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Abstract In this work, a nonlocal peridynamics–smoothed
particle hydrodynamics (SPH) coupling formulation has
been developed and implemented to simulate soil fragmen-
tation induced by buried explosions. A peridynamics–SPH
coupling strategy has been developed to model the soil–
explosive gas interaction by assigning the soil as peridy-
namic particles and the explosive gas as SPH particles. Arti-
ficial viscosity and ghost particle enrichment techniques are
utilized in the simulation to improve computational accuracy.
A Monaghan type of artificial viscosity function is incor-
porated into both the peridynamics and SPH formulations
in order to eliminate numerical instabilities caused by the
shock wave propagation. Moreover, a virtual or ghost par-
ticle method is introduced to improve the accuracy of peri-
dynamics approximation at the boundary. Three numerical
simulations have been carried out based on the proposed
peridynamics–SPH theory: (1) a 2D explosive gas expan-
sion using SPH, (2) a 2D peridynamics–SPH coupling exam-
ple, and (3) an example of soil fragmentation in a 3D soil
block due to shock wave expansion. The simulation results
reveal that the peridynamics–SPH coupling method can suc-
cessfully simulate soil fragmentation generated by the shock
wave due to buried explosion.
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1 Introduction

The numerical simulation of fracture and fragmentation in
geomaterials induced by shock waves is a challenge in
both computational failure mechanics and computational
geomechanics. In order to accurately capture the physical
process, there are several technical difficulties that need to
be addressed: (1) strong discontinuities caused by crack ini-
tiation and evolution during the explosion process should
be faithfully represented in numerical simulations; (2) the
numerical model should correctly predict the interaction
between soil and explosive gas, and (3) pressure and veloc-
ity must be accurately simulated along with the shock wave
expansion front.

A decade ago, peridynamics emerged as an efficient non-
local continuum theory that is capable of representing and
capturing the discontinuous deformations in solids during
fracture processes [1]. The original peridynamics model pro-
posed by Silling [2] is a bond-based peridynamics method,
which is an extension of atomistic bond-based molecular
dynamics (MD) to a continuum level particle method. It uses
pairwise bond force fields derived from certain macro-scale
potential functions to represent the interactions between par-
ticles, similar to what is done in conventional MD simula-
tions. The bond-based peridynamics method has been exten-
sively used in predicting the damage and fracture processes in
brittle materials [3], reinforced concrete materials [4], com-
posite laminate structures [5], brazed joints [6], and mod-
eling damages caused by impact loads [7]. However, there
are some intrinsic drawbacks in the bond-based peridynam-
ics method. Since the bond force vector is assumed to be
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parallel to the deformation vector of each bond, this method
will result in a fixed Poisson’s ratio ν = 0.25 due to the
Cauchy-relation of material symmetries with respect to any
orthogonal transformation, e.g. D1122 = D1212. In fact, the
constraint on Poisson’s ratio poses a restriction on the method
so that it cannot distinguish between distortional and volu-
metric deformation; thus it cannot accurately model incom-
pressible plasticity.

To address the shortcomings of bond-based peridynamics,
Silling et al. [8] proposed another version of peridynamics:
the state-based peridynamics method. This method evalu-
ates the bond force based on force states that are determined
by the deformation states. A subset of this theory is called
non-ordinary state-based peridynamics that uses constitutive
correspondence to introduce classic constitutive models into
the peridynamics framework [8,9]. In this theory, an approx-
imation of the deformation gradient is constructed based on
the geometrical information of the undeformed and deformed
horizon (the compact support of a peridynamics particle).

Thus, the force state can be evaluated by using conven-
tional elastic or elastoplastic constitutive models. Within
constitutive correspondence, other phenomenological con-
tinuum models, such as damage models, can be introduced
into the peridynamics framework as well [10]. State-based
peridynamics has proven to be a very successful theory in
predicting the fracture of solids. Using state-based peridy-
namics, Warren et al. [11] simulated the fracture of linear
elastic and elasto-plastic materials; Foster et al. [12] tested
the deformation of a viscoplastic bar under impact; Wecknera
and Mohamed [13] implemented a stated-based viscoelas-
tic peridynamics model, and Tuniki [14] applied state-based
peridynamics to simulate fracture of concrete materials and
structures.

Geomaterials, such as soil and rock, have pressure-
sensitive inelastic behavior that dictates how the material
responds under high pressure, which is present in shock
wave loading. Over the past decades, many pressure-sensitive
constitutive models for geomaterials have been developed.
Examples include the Mohr–Coulomb (MC) plasticity model
[15], the Matsuoka–Nakai (MN) plasticity model [16], and
the Drucker–Prager (DP) plasticity model [17], among oth-
ers. Recently, state-based peridynamics has been utilized to
study the dynamic response of geo-materials and granular
materials with pressure dependent constitutive models, e.g.
[4,14,18,19]. To simulate the fragmentation of soil driven
by high explosive (HE) gas, one has to develop a method
that can capture the extremely high strain rate generated by
the expansion of the explosive gas, as well as the interaction
between the soil and the explosive gas. The expansion of the
explosive gas will deform and distort the local soil configu-
ration. Furthermore, some of the explosive gas particles will
move into the soil to create a soil–gas interface. Thus, con-
ventional mesh-based Lagrangian methods such as FEM will

fail due to the severely distorted mesh. Moreover, it is very
difficult to trace the fast-moving and evolving interface front
by using conventional Eulerian mesh techniques such as the
finite volume method [20].

In this work, a state-based peridynamics–SPH coupling
approach is proposed to address the theoretical and numerical
issues related to the fragmentation of soil under a high strain
rate loading. The peridynamics method offers advantages
in simulating fragmentation due to its ability to accurately
simulate the fragmentation of soil. Additionally, smoothed
particle hydrodynamics (SPH) [21] can handle the dynamic
process of the explosive gas and trace the moving boundary
intrinsically, because it is a Lagrangian particle method with
an Eulerian kernel function [22].

This paper is organized in seven sections including this
section: in Sect. 2, the equations of state-based peridynamics
for soil under shock wave loading are presented; in Sect. 3, the
peridynamic approximation is analyzed and the concept of
virtual particles are introduced. In Sect. 4, the SPH equations
for the explosive gas and the peridynamics–SPH coupling
approach are presented. In Sect. 5, the non-linear constitutive
update (DP model) under finite deformation and the related
peridynamics formulations are discussed. In Sect. 6, several
numerical examples are carried out to verify the proposed
peridynamics–SPH coupling equations for the simulation of
soil fragmentation. Finally, a few concluding remarks are
made in Sect. 7.

2 State based peridynamics with artificial viscosity

Peridynamics can be used to simulate dynamic fracture, and
it is particularly suitable for simulating complex fracture phe-
nomena such as fragmentation. In this section, we will briefly
discuss peridynamics discretization for solids.

A successful computational mechanics method has to
accomplish two essential tasks: (1) Discretize the computa-
tional domain and represent the displacement field based on
discrete points. In this regard, there are interpolation-based
methods, such as the finite element method (FEM) [23,24]
and several meshfree methods such as the reproducing ker-
nel particle method (RKPM) [25–27], and collocation based
methods, such as collocation of partial differential equations,
or collocations of non-local integral equations, e.g. SPH.
From the viewpoint of discretization, peridynamics is essen-
tially a Lagrangian type of collocation method that discretizes
the non-local force integration in the spatial domain [28]. (2)
Assess and evaluate the derivative of the displacement field,
i.e., the deformation gradient. This can be accomplished by
taking derivatives of the interpolation functions as is done in
FEM and RKPM , or constructing derivative kernel functions
for the integral representation as is done in SPH.
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Fig. 1 Schematic illustration of the state-based peridynamics model

In the state-based peridynamics theory, each material
medium is considered as a non-local continuum. Throughout
this paper, a capital superscript, such as A, denotes a mater-
ial medium, e.g., a peridynamic particle. Following the stan-
dard convention, capital variables with subscripts or capital
dimensional indexes (X I ) refer to the quantities defined in
the reference configuration, whereas the lower case variables
with lower case subscripts (xi ) denote those in the current
configuration. A material point XA interacts with its neigh-
boring particles within a certain distance δ. These neigh-
boring particles form a region that is centered around XA,
which is called the horizon [8]. All the neighboring particles
are denoted as XB, B = 1, 2 . . . n A, where n A is the total
number of neighbors of particle A. We denote the horizon as
HXA as shown in Fig. 1. The peridynamics discretization has
the typical topological structure of meshfree particle meth-
ods, e.g. [29]. The vector ξ AB = XB − XA is defined as
a bond vector of particle A; and all the kinematic interac-
tions between particle A and B are represented through this
bond, similar to the concept of an atomic bond in MD. The
deformed bond ξ AB is evaluated at the current configuration
by the so-called deformation state function Y(·),
Y(ξ AB) := xB − xA = (XB − XA)+ (uB − uA) = ξ AB + ηAB ,

(1)

where ηAB := uB − uA. Moreover, we denote the scalar
quantities,

ξ AB = |ξ AB |, and ηAB = |ηAB | . (2)

The deformation state is local, therefore a given deformation
bond can contribute to deformation states at both points A
and B. We distinguish them as

YA(ξ AB) or YB(ξ B A) .

In continuum mechanics, the equations of motion of a
continuum with general dynamic motion are [23],

ρ0ü = ∇X · PT + ρ0b, (3)

where ρ0 is the mass density of the solid in the reference
configuration, ∇X denotes the divergence of the first Piola–
Kirchhoff stress P with respect to the reference configuration,
and b is the body force. In peridynamics, the above equation
of balance of linear momentum is replaced by a non-local
integral equation,

ρ0ü = L(x, t)+ ρ0b

where L(x, t) is a non-local integration of force vector,
f(x, x′) (see Fig. 1), i.e.

L =
∫

V
f
(

xA, xB
)

dVxB

=
∫
HXA

[
TA

(
ξ AB,YA

(
ξ AB

))

−TB
(
ξ B A,YB

(
ξ B A

))]
dVXB (4)

Therefore, the governing equation of state-based peridynam-
ics [8] is,

ρ0ü =
∫
HXA

[
TA

(
ξ AB,YA

(
ξ AB

))

−TB
(
ξ B A,YB

(
ξ B A

))]
dV B + ρ0b, (5)

where T is the force-vector state. We would like to point out
that the unit of the force state is N/m3. Comparing Eq. (3)
with Eq. (5), one can easily see that state-based peridynamics
replaces the local divergence of the stress field with a non-
local integral. Mathematically, the formula of the force state
under constitutive correspondence is provided as,

T = ω(|ξ |)P · ξ · K−1, or in component form

Ti = ω(|ξ |)Pi J ξK K −1
K J . (6)

where K is the shape tensor that is defined as

K :=
∑

B∈HXA

ω(|ξ AB |)ξ AB ⊗ ξ AB�V B
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In Eq. (5), TA denotes the interaction force state from particle
A to particle B through the bond ξ , whereas TB is the associ-
ated force state from particle B to particle A. In Eq. (6), K is
the shape tensor, which will be discussed in the next section.
In practice, the non-local integral in Eq. (5) is replaced by a
finite summation,

ρ0ü =
∑

B∈HXA

[
TA

(
ξ AB,YA

(
ξ AB

))

−TB
(
ξ B A,YB

(
ξ B A

))]
�V B + ρ0b (7)

We may re-interpret Eqs. (6) and (7) as local meshfree
difference operations representing the stress divergence term,

∇ · P = 1

�X
·�P, where

∇· ∼ 1

�X
· :=

∑
B∈HXA

ω(|ξ AB |)(·) · ξ AB · K−1�V B

and P ∼ �P := PA − PB (8)

The local meshfree difference operation interpretation of
Peridynamics, which is based on the nonlocal integral equa-
tion, will be discussed in details in a separated paper. One may
note that the non-ordinary state-based peridynamics formula-
tion is material-specific, meaning that the peridynamics equa-
tion may change with different material constitutive models.
This is certainly true for geomaterials as well because their
state-based peridynamics formulation is generally different
from that of a solid such as metals.

For the specific simulation of fracture or fragmentation
of a solid induced by a shock wave, artificial damping must
be considered in the numerical simulation in order to rep-
resent the transformation of kinetic energy into heat. This
energy dissipation may be modeled as an artificial viscosity.
In past decades, many artificial viscosity models have been
proposed to capture the shock wave front such as [30]. In
the SPH community, the Monaghan type of artificial viscos-
ity models [31] are extensively used. However, these models
were formulated to be suitable for SPH computations, e.g.
Eqs. (24, 26 and 27). On the other hand, the peridynamics
governing equation is based on the force state of each mate-
rial particle, i.e. Eq. (5), and the peridynamics force state
vectors are calculated based on the continuum mechanics
stress tensor at the given particles, i.e. Eq. (6). Therefore, we
need to add an artificial viscous stress in the peridynamics
formulation as a shock capture term. To do so, we introduce a
suitable Monaghan or von Neumann–Richtmyer type of arti-
ficial viscous stress in the peridynamics stress expression.
First, we consider the artificial viscosity used in SPH by Liu
and Liu [22],

	AB =

⎧⎪⎪⎨
⎪⎪⎩

(
−α	c̄ABφAB+β	φAB 2

)
ρ̄AB , vAB · xAB ≤ 0

0, vAB · xAB > 0

(9)

where x is the position of the particle, and v is the particle
velocity. The other variables are defined as follows,

φAB = δABvAB · xAB

| xAB |2 + (
ϕδAB

)2 (10)

c̄AB = 1

2

(
cA + cB

)
(11)

ρ̄AB = 1

2

(
ρA + ρB

)
(12)

δAB = 1

2

(
δA + δB

)
(13)

vAB = vB − vA, xAB = xB − xA (14)

In the above equations, α	 and β	 are parameters that are
set to be 1.0 [22]. ϕ = 0.1 is used to prevent numerical
divergence when particle A and particle B are overlapped. c
is the wave speed in the solid. δAB is the smoothing distance
between particles A and B. Then we consider the following
artificial Cauchy viscous stress,

σ viscous :=
∑

B∈HXA

ω(|ξ AB |)	AB
I�VB (15)

where I is the second order unit tensor. Eq. (15) may be
viewed as the part of the Cauchy stress contributed by the
artificial viscosity, which is evaluated in the current config-
uration. For the Lagrange description, we need a viscous
stress tensor in the form of the first Piola–Kirchhoff stress as
the measure of artificial viscosity, which is consistent with
Eqs. (5) and (6), i.e.

�AB = J	AB
I · F−T (16)

where F is the deformation gradient and J = det{F}. Then
the calculation of the force state (Eq. (6)) with the artificial
viscosity becomes,

T = ω(|ξ |)(P −�AB) · ξ · K−1, or

Ti = ω(|ξ |)(Pi J −�AB
i J )ξK K −1

K J . (17)

3 Peridynamics ghost particle enhancement

Non-ordinary state based peridynamics uses the approxi-
mate deformation state function to map a bond vector ξ from
the reference configuration to the current configuration. The
deformation state function Y(ξ) is a general function of ξ .
It is not necessarily a linear function of ξ , nor does it have
to be a continuous. Because the horizon of a particle is a
compact supporting zone, the following Cauchy–Born rule
is employed to represent the kinematic behavior of a bond,
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Y(ξ) = F · ξ , (18)

where F is the approximate deformation gradient at a material
point. Eq. (18) assumes that the deformed bond is a linear
map of the original bond [32].

As mentioned in Sect. 2, an appropriate way to evaluate
the gradient of displacement field, i.e., deformation gradient,
is one of the important technical tasks of any computational
mechanics method. State-based peridynamics constructs the
shape tensor to represent the shape of the original horizon,

K =
∑

B∈HXA

ω(|ξ |)ξ ⊗ ξ �V B . (19)

Similar to Eq. (19), another matrix can be constructed to
represent the shape of the deformed horizon:

N =
∑

B∈HXA

ω(|ξ |)Y(ξ)⊗ ξ �V B

=
∑

B∈HXA

ω(|ξ |)F · ξ ⊗ ξ �V B (20)

In the above equation, F is in fact a local kinematic quantity,
i.e. for each particle XA, F(XA) has a unique value. There-
fore, it is constant in Eq. (20), and it may be taken out of the
summation. Thus for a given material point XA, the defor-
mation gradient can be evaluated explicitly from Eq. (20),

F = N · K−1 . (21)

Equation (21) is a key step to construct the force state at
every material point, because we can substitute it into all
the available constitutive relations—elastic, elasto-plastic, or
visco-plastic—to obtain the stress measure, and subsequently
to calculate the force state T.

To assess the accuracy of the peridynamics approxima-
tion to the gradient of the displacement fields, we measured
the deformation gradient F in a uniform grid and a non-
uniform grid under a prescribed linear deformation and bi-
linear deformation,

x = 0.2X + 0.3Y + 0.4Z + 0.6, linear deformation (22)

x = 2.0X + 3.0Y + 4.0Z + 5.0XY

+ 6, bi-linear deformation. (23)

The numerical approximations and analytical solutions of
the components of F (F11 : ∂x/∂X, F12 : ∂x/∂Y, F13 :
∂x/∂Z) are listed in Tables 1 and 2 for a particle located
at the boundary (No. 10) as well as one located inside the
domain (No. 368), as shown in Fig. 2.

Recently, Bessa et al. [33] had investigated the link
between meshfree state-based peridynamics and other mesh-
free methods such as RKPM. In fact, the peridynamics shape
tensor is a special moment matrix in RKPM [34], and the

Table 1 The deformation gradient at uniform grid

F Boundary particle No. 10 Body particle No. 328

Peridynamics Analytical Peridynamics Analytical

Linear deformation

F11 0.2 0.2 0.2 0.2

F12 0.3 0.3 0.3 0.3

F13 0.4 0.4 0.4 0.4

Bi-linear deformation

F11 72.0 72.0 57.0 57.0

F12 18.1 13.0 13.0 13.0

F13 4.0 4.0 4.0 4.0

Table 2 The deformation gradient at non-uniform grid

F Boundary particle No. 10 Body particle No. 328

Peridynamics Analytical Peridynamics Analytical

Linear deformation

F11 0.2 0.2 0.2 0.2

F12 0.3 0.3 0.3 0.3

F13 0.4 0.4 0.4 0.4

Bi-linear deformation

F11 76.9 77.3 60.6 59.9

F12 24.5 15.6 44.2 43.8

F13 4.0 3.3 4.0 3.9

discrete deformation gradient tensor in state-based peridy-
namics is a special case of hierarchical RKPM partition of
unity interpolation discussed in [34]. Their work revealed
that in the case of a uniform grid, the deformation gradient
obtained from peridynamics can represent the MLS/RKPM
deformation gradient analytically within the domain of inter-
est. The results obtained in this work support the conclusion
drawn in Bessa et al. (2014) [33]. The comparison reveals
that state-based peridynamics can represent the linear defor-
mation exactly with both uniform and non-uniform grids
throughout the domain. For the bi-linear deformation, peri-
dynamics can capture the exact results by using the uniform
grid inside the domain of interests, although the accuracy of
some solutions (F12) deteriorate at the boundary.

As for the non-uniform grid shown in Fig. 2b, the numeri-
cal results are accurate inside the domain, with the error less
than 1.15 %. The error may increase with highly irregular
non-uniform mesh, and this error may increase to 30 % at
the boundary. This phenomenon is a consequence of the par-
ticle deficiency problem. This issue stems from the fact that
the particles near the boundary can only obtain force contri-
butions from the particles inside the domain, and they lack
contributions from outside of the domain.
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Fig. 2 The particle distribution. a Uniform grid; b non-uniform grid

Fig. 3 Illustration of the virtual (red) and real (blue) peridynamic par-
ticles. (Color figure online)

The particle deficiency problem is a common issue for
most particle methods such as SPH, RKPM, and MPM. In
general, there are two approaches to deal with this type of
problem: (1) add virtual particles near the boundary to fill
up the compact support zone for the real particles located
near the boundary of a simulation domain. This technique
has been used in SPH, e.g. [35,36]; (2) derive the residual
boundary terms that are due to breaking of the Kronecker
Delta condition. This causes numerical interpolations to fail
satisfying the essential boundary conditions, e.g. [37] in SPH
simulations and [29] in RKPM computations. In this paper,
we adopt a virtual particle enrichment method introduced by
Liu and Liu [22] for SPH that is similar to the ghost particle
technique adopted by Libersky et al. [35]. In this method, if
a real particle A is located within a distance 2.0 × δ from
the boundary, a virtual particle is placed symmetrically on
the other side of the boundary. The virtual particles have the
same material parameters as the real particles, as shown in
Fig. 3. Here, the blue squares and red dots denote the real peri-

dynamic particles and virtual peridynamic particles respec-
tively. With the contribution from virtual particles, the accu-
racy of the numerical approximation for boundary particles
will increase significantly so that it may match to that of the
peridynamics approximation inside the simulation domain
i.e. that of the bulk particles.

4 Peridynamics–SPH coupling technique

In this work, the main objective is to simulate soil fragmen-
tation driven by the shock wave and explosive gas. In order
to simulate the fracture process, we have first to know how
to generate the shock wave, how to transfer the shock wave
load from explosive gas to soil particles, and how to simulate
shock wave propagation through the geomaterial medium.
Physically, the explosion event experiences two coupling
phases. The first one is the detonation phase, where the solid
charge is converted into explosive gas with extremely high
pressure. The second one is the expansion phase of the explo-
sive gas. The detonation phase only takes less than a fraction
of a second, whereas the explosive gas expansion process is a
relative longer process. This process of shock wave propaga-
tion is accompanied by large deformation and fragmentation
of soil particles and particle clusters. Since the whole explo-
sion process takes less than a few seconds, it can generally
be treated as an adiabatic and inviscid fluid–solid particle
interaction process. Therefore, we neglect the effect of heat
generation and heat transfer.

Since the explosive material is compressible, it experi-
ences a change in volume and shape during the simula-
tion. We adopt the SPH method to simulate the dynamic
expansion of the explosive gas. SPH is a Lagrangian type of
particle method that uses an Eulerian kernel. This property
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gives the method advantages of fast computation times and
accurate tracking of the shock wave front. During the explo-
sion process, the explosive gas will move into the soil–gas
interface thus creating highly inhomogeneous deformation
along the shock wave front, which induces fragmentation of
soil. This particular feature presents serious difficulties in
modeling the explosive gas for both traditional mesh-based
Lagrangian techniques, e.g. the Lagrangian type of FEM,
as well as the Eulerian methods, e.g. the Eulerian type of
FEM. The traditional Lagrangian FEM method would not
work due to the severe distortion of the mesh. Additionally,
the Eulerian type of FEM as well as FDM may not be able
to track the fast-moving shock wave front without adopting
additional techniques. Utilizing SPH to simulate the explo-
sive gas will eliminate both of these issues thus producing
more accurate and stable numerical results.

The SPH equations for the explosive gas are as follows,

DρA

Dt
=

∑
B∈HXA

m B(vB − vA) · ∇ωAB (24)

DvA

Dt
= −

∑
B∈HXA

m B

(
pA

ρA2 + pB

ρB 2 +	AB

)
∇ωAB (25)

DeA

Dt
= 1

2

∑
B∈HXA

m B

(
pA

ρA2 + pB

ρB 2 +	AB

)
(vB − vA)

·∇ωAB (26)

DxA

Dt
= vA. (27)

For further information, readers may consult [22] for details.
The governing equations for dynamic gases, i.e., Eqs. (24)–

(26), are the continuity, momentum, and energy equations,
respectively. In these equations, ρ, e, v, t , and p are the gas
density, internal energy, velocity vector, time, and pressure.
	AB denotes the artificial viscosity, as shown in Eq. (9). We
use the B-spline function as the SPH kernel function ω(x)
[22] (the same kernel that is used for the state-based peridy-
namics method).

In this work, we adopt a (TNT) explosive charge model,
and the pressure of the high explosive charge can be calcu-
lated by the equation of state of the following explosive gas
model,

p = (γ − 1)ρe, (28)

where the factor γ is taken as 1.4 [22].

4.1 Peridynamic particles coupled with SPH particles

If we use SPH to simulate the soil, the inaccuracy of the SPH
method may affect the accuracy and hence fidelity of the frag-
mentation simulation. Therefore, we adopt the peridynamics
method to simulate the soil medium for its easy handling of

fragmentation morphology, fast calculation, and reasonable
accuracy. Now the focus of this approach is how to seam-
lessly couple the two methods: peridynamics (for soil) and
SPH (for explosive gas).

In conventional computational mechanics, the interaction
of two different media is called contact. There are two types
of contact models: (1) the interpolation fields of the two dif-
ferent bodies are built up separately, i.e., two close particles in
different bodies cannot contribute to the equations of motion
of each other. The interactions between the two bodies are
derived from the kinematic constraints at the interface, e.g.
the geometric constraints at the contact interface. (2) A con-
sistent single approximation field is constructed for multi-
bodies, i.e., the equations of motion of the contact system are
solved as a single system even though there are two different
materials involved. This type of mixture contact algorithm is
particularly suitable for meshfree particle methods.

In this work, we adopt the second approach because it
simplifies the complex soil–explosive gas interaction. In this
contact/coupling-approach, the soil and explosive gas are
simulated by state-based peridynamics and SPH, respec-
tively. However, an issue arises due to the fact that peridynam-
ics uses the Lagrangian kernel whereas SPH uses the Eulerian
kernel in the computation. Moreover, there is a buffer zone
near the interface, which we call the “interphase zone.” Since
the coupling only occurs at the interphase of soil and explo-
sive gas, we only need to set up a coupling strategy in the
interphase area. In this work, the interphase zone is assumed
to be located inside the computational domain, i.e., the explo-
sive is fully surrounded by the soil. This assumption is true
for most interaction problems, and it can avoid the complex
interaction between interphase zone and boundary zone.

We first consider the force transfer mechanism from an
SPH particle to a peridynamic particle. Suppose that there is
a peridynamic particle A near the interphase whose horizon
contains an SPH particle B. When we calculate the force state
of the peridynamic particle A, we still use the peridynamics
force state formula,

fAB = TA(ξ AB,YA(ξ AB))− TB(ξ B A,YB(ξ B A))

in which the only unknown is TB(ξ B A,YB(ξ B A)), because
the particle B is an SPH particle. In our peridynamics–SPH
coupling scheme, we allow the contributions from both soil
and explosive gas to interact with the soil particle A as shown
in Fig. 4. This means that the peridynamic particles can “feel”
the SPH particle across the interphase, likewise the SPH par-
ticles can “feel” the peridynamic particles. Therefore, inside
the interphase zone, an SPH particle located in the horizon of
a peridynamic particle will be considered a “peridynamic”
particle, and it is used to calculate the force state vector of
the original peridynamic particle (see Eq. (6)).

The key of this interphase procedure is the method in
which to calculate force state TB(ξ B A,YB(ξ B A)). First,
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Fig. 4 The peridynamics and SPH coupling: peridynamics particles
(blue) and SPH particles (red). (Color figure online)

SPH uses the Eulerian kernel function, which can be rebuilt
in real time in the soil–gas particle interphase. Second,
we always know the pressure of the SPH particle because
pB = (γ − 1)ρBe. In fact, Eq. (17) implies that the force
state calculation is implemented in the reference configura-
tion, and is associated with the first Piola–Kirchhoff stress.
Given that the explosive gas is treated as an inviscid flow, we
choose the Cauchy stress of an SPH particle as its hydrostatic
pressure,

σ B
i j = pBδi j (29)

Once the Cauchy stress is known, we can calculate the force
state at point B. It is well known that the first derivative
calculation using SPH is often inaccurate. Instead of using the
SPH approximation, we construct a second order structure
tensor at the current configuration with the Eulerian kernel
function:

M =
∑

A∈HXB

ω(xB)Y(ξ B A)⊗ Y(ξ B A)�V B

=
∑

A∈HxB

ω(xB)xB A ⊗ xAB�V A (30)

Then the force state of the SPH particle B in the interphase
zone can be evaluated as:

TB = ω(xB)Jσ B · M−1 · Y(ξ B A), or

T B
i = ω(xB)Jσ B

i j M−1
jk Yk(ξ

B A). (31)

where J = detF. The force state shown above is derived from
the principle of virtual work. Considering that the variation
in the external virtual work is equal to the variation in the
displacement δY(ξ) dotted with the force vector, one may
solve for the force state T. In this scenario, we use the Kirch-
hoff stress τ = Jσ , and the Almansi strain e = 1

2 (I − b−1)

as conjugate pairs in the internal virtual work term.

Another advantage of this coupling approach is that it
resolves the boundary deficiency problem of particle meth-
ods. The soil–gas interphase is replaced by an interphase
zone in which the compact supports of both soil and gas par-
ticles are filled with the particles of their own phase, and the
particles of the other as “virtual” particles of their respective
phase.

4.2 SPH particles coupled with peridynamic particles

A similar situation to that mentioned above occurs when a
peridynamic particle is located inside the support zone of an
SPH particle.

When we calculate the interaction force that acts on an
SPH particle but is induced by a peridynamic particle, we
consider the peridynamic particle as an SPH particle. There-
fore, it participates in the calculation of every conservation
law of that SPH particle. For example, for the SPH particle
A, its linear momentum equation reads as,

DvA

Dt
= −

∑
B∈HXA

m B

(
pA

ρA2 + pB

ρB 2 +	AB

)
∇ωAB . (32)

Assume that there is a particular particle B that is a peridy-
namic particle. It is obvious that most properties of the peri-
dynamic particle B are known. For instance, the mass and
density of the peridynamic particle B are constant during the
computation. When calculating Eq. (32), we only need to
know what pB is. In the peridynamics–SPH coupling strat-
egy, we set

pB = σ B
i j δi j , (33)

where σ B
i j is the Cauchy stress of the peridynamic particle

B. This stress tensor can then be evaluated by the standard
procedure of state-based peridynamics.

In general, the contact/interaction model introduced here
may lead to nonphysical inter-particle penetration near the
interphase. This penetration happens not only between the
peridynamic and SPH particles, but also among the first lay-
ers of the peridynamic particles. There are several numerical
treatments to solve this problem, for example, the penalty
force method [22]. We can apply penalty terms on the adja-
cent particles near the interface to prevent the inter-particle
penetration between two adjacent media. However, this tech-
nique cannot be applied to solve the nonphysical inter-
particle penetration that occurs inside the soil. To overcome
this difficulty, an artificial viscosity function is introduced.
The artificial viscosity function (Eq. (9)) not only stabilizes
the numerical calculation of the shock wave, it also prevents
the inter-particle penetrations. In this work, the same Mon-
aghan type artificial viscosity function presented in Eq. (9)
is used in the computation,
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	AB =

⎧⎪⎨
⎪⎩

−α	c̄ABφAB+β	φAB 2

ρ̄AB , vAB · xAB ≤ 0

0, vAB · xAB > 0

(34)

The components of the above equation are the same as
those of the peridynamics artificial viscosity. The parameters
here are chosen as α	 = 1 and β	 = 2 for most cases.
However, these values are not large enough to prevent the
inter-particle penetration induced by the shock wave. In this
work, β	 = 10 is used in the computation.

5 Drucker–Prager model and constitutive update

The peridynamics method uses a unique approach that
approximates the deformation gradient, and it relates this dis-
crete version of deformation gradient to stress measures in
conventional continuum mechanics (Eq. (21)). Therefore, the
conventional constitutive models and their numerical imple-
mentation algorithms can be used to evaluate the stress fields
(σ or P) of the peridynamics domain. Soil materials generally
exhibit non-linear behavior after yield. Moreover, its yield
surface is pressure sensitive [17]. Even though the inelastic
behavior of soil is extremely complex in three-dimensional
space, many successful constitutive models were developed
for soil, such as the Mohr–Coulomb (MC) model, Matsuoka–
Nakai (MN) model, and Drucker–Prager (DP) model. In this
work, we use the Drucker–Prager plasticity model [17] for the
soil, and we implement it alongside the peridynamics formu-
lation. The Drucker–Prager model uses a smooth approxima-
tion of the MC yield criterion to determine the yield surface
of the soil. Moreover, the parameters of the DP model are
well calibrated with experimental tests [38]. The DP model
and its updated versions are extensively used in numerical
simulations of soil, rock, and concrete structures [39].

In this section, the peridynamics equations for updating
a non-linear constitutive model with finite deformation are
derived. Formally, the DP yield function is expressed as:

f = ‖s‖ − (Aφc − Bφ p) ≤ 0

Aφ = 2
√

6 cosφ

3 + β sin φ

Bφ = 2
√

6 sin φ

3 + β sin φ
− 1 ≤ β ≤ 1 (35)

where s is the deviatoric stress, c the cohesion (Pa), φ the
friction angle, and p is the mean Cauchy stress. When β = 1,
the DP model approximates the MC model at the triaxial
extension (TE) corner; β = −1 represents an approximation
of the MC model at the triaxial compression (TC) corner
[40]. The non-associative plastic potential function can be
written as:

g = ‖s‖ − (Aψc − Bψ p)

Aψ = 2
√

6 cosψ

3 + β sinψ

Bψ = 2
√

6 sinψ

3 + β sinψ
− 1 ≤ β ≤ 1 (36)

whereψ denotes the dilation angle. In the case ofφ = 0, ψ =
0, Eqs. (35) and (36) can reduce to a form similar to J2

plasticity. The Helmholtz free energy function ρ� per unit
deformed volume can be separated into elastic and plastic
parts:

ρ�(εe, ζ ) = 1

2
εe : De : εe + 1

2
ζ · H · ζ (37)

where εe, De, and H are the elastic strain tensor, elastic mod-
ulus tensor, and hardening/softening matrix, respectively. ζ is
a set of kinematic internal state variables (ISVs) associated
with kinematic plastic hardening/softening involved in the
geo-constitutive models [40]. From Eq. (37), the rate equa-
tions of the stress state (σ ) and ISV (qζ ) can be derived as,

σ̇ = ∂(ρ�)

∂ ε̇e = De : ε̇e = De : (ε̇ − ε̇ p) (38)

q̇ζ = ∂(ρ�)

∂ ζ̇
= H · ζ̇ (39)

In this work, we choose the internal variables of the soil qζ as:
qζ = {c, φ, ψ}T . To simplify the problem, this paper treatsφ
andψ as parameters, and qζ = {c}. We assume that c has lin-
ear hardening/softening modulus, H . From the plastic poten-
tial function (Eq. (36)), the evolution of plastic flow becomes,

ε̇ p = γ̇
∂g

∂σ
= γ̇

(
∂s
∂σ

+ Bψ
∂p

∂σ

)

= γ̇

(
n̂ + 1

3
Bψ I

)
(40)

where n̂ is the normal vector of the deviatoric stress, and I

is the second order unit tensor. The evolution equation of the
ISV is defined as:

ċ = H · ζ̇ = γ̇ H · h(σ , c) (41)

Based on the principle of maximum plastic dissipation, we
have

h = −∂ f

∂c
= Aφ (42)

γ̇ can be solved from the consistency condition ḟ = 0:

γ̇ = 1

χ

∂ f

∂σ
: De : ε̇

χ = ∂ f

∂σ
: De : ∂g

∂σ
− ∂ f

∂c
· H · h (43)

Equations (38), (39) and (43) are the standard equations for
the constitutive update of a non-linear plastic soil model.
There are three sets of unknowns (σ , c, γ ) coupled in the
non-linear equations. These can be solved by using the
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Newton–Raphson method [23]. In this work, the following
simple explicit updating algorithm is implemented,

σ tr
n+1 = σ n + De : �ε (44)

f tr
n+1 = ‖str‖ − (Aφn cn − Bφn ptr

n+1) (45)

if f tr
n+1 < 0 elastic phase: updating σ n+1 and c.

if f tr
n+1 ≥ 0 plastic phase:

�γ = f tr
n+1

2μ+ K BφBψ + H(Aφ)2
(46)

σ n+1 = σ tr
n+1 −�γ (K Bψ I + 2μn̂n+1) (47)

cn+1 = cn +�γ H · h(σ , c) (48)

Equation (44) is the formula used for calculating the trial
stress under the assumption of small deformation. However,
the damage process is in general associated with finite defor-
mation. Under finite deformation, Eq. (44) should be replaced
with nonlinear equations based on the Hughes–Winget algo-
rithm [41]. During finite deformations, the motion of a mate-
rial volume element in any time increment consists of both a
deformation and a rotation. To measure objective kinematic
deformation, a configuration at time step n + α is defined,

xn+α = (1 − α)xn + αx (49)

In this work, we choose the parameter α = 0.5. Similar to
Eq. (23), which approximates the deformation gradient in
state-based peridynamics, the deformation gradient at con-
figuration xn+α can be derived as,

L = ∂xn+α

∂X

=
⎡
⎣ ∑

B∈HXA

ω(|ξ |)(xB,n+α − xA,n+α)⊗ ξ

⎤
⎦ · K−1 (50)

Meanwhile, the gradient of the displacement increment �u
with respect to the reference configuration can be written as,

C = ∂�u
∂X

=
⎡
⎣ ∑

B∈HXA

ω(|ξ |)(�uB −�uA)⊗ ξ

⎤
⎦ · K−1 (51)

Therefore, the gradient of�u at the configuration (xn+α) can
be obtained as,

G = ∂�u
∂xn+α = C · L−1 (52)

where G is the incremental deformation gradient. It can be
split into the strain and rotation increment parts respectively,

	 = (G + GT )/2 (53)


 = (G − GT )/2 (54)

Fig. 5 The expansion of explosive gas

The objective stress increment can be calculated,

�σ = De : 	 (55)

Finally, the constitutive update equation (Eq. (44)) is replaced
by,

σ n+1 = σ̂
n +�σ (56)

σ̂
n = RT · σ n · R (57)

R = I + (I − α
)−1 · 
. (58)

6 Numerical simulations

In this section, we present three numerical examples by using
the coupled peridynamics and SPH approach. For the buried
explosive problem, the first technical concern is to simulate
the evolution of the explosive gas. In the first example, we
simulate the expansion of the explosive gas in an ambient
space that is initially packed in a cylinder. Since the cylin-
der is axisymmetric, this problem can be reduced to a 2D
problem.

6.1 Simulation of 2D explosive gas expansion using SPH

In this example, we assume that the detonation speed of the
HE (TNT) is infinite. Consequently, only the expansion of the
explosive gas is predicted by the SPH method. This example
is carried out to validate the further explosive loading gen-
erated in the underground explosion. To compare with the
numerical results from commercial software (MSC Dytran),
we assume that the explosive gas is placed in a vacuum space.
The radius of the TNT explosive gas is 0.1 m. As discussed in
Sect. 3, the SPH method needs an enrichment near the bound-
ary to improve the computational accuracy. In this work, the
virtual particles approach described by Liu and Liu [22] is
implemented. The computational model is shown in Fig. 5.
The blue cubes are explosive gas (SPH) particles, and the
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red cubes are virtual SPH particles with the same density
and energy as the TNT gas. The computational domain is
discretized into 1,057 SPH particles and 138 virtual parti-
cles. The initial material parameters for the TNT gas are:
ρ = 1, 630 kg/m3 and e = 4.29 × 106 J/kg. The equation
of state (EOS) of the ideal gas is used, and the parameter
γ = 1.4. The coefficients of the artificial viscosity are cho-
sen as α	 = 1.0, β	 = 10.0, and φ = 0.1. The simulation
time step is �t = 5.0 × 10−7 s.

Because the explosive gas is treated as inviscid, the explo-
sion performs as a blast wave resulting from the pressure of
the gas. This means that the evolution of the pressure field is a
very important quantity during the simulation. Here, the pres-
sure transients along the radial direction are plotted (Fig. 6)
alongside those that were calculated from MSC/Dytran [22].
MSC/Dytran is a grid-based hydrocode, in which the results
are interpolated with volumes of cells. One can find that the
pressure curves from Dytran decrease smoothly to zero. In

contrast, SPH results are associated with particles that have
no pressure data existing beyond the gas front. The compar-
ison indicates that the SPH equations used here can predict
the pressure evolution with great accuracy.

The dynamic expansion sequences are plotted in Fig. 7
with contours of pressure (mean stress). From these plots,
one can find the explosive expands symmetrically along the
radial direction, as is expected.

6.2 The 2D peridynamics–SPH coupling case

Once the explosive gas starts to expand, it will interact with
the surrounding soil thus exerting pressure and causing the
soil to fracture. This process is usually very fast because the
explosive gas wave front moves as a shock wave in geomate-
rials. Therefore, the second technical concern is the soil–gas
interaction and the subsequent fragmentation of soil.

Fig. 6 The pressure evolution of HE (TNT) gas by SPH and Dytran. a t = 0.02 ms; b t = 0.04 ms; c t = 0.08 ms; d t = 0.10 ms
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Fig. 7 The time sequences of the expansion of the TNT gas, background:pressure (N/m2). a t = 0.025 ms; b t = 0.05 ms; c t = 0.075 ms;
d t = 0.10 ms

Fig. 8 The peridynamics and SPH coupling domain

In the second example, we consider a ring of soil material
that encompasses a cylinder of explosive gas. We hope to
simulate the dynamic interaction between the soil and explo-
sive gas after the detonation. Again because of the axisym-
metry of the domain, we can treat this as a two-dimensional
problem.

This numerical simulation was carried out to test the pro-
posed peridynamics–SPH coupling equations and the peri-

Table 3 The material parameters (DP model) used for adobe

E ν φ ψ c ρ β

98,454,200 Pa 0.25 0.738663 0.738663 208,848 Pa 1,300 kg/m3 −1

Table 4 The parameters of artificial viscosity for soil

α	 β	 φ

1.0 5.0 0.1

dynamics DP model in finite deformation. In this simulation,
the cylinder explosive gas from the previous example is sur-
rounded with a soil (adobe) ring, as shown in Fig. 8. Here,
the red particles represent the explosive gas, and the blue par-
ticles represent the soil. The radius of the whole domain is
0.15 m. This domain is discretized into 640 DP node-based
peridynamic particles (the soil ring) and 1,057 SPH particles
(the explosive gas).

The material parameters for the explosive are the same
as those used in the previous example. The time step used
in the simulation is �t = 5.0 × 10−7 s. In [38], a series of
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Fig. 9 The interaction force state between soil and gas

tests were conducted to calibrate the material parameters of
the DP model for adobe material. Thus in the simulation,
the material parameters of the soil are chosen to be exactly
the same as those in [38] with an exception of the density of
adobe, which is set as common (commercial) adobe material,
as shown in Table 3.

Notice that the artificial viscosity model (Eq. (9)) is imple-
mented here to help catch the blast wave front as well as to

prevent non-physical penetrations. In practice, the values of
the parameters are chosen from Table 4. These values render
robust computation in the simulation.

With the expansion of the explosive gas, enormous pres-
sure will be imposed on the adjacent soil media thus driving
the movement of the soil. As described in Sect. 4, both the
peridynamics and SPH kernels can cross the soil–gas inter-
face, which implies that the interaction effect is involved in
numerical summations of these two types of particles. The
peridynamics method constructs a novel equation using the
force state vectors, Ti , to represent the interaction between
two particles.

Consider a particle next to the explosive gas along the
radial direction/axis. Because the whole domain is axisym-
metric, the force state vector only depends on coordinates r
and z. This particle can have two types of bonds, ones that
are associated with the peridynamic particles, and ones that
are associated with SPH particles, respectively. To illustrate
the soil–gas interaction effect, the sum of the force states
(Tr ) of the given particle is plotted in Fig. 9 at different time
instances, i.e.,

Tr =
∑

B∈HXA

(TA − TB)�V B B ∈ SPH (59)

Fig. 10 The time sequences of the soil ring with explosive gas, background:velocity (m/s). bfa t = 0.025 ms; b t = 0.075 ms c t = 0.125 ms; d
t = 0.175 ms
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Fig. 11 The computation domain for 3D fragmentation

Note that this peridynamic particle is attached to adjacent
SPH particles as well as peridynamic particles.

In Fig. 9, a sharp pulse load representing the shock wave
front is generated at the very beginning. This is followed by a
smaller pulse load representing dynamic oscillation between
different media, which is typical in shock wave propagation.
This observation indicates that the proposed peridynamics–
SPH coupling method can capture shock wave propagation.
Comparing the pressure evolution of the explosive gas in this
simulation with what is tested in the previous example, one
can see that the dynamic motion of the soil and explosive gas
is consistent. Thus we conclude that the soil–gas interaction
force computed here is reasonable.

The dynamic responses of the soil ring with the explosive
gas are shown in Fig. 10. Here we can see that the soil particles
move consistently and convectively along with the expansion
of the explosive gas. In the numerical simulations, we did
not find non-physical or incompatible gas penetration. These
usually occur when a numerical algorithm fails to capture

Fig. 12 The time sequence of fragmentation of adobe block. Background: pressure. a t = 0.09 ms; b t = 0.25 ms; c t = 0.37 ms; d t = 0.70 ms
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Fig. 13 The fragmentation of soil induced by blast wave

the soil–gas interaction and shock wave propagation. This
confirms that the artificial viscosity stress term works well.

6.3 Fragmentation of a 3D soil block induced by shock
wave load

In the last example, we consider a 3D soil–gas interaction
problem where the explosive is originally buried or embed-
ded at the center of a cubic soil block.

In this example, a preliminary numerical simulation is
conducted to test the capability of the peridynamics–SPH
coupling equations in capturing the complex fragmentation
process of soil under blast wave loads. The motivation of
this simulation is to predict ejection of soil induced by the
shock wave loading that is generated by the buried explo-
sives. To simplify this problem, the computational speci-
men is designed as a soil block with a buried cubic void
as shown in Fig. 11. The soil block has dimensions of
0.37 × 0.37 × 0.47 m3 with a 0.123 × 0.123 × 0.13 m3

void block inside representing the explosive gas. The whole
domain is discretized into 8,303 particles, consisting of 7,960
peridynamic particles and 343 SPH particles. The material
parameters of the soil DP model are the same as those used
in the previous example.

The dynamic fracture process of the soil block is depicted
in Fig. 12. In this work, we focused on the technical issues of
the peridynamics–SPH coupling. In this example, a prelimi-
nary test for the 3D simulation of fragmentation is presented.
Its quantitative validation will be conducted in future work.
A time sequence of the explosion with the velocity back-
ground at t = 0.57 ms is shown in Fig. 13. One can see that
the fragment zones (red color) are generated from what was
initially a continuous body.

7 Conclusions

The numerical simulations of fragmentation in geomateri-
als under a high strain rate blast wave involve challenges
such as representing the discontinuity inside the material,
generating the explosive loading, and capturing the soil–gas
interaction. In this paper, we present a novel technique that
couples peridynamics with smoothed-particle hydrodynam-
ics (SPH). Peridynamics offers an efficient method to model
geomaterials, and SPH offers and efficient method to model
explosive gas.

The numerical results reported in this work have shown
that the proposed model is capable of simulating the com-
plex fragmentation process of soil driven by the shock wave
and buried explosive. The main technical contributions of
this work include: (1) a peridynamics model of soil with arti-
ficial viscosity. This allows us to capture the moving shock
wave front and to prevent non-physical penetration in numer-
ical simulations; (2) a simple interaction technique that can
transfer dynamic loads from the explosive gas to the soil,
and (3) a ghost particle technique to enrich the peridynam-
ics approximation field both near the domain boundary as
well as the fracture surfaces of the geomaterial. Overall, this
technique can significantly improve the accuracy of the peri-
dynamics approximation near the boundary of the simulation
domain.

Finally, several numerical simulations were carried out to
test the proposed peridynamics–SPH approach. The simula-
tion results have shown that the proposed peridynamics–SPH
coupling approach can qualitatively capture the dynamic
response and fracture/fragmentation process of soil under
shock wave loading.
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