fig. 3, we show the deformation maps

that connect these configuration spaces.

Remark 4. (1) First, each MD cell is a supercell of the
underline lattice, or atom cluster, and it is not the smallest
unit cell. More precisely, it is set of atoms in a local ensem-
ble rather than in a local fixed spatial region or volume.

(2) It may be noted that in the modified PR-MD,27 F :¼
h � h�1

0 with h0 :¼ hhðtÞi, which is a mesoscale variable, i.e.,
it is at the same scale as the mesoscale variable h(t). A short-
coming for such approach is that the definition of h0 is poste-
rior. Whereas in MMMD, Fa are solely determined by the

FIG. 2. Local distribution of the cen-

ters of mass.
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relative positives of set of centers of mass for MD cells,
therefore, they are coarse scale variables.

(3) In the modified PR-MD,27 the deformation gradient F
is essentially a mesoscale map Ri ! ri; whereas in MMMD,
the deformation gradient Fa is a coarse scale deformation
gradient depending on the positions of centers of mass of dif-
ferent MD cells in both the current configuration as well as
the referential configuration, i.e., Ra! ra.

Note that ra(t) are independent from fine scale statistical

variables, therefore, it makes sense to specify its initial value

ra(0), whereas in the fine scale Si(0) may not be used as a

reference value. It may be tempting to define

Rai :¼ Ri � Ra ¼ raið0Þ :

However, such definition would be meaningless, because

rai(t) are functions of atomic time scale, which really do

not have a special time instance that can be used as the

initial mark of the beginning that is suitable for every oscil-

lating atoms. In fact, RaiðtÞ ¼ va0SiðtÞ, and it oscillates all

the time.

In the proposed multiscale method, we have introduced

four different configurations in a representative cell a: (1)

The spatial configuration, i.e., the r-configuration, in which

ri � Xa; (2) the intermediate equilibrium configuration, i.e.,

R-configuration, (3) the referential equilibrium configura-

tion, i.e., the R-configuration, in which Ri 2 Xa0, and the sta-

tistical configuration Si. It may be noted that in the

configuration spaces BI;BR, the centers of mass coordinates

are the same, i.e., Ra, whereas for the statistical configuration

space BS, it varies cell by cell, and the coordinates of the

center of mass for each cell are zero.

Even though the referential configuration is not essential

in the fine scale calculation, but its information is needed in

the coarse scale computation. To make the deformation

decomposition at each scale clear, we consider the following

atomic position decomposition:

ri ¼ ra þ rai ) ri ¼ ra þ Fa �Rai ¼ ra þ Fa � va � Si;

(28)

where

Rai ¼ va � Si :

Subsequently, we can decompose or separate the atomistic

displacement into three different scales,

�ui ¼ ðra � RaÞ;
~ui ¼ ðFa � va � vaÞSi;

u0i ¼ ðva � va0ÞSi;

(29)

where �ui; ~ui; u
0
i denote macroscale, mesoscale, and micro-

scale displacements. Apparently, three of them together con-

stitute the total displacement ui, which can be expressed as,

ui ¼ �ui þ ~ui þ u0i ¼ ri � Ri : (30)

Considering the length scale of the displacements as k �ui k¼ lr;
k ~ui k¼ lc and k u0i k¼ la, we have the relationship

‘a � ‘c � ‘r; (31)

for the associated time scales tr, tc, and ta, we also have

ta � tc � tr: (32)

In spatial scale decomposition, we select three inde-

pendent kinematic variables, fSi; va; and rag corresponding

to three different spatial scales. The novelty of the above

multiscale decomposition is the following Micromorphic

Multiscale Decomposition,

/a ¼ Fa � va; (33)

which is a multiplicative decomposition. Fig. 3 schemati-

cally depicts the deformation map and scale decomposition

of the atomistic system at different scales. The total deforma-

tion gradient /a consists of a macro deformation Fa and

micromorphic (meso) deformation va. The mapping of Fa

may be referred to as the Long-range order, whereas the

mapping of va may be referred to as the Short-range order.

Remark 5. (1) The main objective of MMMD is to extend the
equilibrium PR-MD to the case of non-equilibrium molecular dy-
namics processes. The key approach adopted here is the local equi-
librium assumption (LEA), which means that the local equilibrium
may be attained in a local micromorphic cell. (2) The micromor-
phic cell division is a Lagrangian division, meaning that
each cell is a control atom number (N) cell, or it is a local
NrH or a local N SH ensemble, but not a control volume
(Eulerian) cell, which is also different from Lagrangian con-
trol volume ensemble such as a local NVT ensemble cell.15,16

The MMMD formulation is basically a multiscale
Lagrangian repartition of the original first principle
Lagrangian, and the added additional topological con-
straints will not affect the original first principle Lagrangian
in principle. It essentially serves as statistical guidance in
MD simulations. That is, it is a device to extrapolate and
manifest statistical meanings or contents of first principle
MD simulation. Therefore, we allow cell overlap, penetra-
tion, as well as having gaps between them. If that is what
really happened in the original atomistic system. This philos-
ophy is illustrated in Fig. 4.

FIG. 3. Deformation maps among different kinematic configurations of

MMMD.
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In passing, we note that the continuum compatibility

condition is a macroscale condition, and at both microscale

and mesoscale this condition is not necessarily satisfied. For

crystalline solids, this may be linked to the defect states or

quasi-crystal states.

B. Statistical conditions

Before constructing the governing equations for MMMD,

we would like to revisit the statistical conditions implied in

APR-MD, and provide some explanations or interpretations

for them. Consider the kinetic energy of the ath cell

Ka ¼
1

2

X
i

mi _ri � _ri ¼
1

2

X
i

mi _ra þ _/a � Si þ /a � _Si

� �
� _ra þ _/a � Si þ /a � _Si

� �
¼ Ma

2
_ra � _ra|fflfflfflfflfflffl{zfflfflfflfflfflffl}
K1

þ 1

2
_/

T

a
_/a

X
i

miSi � Si|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
K2

þ 1

2

X
i

mi
_Si � C � _Si|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

K3

þ 1

2
_/

T

a/a

X
i

miSi � _Si þ
1

2
/T

a
_/a

X
i

mi
_Si � Si|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

K4

; (34)

where Ma ¼
P

i mi is the mass of the ath cell, and

C ¼ /T
a/a. Introduce the following statistical assumption:

JS
a ¼

X
i

miSi � Si ¼
X

i

miv
�1
a0 � Rai � Rai � v�T

a0

¼ v�1
a0 � Ja � v�T

a0 ¼ constant tensor: (35)

Here, we assume that JS
a is a spherical and constant second

order tensor,27 and this fact stems from the fundamental

assumption of ergodicity in molecular dynamics systems,

i.e., the space and time are statistical homogeneous in statis-

tical configuration. Note that JS
a is a quantity in statistical

configuration, BSðSiÞ, and it is not from the real physical

configuration. In Eq. (35), we have defined,

Ja ¼
X

i

miRai � Rai ¼ va0JS
av

T
a0 (36)

as the referential Euler’s inertia tensor of the cell, which is

anisotropic and is dependent on the shape and size of the

micromorphic cell, because Ja is the pushforward of JS
a,19

and here va0 ¼ vð0Þ is a constant second tensor, i.e., the geo-

metric shape tensor of the original cell.

If we choose EI as principal axes, we can have a simple

expression of JS
a,

JS
a ¼ JS

11E1 � E1 þ JS
22E2 � E2 þ JS

33E3 � E3 : (37)

Since JS
a is spherical, we may write JS

11 ¼ JS
22 ¼ JS

33 ¼ Wa.

Now it becomes clear that the quantity W used in the original

PR-MD is related to the component of Euler’s inertia tensor.

Therefore, naturally, the second term of kinetic energy becomes

K2 ¼
1

2
WaTr _/

T

a
_/a

� �
: (38)

We call expression (35) as the First statistical condition of

APR-MD.

Next we consider the fourth term of the kinetic energy

K4. Since Si is labeled as statistical variables, we can define

their tensorial autocorrelation function as follows:

ACðsÞ ¼ hSiðtÞ � Siðtþ sÞi :¼
X

i

miSiðtÞ � Siðtþ sÞ: (39)

If we assume that the autocorrelation tensor is an isotropic

tensor or a spherical tensor, i.e.,

ACðsÞ ¼
X

i

miSiðtÞ � Siðtþ sÞ

¼
�X

i

misiðtÞsiðtþ sÞ
�

EI � EI;

FIG. 4. Cell-level deformation: (a) The original undeformed system which is divided into several unit cells. The atomic positions are given by Ri. The solid

circles represent the centers of mass. (b) The configuration undergoes macroscale deformation Fa. Notice that the cells are connected to each other without

gaps or overlaps in the framework of continuity, and this deformation is restrained by the relative positions of centers of mass of different cells. (c) The cells

(dashed parallelograms) further undergo microscale deformation va around their own center of mass separately without connection. This is because that the

assumption of continuity is no longer valid in the fine scale.
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where EI, I¼ 1, 2, 3 are the basis vectors for a Cartesian

coordinate. We can prove that the autocorrelation tensor is

an even function of s, if we assume that the statistical tensorP
i Si � Si is spherical. This implies that the time derivative

of the autocorrelation function tensor at the origin of s¼ 0 is

zero. Hence,

d

ds
ACjs¼0 ¼

X
i

miSi tð Þ � _Si tð Þ ¼ 0; (40)

and similarly, X
i

mi
_SiðtÞ � SiðtÞ ¼ 0 : (41)

We refer the conditions (40) and (41) as the Second

statistical condition, which gives K4¼ 0. In fact, the First

statistical condition implies that

d

dt
JS

a ¼
X

i

mi
_Si tð Þ � Si tð Þ þ

X
i

miSi tð Þ � _Si tð Þ ¼ 0 ;

which is a weaker condition than Eqs. (40) and (41).

Remark 6. Mathematically, conditions (40) and (41)
ensure that the variables va and Si are independent. Since
the physical meaning of va is the shape and size of the ath
cell, one can see from the Parrinello-Rahman decomposition

Rai ¼ va � Si;

that if the length of Si is not fixed, va may not represent the
shape tensor of the ath cell. Therefore, we must have the con-
straint condition, X

i

Si � Si ¼ const; (42)

which is a weaker condition than conditions (40) and (41).
By utilizing above statistical conditions, we can conven-

iently write down the Lagrangian of the atomic system as,

Lm ¼
1

2

X
b

Mb _rb � _rb þ
1

2

X
b

JS
b : _/

T

b
_/b

� �

þ 1

2

X
b

X
i

mi
_Si � Cb � _Si

� 1

2

X
b

X
c

X
i2b;j2c

V rijð Þ þ
X

b

X
i2b

bi � ri; (43)

where b, c are cell indices, and the abbreviation i � b means

that it is the ith atom in the bth cell. Cb :¼ /T
b/b is the micro

right Cauchy-Green tensor for total deformation.

In the following presentation, we choose three independ-

ent field variables, ra;/a, and Si representing kinematic vari-

ables for three different scales, instead of the set of original

variables ra; va; Si, which may be equivalent each other.

Thus, Lm ¼ Lm ðra;/a; SiÞ. The equations of motion are

stated as

d

dt

@Lm

@ _ra
� @Lm

@ra
¼ 0; (44)

d

dt

@Lm

@ _/a

� @La

@/a
¼ 0; (45)

d

dt

@Lm

@ _Si

� @La

@Si
¼ 0 : (46)

In Subsections III C–III F, we shall present detailed deriva-

tions of these equations.

C. Coarse scale dynamic equation

We start by deriving some useful relations that are

needed in the subsequent derivations. Since we know that

Fb ¼ FbðfragÞ (47)

and
_Fb ¼ _Fbðfrag; f _ragÞ; (48)

we then have

_Fb ¼
X

a

@Fb

@ra
_ra; (49)

which leads to the relation,

@ _Fb

@ _ra
¼ @Fb

@ra
(50)

and

€Fb ¼
X

a

d

dt

@Fb

@ra

� �
_ra þ

@Fb

@ra
€ra

� �
: (51)

On the other hand, we may derive,

€Fb ¼
X

a

@ _Fb

@ra
_ra þ

@ _Fb

@ _ra
€ra

 !
: (52)

Comparing Eqs. (51) and (52) and utilizing Eq. (50), we

obtain

d

dt

@Fb

@ra

� �
¼ @

_Fb

@ra
: (53)

Furthermore, since

_/b ¼ _Fbvb þ Fb � _vb; (54)

we can find that

@ _/b

@ _ra
¼ @

_Fb

@ _ra
vb ¼

@Fb

@ra
vb ¼

@/b

@ra
: (55)

By virtue of Eqs. (53)–(55), we have

@ _/b

@ra
¼ @

_Fb

@ra
vb
þ @Fb

@ra
_vb ¼

@Fb

@ra
_vb þ

d

dt

@Fb

@ra

� �
vb

¼ d

dt

@/b

@ra

� �
¼ d

dt

@ _/b

@ _ra

 !
: (56)

The relations (55) (56) are needed in the subsequent derivation.

Reconsidering the Lagrangian equation at the coarse

scale Eq. (44) and utilizing the above relation, we have
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d

dt

@Lm

@ _ra

� �
¼ d

dt

@Lm

@ _ra
þ
X

b

@Lm

@ _/b

�
@ _/b

@ _ra

0
@

1
A

¼ Ma€ra þ
X

b

d

dt

@Lm

@ _/b

 !
�
@ _/b

@ _ra

þ
X

b

@Lm

@ _/b

� d

dt

@ _/b

@ _ra

 !

¼ Ma€ra þ
X

b

@Lm

@/b
�
@/b

@ra
þ
X

b

@Lm

@ _/b

�
@ _/b

@ra
:

(57)

On the other hand,

@Lm

@ra
¼ @Lm

@ra
þ
X

b

@Lm

@/b
�
@/b

@ra
þ
X

b

@Lm

@ _/b

@ _/b

@ra

¼
X
b6¼a

X
i2a;j2b

V0 rijð Þ
rij

jrijj
þ
X
i2a

bi

þ
X

b

@Lm

@/b
�
@/b

@ra
þ
X

b

@Lm

@ _/b

�
@ _/b

@ra
: (58)

Combining Eqs. (57) and (58) and utilizing the coarse scale

Lagrangian equation,

d

dt

@Lm

@ _ra

� �
� @Lm

@ra
¼ 0 ;

we finally obtain,

Ma€ra ¼
X
b6¼a

X
i2a;j2b

V0 rijð Þ
rij

jrijj
þBa; (59)

where Ba ¼
P

i2a bi is the external force acting on the center

of mass of the a-th cell. Note that V0ðrijÞ rij

jrijj ¼ f ij is the pair

force acting on i-th atom by j-th atom. We can rewrite the

above equation as,

Ma€ra ¼
X
b 6¼a

X
i2a;j2b

f ij þBa : (60)

One may find that the first term in the right hand side (RHS)

of Eq. (60) is interaction force among atoms at the cell

boundary, this is because that the summation indices in Eq.

(60) are i � a, j � b, and a 6¼ b. Therefore, this is the cell

boundary surface traction force. If the MD cell is at the

boundary of the simulation domain, there must be external

counterpart of this force as well.

To take into account external macroscale traction bound-

ary condition, we may rewrite the multiscale Lagrangian as

Lm¼
1

2

X
b

Mb _rb � _rbþ
1

2

X
b

JS
b : _/

T

b
_/b

� �

þ1

2

X
b

X
i

mi
_Si �Cb � _Si�

1

2

X
b

X
c

X
i2b;j2c

V rijð Þ

þ
X

b

X
i2b

bi �rbiþ
X

b

Sb0
�tb0 �rbþ

X
b

Xb0
�bb0 �rb; (61)

where �tb0 is the external traction force resulting from the

external surface stress, and Sb0 is the surface area where the

prescribed external traction is acting upon; �bb0 ¼ 1
Xb0
Bb may

be referred to as the external body force per unit volume act-

ing on the cell b with Xb0 as the cell volume. All those terms

are defined in the referential configuration.

With the Lagrangian (61), we may find that the equation

of motion at coarse scale is

Ma€ra ¼
X
b6¼a

X
i2a;j2b

f ij þ Sa0
�ta0 þ Xa0

�ba0: (62)

With Eq. (62), we now can apply macroscale traction force

onto a finite size MD simulation system. The detailed numer-

ical simulation of a MD system with macroscale traction is

reported in a separated paper.34

D. Mesoscale dynamic equations

We now examine the mesoscale Lagrangian equation

(45). Considering the derivative terms with respect to the

chosen mesoscale variable, i.e., _/a and /a, we first have,

@Lm

@ _/a

¼ _/a � JS
a : (63)

Hence,

d

dt

@Lm

@ _/a

 !
¼ d

dt
_/a � JS

a

� �
¼ €/a � JS

a; (64)

we can then derive the second part of Eq. (45),

@Lm

@/a
¼ 1

2

X
i

mi
_Si
@Ca

@/a

_Si �
1

2

X
i;j2a

V0 rijð Þ
rij

jrijj
� @rij

@/a

�
X

b

X
i 2 a

j 2 b 6¼ a

V0 rijð Þ
rij

jrijj
� @rij

@/a
þ
X
i2a

bi �
@ri

@/a

¼ /a

X
i

mi
_Si � _Si �

1

2

X
i;j2a

f ij � Sij

þ
X

b

X
i 2 a

j 2 b 6¼ a

f ij � Si þ
X
i2a

bi � Si : (65)

Finally, the Lagrangian equations at mesoscale have the

form,

€/a � JS
a ¼ /a

X
i

mi
_Si � _Si �

1

2

X
i;j2a

f ij � Sij

þ
X

b

X
i 2 a

j 2 b 6¼ a

f ij � Si þ
X
i2a

bi � Si : (66)

To understand the physical meaning of the above equa-

tion, we can define the mesoscale 1st Piola-Kirchhoff stress

tensors as,
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Pint
a :¼ 1

Xa0

X
i2a

�/ami
_Si � _Si þ

1

2

X
j2a;j 6¼i

f ij � Sij

 !
; (67)

Pext
a ¼

1

Xa0

X
b6¼a

X
i2a;j2b

f ij � Si (68)

where Xa0 is the volume of ath cell in the reference configu-

ration, i.e., R-configuration.

Remark 7. (1) There is no 1/2 factor in Eq. (68). This is
because i � a but j � b, and a 6¼b;

(2) If we define,

rext
a ¼

1

Xa

X
b6¼a

X
i2a;j2b

f ij � rai

¼ 1

detð/aÞXa0

X
b 6¼a

X
i2a;j2b

f ij � Si � /T
a ; (69)

where Xa is the volume of the ath cell in spatial configura-
tion, i.e., Bc-configuration, Pext

a can then be expressed by
the external Cauchy stress as

Pext
a ¼ detð/aÞrext

a � /�T
a : (70)

With above definitions of stresses, we can recast the

mesoscale dynamics equations as

€/a � JS
a ¼ �ðPint

a �Pext
a ÞXa0 þMa; (71)

where Pint
a is given by Eq. (67), and Pext

a is given by Eq.

(68) or (70), Ma ¼
P

i2a bi � Si is the mesoscale external

couple. Note that Eqs. (67) and (68) are insightful, because

they resolve one of the outstanding debates on the definition

of the virial stress. Equation (67) is basically the mathemati-

cal definition of the virial stress, e.g., Refs. 10 and 32.

However, Zhou37 argued that the kinetic energy part should

be dropped out in the stress calculation, even though many

disagreed, e.g., Refs. 24 and 31. We now see from Eqs. (67)

and (68) that if the stress is internally generated, the defini-

tion of the virial stress is the original definition of the virial

stress; but if the stress is an external stress, then the kinetic

energy part should drop out from its expression. This is

because that the present formulation of the multiscale micro-

morphic molecular dynamics is an adiabatic formulation,

which does not consider the heat exchange among the cells.

E. Microscale dynamic equations

For simplicity, we re-index the multiscale Lagrangian as

Lm ¼
X

a

Ma

2
_ra � _ra þ

1

2

X
a

Ja : _/
T

a
_/a

� �

þ 1

2

X
a

X
i

mi
_Si � Ca � _Si �

1

2

X
a

X
b

X
i 6¼j

V rijð Þ

þ
X

a

X
i2a

bi � /aSi þ
X

a

Sa0
�ta0 � ra �

X
a

Xa0
�ba0 � ra;

(72)

where the microscale variable Si; i 2 a and Sj; j 2 b. In cal-

culations, there are two distinct cases

að Þ a ¼ b; rij ¼ /a � Sij;
@rij

@Si
¼ � rij

rij
� /a ¼ �

Ca � Sij

rij
;

(73)

bð Þ a 6¼ b : rij ¼ rab þ /b � Sj � /a � Si
� �

;
@rij

@Si
¼ � rij

rij
� /a:

(74)

Evaluating the fine scale Lagrangian equation for i � a,

d

dt

@Lm

@ _Si

� @Lm

@Si
¼ 0; i 2 a;

we have

d

dt

@Lm

@ _Si

¼ mi Ca
€Si þ _Ca � _Si

� �
and

að Þ a ¼ b :
@Lm

@Si
¼
X
j 6¼i

V0 rijð Þ
rij

Ca � Sij

 !
;

bð Þ a 6¼ b :
@Lm

@Si
¼
X
a 6¼b

X
j 6¼i

V0 rijð Þ
rij

/T
a � rij

 !
;

(75)

where rij ¼ rab þ /b � Sj � /a � Si. Note that the factor 1/2

vanishes in case (a) because each atom pair is summed

twice.

Finally, we can express the fine scale dynamics equa-

tions as,

að Þ a ¼ b : €Si ¼
X
j 6¼i

V0 rijð Þ
rij

Sij

 !
� C�1

a
_Ca � _Si; (76)

bð Þ a 6¼ b : €Si ¼ /�1
a

X
a 6¼b

X
i 6¼j

�
V0 rijð Þ

rij
rab þ /b � Sj � /a � Si
� � !

� C�1
a

_Ca � _Si:

(77)

Combining the two equations, we finally have

€Si þ
1

2
/�1

a

X
b

X
i 6¼j

V0 rijð Þ
rij

rab þ /b � Sj � /a � Si
� � !

þ C�1
a

_Ca � _Si þ /�1
a � bi ¼ 0 ; (78)

where i � a. One may note that the second term in Eq. (78)

contains both interaction of atoms within the ath cell and

between two different cells, i.e., the case i � a, j � b.

In summary, the dynamic equations of the proposed

multiscale micromorphic molecular dynamics are as follows:

Ma€ra ¼
X
b6¼a

X
i2a;j2b

f ij þ Sa0
�ta0 þ Xa0

�ba0; (79)

€/a � JS
a ¼ �ðPint

a �Pext
a ÞXa0 þMa; (80)
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mi
€Si ¼ �miC

�1
a � _Ca � _Si þ /�1

a

X
b

X
j2b 6¼i2a

f ji þ bi

� �
; (81)

where the mesoscale micromorphic deformation tensor is

/a ¼ Fa � va. In Eqs. (79)–(81), one may see that there are

two types of interaction conditions (boundary conditions) for

each cell: (1) the cell-to-cell interactions and (2) the input of

external forces through boundary. The first type of interac-

tion is the internal interactions that are characterized by the

terms

X
b 6¼a

X
i2a;j2b

f ij and Pext
a ¼

1

Xa0

X
b6¼a

X
i2a;j2b

f ij � Si;

where

f ij ¼
V0 rijð Þ

rij
rab þ /b � Sj � /a � Si
� �

: (82)

The external force interaction are specified by the terms

Sa0
�ta0 and X�ba0 in Eq. (79), and the term /�1

a bi in Eq. (81).

Considering the following special case:

Fa ¼ I; ) /a ¼ va;

and JS
a ¼ WaI, we recover the modified PR-MD,

Wa€va ¼ �va � ðSvirial
a � Sext

a ÞXa0; (83)

mi
€Si ¼ �miC

�1
a � _Ca � _Si þ v�1

a

�X
j6¼i

f ji þ bi

�
; (84)

where vaSvirial
a ¼ Pint

a and vaSext
a ¼ Pext

a by comparing the

two models.

IV. VALIDATION AND NUMERICAL EXAMPLE

To validate the proposed multiscale micromorphic mo-

lecular dynamics, in this section we employ it to study the

phase transformation of nickel, which is also used as the val-

idation case for PR-MD.26 Different from Ref. 26, the fol-

lowing validation test is done in a finite size specimen

without imposing periodic boundary condition. In our study,

we focus on boundary effects and the non-equilibrium transi-

tion process of phase transformation.

Under uniaxial compression, the original FCC lattice of

single crystal Nickel will go through structure change.22,23

The interaction between atoms is modeled by Morse poten-

tial, which is plotted in Fig. 5. It has the form of

/ðrÞ ¼ Dðe�2aðr�r0Þ � 2e�aðr�r0ÞÞ: (85)

The interaction force is given by

F rð Þ ¼ � @/ rð Þ
@r
¼ 2Da �e�2a r�r0ð Þ þ e�a r�r0ð Þð Þ: (86)

With the constants D¼ 3.5059� 10–20 J, a¼ 8.766/a0, and

r0¼ 0.71727 Å. a0 denotes the constants of the FCC lattice

of nickel, i.e., a0¼ 3.52 Å,26 with which the nickel single

crystal will be in a global elastic energy minimum state for

bulk metal. Therefore, this is a stable equilibrium state,

which is internal stress free. The atomic weight of nickel

atom is 58.69 u.

During the entire simulation, the temperature is con-

trolled at around 350 K by scaling microscale velocity on

each cell every 10 micro time steps. Before the calculation,

random perturbation of positions and velocities were

assigned to ensure dynamics and the desired temperature. A

5000-step run in displacement-free state is conducted to

obtain the optimal initial configuration. For demonstrative

purpose, we let each micromorphic cell consisting of

3� 3� 3 unit cells of Ni lattice, and the whole system has

3� 3� 3 supercells as shown in Fig. 6. Among 27 super-

cells, there is one internal supercell which is not exposed to

boundaries. We expect that it may be suitable to mimic the

phase transformation as those in bulk metal. Thus, the whole

model has in total 729 FCC unit cells and 2916 atoms

according to basic crystallography.

We apply a compressive stretch

F ¼
1 0 0

0 k 0

0 0 1

2
4

3
5;

on y direction, which is [010] direction in FCC lattice. The

stretch is realized by moving the centers of mass of the top

surface cells close to that of the bottom cells at each load

step, and then allow a relaxation time so that the system can

reach equilibrium. The compress-relax procedure gives a

certain strain rate. Usually, we relax the system for 2000

steps for one incremental stretch of 0.03. During the loading

process, the other components of F may start to change

according to Eq. (59), and we only control the principal

stretch in y direction as a load parameter.

Fig. 7 shows the snapshots of loading history of the

whole model (cross section) and the internal supercell

(zoomed in). When the stretch is relatively small, i.e.,

k< 0.9, the Ni bulk crystal went through somewhat elastic

deformation. The particles are stretched uniformly. When

the stretch increases, i.e., k< 0.8, crystal slips were activated

between the planes of {010} accompanied by the elastic in-

plane deformation. The combined effect made the phase

transition from original FCC lattice to HCP lattice happen.

FIG. 5. Morse potential and the interatomic force.
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During this process, the {001} planes of FCC turned into

{0001} planes of HCP. We also noticed that the evolution of

the whole structure is relatively smooth, no matter a cell is

close to the boundary or in the interior of the simulation do-

main. This is the advantage of the proposed multiscale model

over classic MD. Because if the displacements are prescribed

on boundary atoms instead of supercells, the lattice pattern

near the boundary will become irregular when those atoms

are not free to seek the optimal positions. Whereas by pre-

scribing displacements for the center of mass of boundary

supercells as the boundary condition, it relaxes the constraint

on each boundary atoms, and only the average displacements

of the cell are controlled, i.e. that of the center of mass. This

is essentially the macroscale boundary condition.

As we observe from the top in Fig. 8, the {010} plane

has a shape of parallelogram. This is due to the slip of adja-

cent planes of the {100} type relative to each other. From

the figure, we find that the slips basically toward one direc-

tion, which formed regular pattern of parallelogram.

However, this may not always be the case. Sometimes, the

slips were influenced by imperfection of the initial structure

and other factors, e.g., the relative slip between the fourth

and the fifth planes on the right that is opposite to slips of

other planes. They may be the result of initial perturbation of

positions or velocity.

We have also studied the stress-strain relation for three

different sizes of supercells, which have 3� 3� 3, 4� 4� 4,

and 5� 5� 5 unit cells, respectively (see Fig. 9). The data

were obtained by averaging three runs for the same size of

cells to reduce numerical error. We noticed that when the

stretch is in the range of [0.9 1.0] and [0.7 0.75], the results

have good agreement with the theoretical curve. When the

stretch is in the range of [0.75 0.9], the points oscillate and

FIG. 6. The model setup: The system consists of 3� 3� 3 supercells, and

each supercell consists of 3� 3� 3 unit cells.

FIG. 7. Snapshots of the deformation

history of the whole system and the in-

ternal cell.

FIG. 8. The top view of final configuration when stretch ky¼ 0.7.
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large deviation is found for several points when comparing

the theoretical curves. That is reasonable because [0.9 1.0] is

the stable range for elastic deformation of FCC, and in the

range of [0.7 0.75] of stretch, a stable HCP lattice is expected

to form. When the stretch is in the range of [0.75 0.9], the

lattice structure is not stable, and the stress varies from time

to time. The phenomenon can be deduced from the energy

landscape in Ref. 22. This study also shows that size of cells

does not influence the result of regular deformation without

defects (See Fig. 9). Further work on size dependency will

be conducted when material defects are introduced.

V. DISCUSSIONS

Different from most multiscale methods proposed in

recent years, the MMMD is not aimed at saving computation

time or computer resource, but rather aimed at how to use

first-principle based molecular dynamics to simulate macro-

scale physical problems, and that is not a trivial task.

The conventional wisdom presumes that if we can sim-

ply increase the size of molecular dynamics ensemble we

can simulate motions of macroscale objects by using first

principle based molecular dynamics. In macroscale contin-

uum mechanics or engineering mechanics, however, we

hardly use the periodic boundary condition, nor do we

impose boundary conditions on specific atoms at the bound-

ary of the domain interested. In order to capture macroscale

thermodynamics responses of a finite size atomistic ensem-

ble system, we must be able to apply boundary conditions

and initial conditions in continuum mechanics, and some

other required constraint conditions to massive sized atomis-

tic ensembles. This requires introducing macroscale thermo-

dynamics measures that are related to microscale motions of

atoms. In other words, the molecular system’s multiscale

characters must be carefully taken into account so that the

microscale quantities can be correctly related to mesoscale

and macroscale quantities based on first principle.

For example, in continuum mechanics, when we are solv-

ing macroscale mechanics boundary value problems, we need

to impose boundary conditions that are either related to

traction (stress) or displacements (strain) or some other mac-

roscale thermodynamics variables such as temperature or elec-

trical voltage. Hence, if we hope to use molecular dynamics to

simulate the same macroscale problems based on first princi-

ple, we have to apply the same boundary conditions, which

are consistent with macroscale measurements and practice, to

first principle based molecular dynamics system. As computer

and computing technology progress, the need for direct first

principle molecular dynamics solution of macroscale prob-

lems will become more and more relevant, important, and

urgent. Thus, we must develop a rigorous multiscale molecu-

lar dynamics that can couple macroscale thermodynamic vari-

ables with microscale statistical variables from first principle

rather than from the direct coupling of molecular dynamics

with phenomenological continuum mechanics by superficial

boundary match or blending.

In this work, by utilizing the local equilibrium assump-

tion, we repartition the first principle Lagrangian have

extended the equilibrium (Andersen)-Parrinello-Rahman

molecular dynamics to a non-equilibrium atomistic simula-

tion, which can deal with finite size atomistic ensemble sub-

jected to arbitrary macroscale boundary conditions. In doing

so, we have proposed in the first time a novel concept of

multiplicative multiscale decomposition that separates as

well as couples macroscale continuum deformation with dis-

crete atomistic motions.

By partitioning the Lagrange of the first-principle mo-

lecular dynamics ensemble, we have formulated a novel

MMMD that can solve large scale molecular dynamics prob-

lems without the restriction of the periodic boundary condi-

tion and thermodynamics equilibrium condition. In other

words, we can solve molecular dynamics problems in finite

domains subjected macroscale boundary condition. The pro-

posed multiscale micromorphic molecular dynamics reveals

an intrinsic universal multiscale structure in molecular dy-

namics so that we can apply molecular dynamics to solve en-

gineering problems with general thermodynamics conditions

and arbitrary boundary conditions.

The MMMD formulation is essentially a global formula-

tion of a set of local NSH ensembles. A future study is to

extend the present theoretical formulation to other types of

molecular dynamics ensembles such as local NST ensemble.

The computer implementation of the multiscale micromor-

phic molecular dynamics formulation will be reported in the

second part of this work.

Last, the micromorphic molecular dynamics proposed in

this work should be independent on the size of micromorphic

cells as long as Eq. (31) holds. In fact, we have carried out

numerical experiments on effect of the micromorphic cell

size on MMMD simulation results (see Fig. 9). Depending

on the actual size of the original problem, we would say, that

the MMMD simulation results are almost independent from

the micromorphic cell size in an range of several cubic nano-

meters to almost up to hundred cubic nanometers. We shall

report the detailed study of size-effect in a separate paper. In

fact, this range is also problem-dependent, because that once

we get down to small scale, everything is size-dependent. If

the micromorphic cell size is too small, it does not have

enough atoms to provide correct statistical information; and

FIG. 9. Stress-strain relation under uniaxial displacement loading. Three dif-

ferent sizes of supercells are investigated. The curves are compared to the

theoretical prediction by Milstein and Farber.22
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if the cell size is too large, one cannot capture locality of in-

homogeneous field distributions such as abrupt change of

stress and temperature distributions, or other size effects. As

the fact of matter, this is a fundamental question that is at the

heart of multiscale simulation, coarse grain theory, and sta-

tistical physics. One of the future works of this research is to

systematically investigate this issue.
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