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In this work, a three-dimensional (3D) liquid crystal polymer model is developed to model the microtu-
bule cytoskeleton aggregate and to study its interaction with the extracellular matrix. In the proposed
microtubule cytoskeleton model, the cytoskeleton aggregate is treated as a homogenized liquid crystal
elastomer medium, with an extra active stress term included to account for the effect of the active pro-
cess of Guanosine Triphosphate (GTP) hydrolysis. The cell extracellular matrix (ECM) is modeled as a
hyperelastic material. The specific and non-specific interactions between the cell and its ECM are mod-
eled by a Coarse-Grained Contact Model. Surface tension effects are incorporated into the simulation,
through a Multiscale Dynamic Wetting Model, to account for the interface conditions between the cell
and its surrounding environment. The cell model is implemented in a Lagrange type Galerkin formula-
tion. The numerical results show that the cell can sense and move under the gradient of matrix elasticity.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction two-dimensional elasticity models. The contributors of these cell
From structure point of view, a cell consists of cell membrane,
cell cytoskeleton and cell nuclei. The cytoskeleton is the cell’s
scaffold, which mainly composes of actin-filaments, intermediate
filaments, and microtubules. To model such a complex system as
a whole at micro-meter scale, continuum modeling is the best
approach, due to its distinct advantages in providing the most
direct and relevant information on bio-physical and physiologi-
cally state of the cell. It has become a general consensus now in
the biophysics community that the actin filament is essentially
an active nematic gel, e.g. [13–15,37], and various liquid-crystal
like nematic gel hydrodynamics models [35,36] have been pro-
posed in the simulation of cells. On the other hand, there is a lack
of modeling effort in studying intermediate filaments and microtu-
bules, which are not only important biomolecular polymers inside
the cell, but also the main cytoskeleton structure components that
provide elastic stiffness and help force transferring.

In recent years, there are several cell rigidity sensing models
that have been proposed, such as Two-spring rigidity sensing
model [25], Non-linear elasticity of the Extracellular Matrix
(ECM)/Cell interaction model [31], Stress-fiber polarization model
[34] and a mechano-sensing and force generation model in
contractile cells [26]. These are very successful models with biol-
ogy insights, and most of these models are one-dimensional or
elasticity theories are from diverse fields: physics or bio-physics,
materials science, chemistry, and applied mechanics. To the best
of the author’s knowledge, there are very few or even no three
dimensional cell model that can simulate a cell interacting with
its ECM in a continuum approach. It is the intent of this work to
propose a soft matter cell model to simulate the contact/adhesion
of cell on the ECM and hence cell spreading/crawling on a stiffness
varying substrate.

The main novelty and distinction of the present work is that it
combines the proposed active soft matter model, together with the
lately developed Coarse-Grained Contact Model [22–24], and the
Multiscale Dynamic Wetting Model [19] to successfully simulates
cell contact/adhesion/crawling upon different elastic substrate.

This paper is organized into five Sections. The constitutive
models of cell and the extracellular matrix are discussed in
Section 2. In Section 3, the Coarse-Grained Contact Model and
the Multiscale Dynamic Wetting Model are briefly reviewed. In
Section 4, a few numerical examples are presented, focusing on
their relevance to cellular biology applications. Finally, in Section 5,
we close our presentation by making a few remarks.
2. Mesoscale continuum modeling of cell and ECM

2.1. Active stress based liquid crystal elastomer model

Liquid crystals have biphasic properties by exhibiting both
liquid and solid characteristics. For instance, a liquid crystal may
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be fluid similar to a liquid with vanishing shear modulus, while
having a long range orientational order and therefore a strain gra-
dient elasticity associated with deformations of the order parame-
ter. Many biological materials contain liquid crystalline phase, and
the most common examples are cell membranes, phospho-
lipid,cholesterol, DNA, various proteins, among others (see [32]).

Actin cytoskeleton filaments have polarity, and actin monomers
orient with their cleft towards the pointed or the minus end and
their head towards to the barbed or plus end. Under suitable
physiological conditions, G-actin monomer may be transformed
to F-actin (polymer form) by ATP at the plus end, which is called
polymerization, and it may be depolymerized at the minus end.
For mesoscale modeling, we may assign a unit vector at each mate-
rial point, hence a continuous director field may be established to
represent local polarization of a homogenized actin filament/cyto-
plasm representative volume element (RVE). This is the bio-phys-
ics foundation or justification for developing a nematic fluid
hydrodynamics to model a polar actin filament/cytoplasm gel at
mesoscale level. The local orientation of this director field is central
to many cellular processes such as cell motility and locomotion,
cell adhesion, and cell division.

Although liquid crystal behaviors of cytoskeleton filaments
were discovered in late 1990s and early e.g. [27,28], it is not until
recently that people have started to model actin cytoskeleton
motion or lamellipodium motion by using nematic liquid crystal
hydrodynamics [15,13,12].

However, the actin filament is only responsible for cytosis
process, while microtubules make mitosis and cell locomotion pos-
sible, because it provides most strength and structure support in
cytoskeletons. The microtubule is the main component of cytoskel-
eton, and it has a hollow, cylindrical structure assembled by
polymerization of a=b dimers of tubulin. Microtubules have a
distinct polarity or lattice structure that is important for their bio-
logical function. Tubulin polymerizes end to end with an a subunit
of one tubulin dimer connecting with a b subunit of the next. We
refer the end terminated by the a-subunit as the minus end, and
the end terminated by the b-subunit as the plus end. In vitro, puri-
fied tubulin polymerizes more quickly from the plus end, while
slowly growing at the minus end. In essence, the microtubule is
a bio-polymer with crystal structure, or in short a liquid crystal
elastomer.

Moreover, microtubule assemblies are highly dynamic, and they
frequently grow and shrink at a rapid yet constant rate at the plus
end, which is known as ‘dynamic instability’. During polymeriza-
tion, both the a- and b-subunits of the tubulin dimer are bound
to a molecule of GTP. While the GTP bound to a-tubulin is stable,
the GTP bound to b-tubulin may be hydrolyzed to GDP shortly after
assembly. The kinetics of GDP-tubulin are different from those of
GTP-tubulin; GDP-tubulin is prone to depolymerization. A GDP-
bound tubulin subunit at the tip of a microtubule will fall off,
though a GDP-bound tubulin in the middle of a microtubule cannot
spontaneously pop out. The main factor dictates whether microtu-
bules grow or shrink is the rate of GTP hydrolysis. At high free GTP-
tubulin dimer concentrations, hydrolysis is outpaced by rapid
assembly at the plus end, thereby forming a rigid GTP-cap, whereas
concerted GTP hydrolysis at the plus end will cause protofilaments
rapidly disassemble. Once assembled, polarized arrays of microtu-
bules provide tracks for the transport of organelles and chromo-
somes. This transport is driven by the motor proteins such as
kinesin and dynein that interact with and move along the lateral
surface of the microtubule. Motor proteins are molecular
machines, and they convert chemical energy derived from ATP
hydrolysis into mechanical work used for cellular motility.

At mesoscale or macroscale level, if one assigns a crystal lattice
structure to an entropic elastomer, one will end up with a soft mat-
ter material – the liquid crystal elastomer! Liquid crystal elastomers
or polymers consist of networks of cross-linked polymeric chains,
each of which contains rigid rod-like molecules called mesogens
with long range structure order e.g. [29,30]. Liquid crystal elasto-
mers combine the elastic properties of polymers with the order
inherent in nematic liquid crystals. Liquid crystal elastomer has
an interesting property: Stretching a monodomain strip of nematic
elastomer in a direction transverse to the nematic director will
result in an energy-free rotation of the director, giving rise to a soft
elastic response [8].

In this work, we propose in the first time to use a liquid crystal
elastomer-like constitutive relation to model microtubule bundles
or aggregates (see Fig. 1).

In fact the cell is a living object, the conventional passive liquid
crystal hydrodynamics is insufficient to model many important
features of a living cell, because the free-energy based soft matter
approach may not be valid, and it is intended for systems at
equilibrium states. In this work, like the modeling of actin filament
e.g. [4], we postulate that the Cauchy stress inside the microtubule
aggregated may be divided into two parts: r ¼ rp þ ra, in which,
ra is the an active stress expressed as,

ra ¼ �fh� h; ð1Þ

which accounts for the force generated along the direction of the
local director field h; f is an activity constant that is related to
the chemical energy release rate of the GTP inside the cell.

In order to get the passive part of the stress, we adopted the
following free energy density of the liquid crystal elastomer [8],
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2
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where F is the deformation gradient, and J is its determinant, i.e.

F ¼ @x
@X

; and J ¼ det jFj;

where x is the position vector of a material point at the current
configuration that is defined as

x ¼ Xþ u;

where uðXÞ is the displacement field, and X is the position vector of
the material point at the reference or material configuration.

The corresponding passive part of the first Piola–Kirchhoff
stress part can be obtained by,
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which can be converted to the Cauchy stress as,
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where the l is the shear modulus, j is the Frank modulus, s is the
step length anisotropy, C ¼ FT F is the Right Cauchy–Green tensor,
G ¼ rx � h is the gradient of the director field, h and h0 represents



Fig. 1. Comparison between (a) microdomains of Non-muscle Myosin II (NM II) and (b) mesogens in liquid crystal elastomers.
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the director field in the current and reference configuration,
respectively.

In addition to the displacement field u, the Cauchy stress for the
active liquid crystal elastomer is also dependent on the director
field h. In order to find the director field of liquid crystal elastomer,
an additional equation for the director field h is needed. In the pro-
posed microtubule cytoskeleton model, the evolution of the direc-
tor field h is obtained by adopting the following Allen–Cahn
approach [3],

D~h
Dt
¼ �L dF

dh
; ð5Þ

where L is a material tensor parameter, which characterizes the dif-
fusivity or transport property of microtubules. With some manipu-
lations, one may arrive at the following governing equation for the
director field h,

D~h
Dt
¼ lL s� 1

s
hFFT þ ðs� 1Þ2

s
ðh � FhÞ Fh0
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One may note that in Eq. (6), a corotational convected objective
time rate D~h

Dt is used, which is very important for large deformations
dynamic computations. In this work, it is chosen as

D~h
Dt
¼ Dh

Dt
þ 1

2
‘T h�xh
� �

; ð7Þ

where ‘ ¼ _FF�1 is the velocity gradient and x ¼ 1
2 ð‘� ‘

TÞ is the spin
tensor.

The displacement (essential) boundary condition for the
director field is prescribed all over cell surface during the entire
simulation process. That is,

h ¼ h0 ¼ n; 8x 2 @X1; ð8Þ

where h0 is the initial director field and n is the current unit
out-normal on the cell surface at each material point. The reasons
why we choose the such initial director field and essential boundary
condition are the following. The orientation the lipid bilayer mem-
brane is always along the normal direction of cell surface, which
may be viewed as an ideal smectic A phase of liquid crystal. In
the original undeformed configuration, the direction of lipid bilayer
is along the radial direction. Thus, it may be a natural choice of
boundary condition and initial condition that the stress fibers have
the same orientation as that of the lipid bilayer at the boundary, and
it is naturally to assume the interior stress fiber being as a contin-
uation of lipid bilayer from surface to interior.

2.2. Hyperelastic model

Hyperelastic material models have been used a lot in cell
modeling. There are many Hyperelastic models for rubber-like mate-
rials in the literature, a comparison of different Hyperelastic models
can be found in [18]. In this research, the modified Mooney–Rivlin
material [7] is chosen to model the cell ECM. The strain energy
density function W for the modified Mooney–Rivlin material is,

W ¼ c1ðI1 � 3I1=3
3 Þ þ c2ðI2 � 3I2=3

3 Þ þ
1
2

kðln I3Þ2; ð9Þ

where c1; c2 and k are material constants. I1; I2 and I3 are three
invariants of the right Cauchy–Green tensor C ¼ FT F , given as
follows,

I1 ¼ trðCÞ; I2 ¼
1
2
ðtrðCÞÞ2 � C2
h i

; I3 ¼ detðCÞ: ð10Þ

The corresponding constitutive relations can be expressed in
terms of the second Piola–Kirchhoff stress tensor S ¼ SIJEI � EJ ,
and the invariants of the right Cauchy–Green tensor,

S ¼ 2 ðc1 þ c2I1ÞI� c2C� ðc1I1=3
3 þ 2c2I2=3

3 � k ln I3ÞC�1
n o

: ð11Þ
3. Cell interactions with the environment

3.1. Coarse-Grained Contact Model

The ability to send and receive signals is essential to the sur-
vival of a cell. In fact, all cells rely on cell signaling to detect and
respond to cues in their environment. In stead of trying to simulate
of the whole picture of cell signaling, here we are particularly
interested in the way a cell adheres or responds to the rigidity of
the ECM. A cell interacts with the extracellular matrix through
specific and non-specific bonded forces [1,2,21]. For simplicity,
we do not differentiate the two in the present case. From micro-
scale perspectives, this interactions originate from intermolecular
interactions among different bodies. In our simulation, the body–
body interaction between the cell and the ECM are modeled by
the recently developed Coarse-Grained Contact Model [22–24].
This adhesive contact model is very useful in the simulations of
soft matter adhesion contact in mesoscale level. In comparison to
classical contact algorithms, which usually treat the bodies as rigid,
or at least very stiff solids, CGCM can deal with the adhesive con-
tact between two soft bodies with extremely large deformation.
The key technical ingredient of CGCM is to introduce an adhesive
contact potential of the two bodies, based on the homogenization
of molecular interaction between individual atoms or molecules.
The kinematic description of two interacting bodies is shown in
Fig. 2. Consider the interaction of two distinct bodies at the current
configurations X1 and X2. The total potential energy of the system
can be written as,

P ¼
X2

I¼1

Pint;I �Pext;I þPAC
� �

; ð12Þ

where Pint;I and Pext;I are the internal energy and external energy
for body XI; I ¼ 1;2. PAC denotes the homogenized interaction
energy due to the interbody adhesive contact. From microscale
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perspectives, the internal energy Pint;I can be viewed as the particle
interactions within the two bodies. The cellular intrabody interac-
tions are mainly due to covalent bonds and ionic bonds, which
are predominant in short range. On the contrary, PAC comes from
the interbody interactions. The cellular interbody interactions are
mainly attributed to covalent and van der Waals interactions, which
is long range and in general much weaker than the covalent bond
force. In this work, we only model the cellular interbody interaction
as the van der Waals interaction, and such simplified approximation
has been adopted by some researchers e.g. [21].

Suppose that there are two atoms located at x1 and x2 interact-
ing with each other via an interatomic potential /, which is a
function of the current bond length r :¼j x1 � x2 j. /ðrÞ can be
any potential that is suitable for the specific physical bonding.
There are several elementary interaction potentials to describe
long range interbody interactions. In this work, the 12-6
Lennard-Jones potential is adopted, i.e,

/ðrÞ ¼ � r0

r

� �12
� 2�

r0

r

� �6
; ð13Þ

where � is the potential well (in the unit of energy) and r0 is the
equilibrium distance. Summing up all the inter-body interactions
between atoms in the two bodies, one may arrive at the final form
of the homogenized interaction energy for the adhesive contact,

PAC ¼
Z

X1

Z
X2

b1b2/ðrÞdv2dv1; r ¼j x1 � x2 j; ð14Þ

where b1 and b2 represent the current particle densities located at
points x1 2 X1 and x2 2 X2. Take the first variation of the
homogenized interaction energy PAC ,

dPAC ¼
Z

X1

Z
X2

b1b2
@/ðrÞ
@x1

� du1 þ
@/ðrÞ
@x2

� du2

� �
dv1dv2

¼ �
Z

X1

b1b1 � du1dv1 �
Z

X2

b2b2 � du2dv2;

where the body forces are defined as

b1ðx1Þ :¼ � @U2

@x1
; U2 :¼

Z
X2

b2/ðrÞdv2;

b2ðx2Þ :¼ � @U1

@x2
; U1 :¼

Z
X1

b1/ðrÞdv1:

For the detailed information on the theory as well as computa-
tional formulations of the Coarse-Grained Contact Model, the
reader may consult to [22–24], except that the adhesive energy
constant � used here is dependent on substrate elasticity.

3.2. Multiscale dynamic wetting model

In order to start crawling on the ECM, a cell has to first be able
to adhere on it. Like droplet wetting on a surface, cell spreading
process is facilitated by the interface surface tension effects [6].
Fig. 2. The kinematics of two interacting bodies.
In this work, the recently developed multiscale dynamics wetting
model [19] is used.

The MDWM is a model that combines the conventional
hydrodynamic moving contact line theory and a modified
Gurtin–Murdoch surface elasticity theory [9,10] with the CGCM,
such that a droplet is levitated above the solid substrate, which
completely eliminates the singularity problem of conventional
hydrodynamics contact line theory.

In addition to the conventional equations of motion for the bulk,
the MDWM consider a set of surface equilibrium equations along
different interphases,

rs � 1a þ ta ¼ qsaaa; a ¼ G; L; S; ð15Þ

where a ¼ G; L; S denotes for gas (G), liquid (L), and solid (S) phases,
respectively. qsa is the surface mass density, 1a is the surface stress,
ta is traction vector, and aa is the mass material acceleration. rs is
the surface gradient operator that is defined as

rs :¼ r� nðn � rÞ; ð16Þ

where n is the unit out-normal of the surface. Applying the Galerkin
weakform formulation to the surface equilibrium equations, one
may get the resultant force applied on the liquid surface,

Fsrf
L ¼ �

XNSnode

Is¼1

Z
CLS

@NIs

@x
: 1LSdsþ

Z
CLG

@NIs

@x
: 1LGdsþ

Z
CSG

@NIs

@x
: 1SGds

	 

;

ð17Þ

where NSnode is the number of nodes on the liquid surface, CLS;CLG

and CSG are the three interfaces.

4. Modelings and simulations

In this section, we present three modeling and simulation
examples that are employing the proposed liquid crystal polymer
cell model to study deformation of cells and their interaction with
the environment. First, to validate the soft matter based cell model,
we employ the proposed the cell model to simulate the deforma-
tion of a thin crystal polymer shell to mimic the deformation of
the red blood cell, and we compare our results with the simulation
obtained by using Helfrich’s cell membrane model [11]. Then we
use the proposed soft matter cell model together with the
Coarse-Grained Contact Model (CGCM) and multiscale dynamic
wetting model (MDWM) to simulate its contact/adhesion with
the substrate of a uniform elastic constant. At last, we present a
simulation of the interaction between a liquid crystal elastomer
droplet and an elastic stiffness varying substrate to explore cell
crawling phenomenon.

4.1. Model verification: simulation of biconcave shape of red blood
cells

A validation problem for Helfrich’s cell membrane model [11] is
to simulate the shape of red blood cells, and the Helfrich model
successfully captured the biconcave shape of red blood cells. To
validate the proposed liquid crystal elastomer model, in this exam-
ple, we construct a thin liquid crystal elastomer vesicular shell to
represent a red blood cell membrane structure, and watch it to
deform until reaching to its equilibrium state. Just as that of the
Helfrich model, the simulation result shows that the proposed
model can also replicate the biconcave cell shape of the red blood
cell as shown in Fig. 3. Moreover, we would like to point out that
the Helfrich model is a membrane model that has no intrinsic
thickness, whereas the thickness of a typical red blood cell is rang-
ing from 0:5 lm to 2:5 lm. The thickness of the presented liquid
crystal elastomer shell is set about 0:3 lm, and we believe that



Fig. 4. Computational model of the nematic liquid crystal elastomer droplet and the
elastic substrate.
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similar simulations would work for thickness up to 2 lm for a
10 lm diameter cell.

An open cross section of the initial shape of the hollow cell is
shown in Fig. 3(a). The dimension of the cell model is
RðradiusÞ � HðheightÞ � TðthicknessÞ ¼ 5 lm� 3 lm� 0:5 lm. The
initial director field is prescribed along the surface normal direc-
tion of the outer surface.

The density of the liquid crystal elastomer is chosen as q0 ¼ 1:0�
103 kg=m3. The following material properties and constants are used
in the simulation: the shear modulus l ¼ 1:0� 104 N=m2, the Frank
modulus j ¼ 1:0� 10�11 N, the step length anisotropy s ¼ 2:0.

In this simulation, the RKPM meshfree particle method [17,16]
is used. A total of 30,728 particles are used in the meshfree
discretization of the hollow cell. As shown in Fig. 3(b), during the
simulation, the hollow cell eventually relaxes into a biconcave cell
membrane shape.

4.2. 3D cell contact/adhesion with an elastic substrate

In the following simulation example, the cell is modeled as a
three-dimensional (3D) solid sphere or droplet, which is initially
in the referential configuration, with a radius of r ¼ 5 lm. A
schematic illustration of the cell-substrate adhesive contact model
is shown in Fig. 4. The elastic substrate is modeled as a 3D rectan-
gular block with a dimension of (a� a� H ¼ 37:5 lm� 37:5 lm
�4:5 lm). In the finite element analysis model, the finite ele-
ment mesh of the cell consists of 10,976 elements and 11,621
nodes, and the mesh of the substrate consists of 2700 ele-
ments and 3844 nodes. The density of the cell is chosen as
q0 ¼ 1:0� 103 kg=m3, and the other material properties and
constants are: the shear modulus l ¼ 1:0� 104 N=m2, the
Frank modulus j ¼ 1:0� 10�11 N, the step length anisotropy
s ¼ 2:0.

In this study, the ECM is modeled as a Hyperelastic material of
Mooney–Rivlin type. The initial density is q0 ¼ 1:0� 103 kg=m3,
and the material constants are c1 ¼ 2:126� 103 Pa, c2 ¼ 1:700�
102 Pa and k ¼ 1:700� 105 Pa. Before the starting point of the sim-
ulation, the cell is kept still, and it is in a suspension state. The cell
is released at the start of the computation. The initial gap between
the lowest point of the cell and substrate is set at 200 nm, and the
bottom surface of the substrate is fixed during entire simulation
period. Essential boundary condition for the director field is pre-
scribed all over the cell surface, i.e, pointing along the current unit
out-surface normal. A time sequence of a cell contact/adhesion
over the homogeneous deformable substrate is shown in Fig. 5.
The color contour is the effective stress contour, and the cygan
arrow represents the director field. One can easily see the 3D
elastic cell–substrate contact/adhesion process, This simulation
process proves that the present cell model is actually capable of
stably adhering to the substrate, with the help of the
Coarse-Grained Contact Model. In addition, the pure 3D simulation
provides a convenient way to capture the cell morphology changes
described in [20].
Fig. 3. (a) Initial shape for cell membrane model a
4.3. Cell crawling on a stiffness-varying substrate

One of the main advantages of the liquid crystal elastomer cell
model proposed here is its potential to describe acto-myosin
dynamics and lamellipodium dynamics, which are the central
issues of modeling cell motility and migration. It is maybe of great
interest to examine cell interaction with a substrate that has non-
uniform stiffness, because the non-homogeneous rigidity provides
an external stimuli that may trigger contractility of the cell, and
eventually leads to the typical crawling phenomena. For this pur-
pose, a cell is placed on an extracellular matrix that has a gradient
of rigidity along the y direction. In specific, the Hyperelastic consti-
tutive parameters of the substrate is a function of y coordinate,

c1 ¼ 2:126
4:0y

L0
þ 0:5

� �
� 103 Pa;

c2 ¼ 1:7
4:0y

L0
þ 0:5

� �
� 102 Pa;

k ¼ 1:7
4:0y

L0
þ 0:5

� �
� 105 Pa; ð18Þ

where L0 is the length of the matrix in y direction. A schematic of
the problem statement is shown in Fig. 6. In Fig. 7, we display a time
sequence of a cell spreading/crawling over the elastic stiffness-
varying deformable substrate. For a homogeneous elastic stiffness,
a cell would move approximately in the same speed in every radius
direction of the cell. Based on the simulation results obtained from
the inhomogeneous substrates, one may find that the cell first
adheres to the substrate (see Fig. 7a–d). Then it protrudes towards
the direction of higher rigidity (see Fig. 7e–h). From t ¼ 4:2 ls
(Fig. 7h)) to t ¼ 4:8 ls (Fig. 7i)), it seems that the front part of the
cell adheres to the substrate and the rear part contacts and moves
towards the y direction. Compare the center of the cell at the start-
ing point with its center at the end of the simulation (t ¼ 6:6 ls),
one can clearly see the cell actually moves towards the right side
of the substrate. This real three dimensional simulation not only
nd (b) biconcave cell shape from simulation.



Fig. 5. Time sequence of a liquid elastomer gel in contact with an elastic substrate.

Fig. 6. 3D Computational model of cell spreading on a stiffness-varying substrate,
the color in the substrate stands for different stiffness, the stiffness at the right end
is the highest (top view). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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demonstrates a preliminary cell crawling and protrusion behaviors,
but also indicates that the cell motility is in favor of a stiffer
substrate, which is in good agreement of the experimental
measurements of cell adhesion and migration reported in [5,33].

There are several crucial points for the simulation of cell crawl-
ing or motility. First, an active stress term is needed to be include
in the constitutive modeling of the soft-cell model. The active
stress term, �fhihj, provides contractile force that will generate
internal treadmilling of the cytoskeleton polymer. It represents
the stress contribution from the internal ’’energy pump’’. Second,
the Coarse-Grained Contact Model, which successfully makes the
cell adhere to the substrate. And third, the moving contact line for-
mulation, which includes the surface tension effects for the three
phase system based on the Gurtin–Murdoch theory, has to be
included.
5. Discussions

It is of great challenge to develop a three-dimensional, compu-
tational, soft-matter based cell model, which can explain cell
adhesion, crawling and its structure transformation, especially if
one wants to predict real cellular motion and transformation. The
proposed soft matter cell model may be viewed as a first step
towards this long term goal.

In this work, an active stress based liquid crystal elastomer
model is first introduced. The proposed soft matter based cell
model can successfully reproduce the biconcave shape of a red
blood cell membrane, which indicates that the soft-matter cell
model presented here may be valid. In fact, the replication of the
biconcave shape of red blood cell based on the Helfrich’s liquid
crystal cell membrane model [11] is regarded as the first triumph
of soft matter physics.

Then a complete 3D simulation of the contact/adhesion
between the proposed cell model and a hyperelastic substrate
presented. It is revealed that the model proposed, combined with
the CGCM, can easily be employed to cell spreading/adhesion,
which is the first part of cell crawling.

After that, the present cell model successfully spreads/adheres/
crawls over a non-uniform substrate. The driving force of the cell
spreading/adhesion is the particle interactions between the cell
and the substrates, and the crawling of the cell is mainly due to
the gradient of the substrate rigidity. The author also wants to
mention the importance of the surface tension effects in the
simulation of the cell crawling phenomenon.

Even though we have shown that the present model may be
used as a simulation tool to qualitatively study the contact and
adhesion of cells to gain understanding of the information
exchange between the cell and the substrate or cell signaling, it
should be noted that the behaviors of cells are very complex.



Fig. 7. Time sequence of the cell adhesion/crawling over an elastic substrate.
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The proposed soft matter cell model is only intended to model
mechanical behaviors of cells at a mesoscale level, which may
not and cannot explain the molecular mechanisms of cellular pro-
cesses such as evolution and proliferation, and to understand the
molecular mechanism of the cellular process requires an in-depth
study of every aspects of molecular cell biology including all rele-
vant bio-chemical, bio-physical, as well as bio-mechanical factors
and their interactions at different scales.

The soft matter cell model presented in this work is a primitive
one, but it may have open a door for more realistic and more
accurate modeling of cells. It is possible that along this line more
sophisticated soft matter models can be developed by incorporat-
ing more features at molecular level that are capable of simulating
self-assembly of focal adhesion, cell division, proliferation and
more. The predictive ability of the soft matter cell model may
provide both scientific insight as well as clinic guidance on many
health problems, such as drug design or delivery.
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