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Compared with traditional suspension footbridges, the cable-truss footbridge is always easier to satisfy
structure deformation requirements under small dead-load-to-live-load ratio condition, and it enjoys
surging popularity in western China. In this type of bridges, the deck system is designed as a pure local
load-bearing member, and the inverse pre-tensioned deck cable system is set up to form a tension–ten-
sion mechanical system. To better understand its structural performance, a simplified structural mechan-
ics model for cable-truss footbridges is proposed, and the analytical formulations for deformation and
internal forces of the bridge under entire span live load as well as semi-span live load have been derived.
The reliability and accuracy of the proposed model have been validated in a comparison study with the
finite element analysis. Furthermore, a series of qualitative and quantitative parametric studies have
been conducted, which reveal that the cable-truss bridges have several novel structural characteristics
that differ from that of traditional suspension bridges. Finally, the affordability range of cable-truss
bridges is also discussed by using material usage analysis.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

With emergence of new materials, advanced structural engi-
neering technology, and demands of larger spans in bridge and
building structures in modern society, more and more cable-sup-
ported structures are being built due to their light weight, high
strength, ease of construction, and aesthetic appearance. In recent
years, many novel structure types of cable supported footbridges
have been built or designed, such as ribbon footbridges, tenseg-
rity-based footbridges, and suspension footbridges with a reverse
profiled pre-tensioned cable e.g. [12,18], and [22]. However, due
to its small dead-load-to-live-load ratio, no matter what geometric
configuration of the bridge is, large span cable supported foot-
bridge always suffers the shortcomings due to its intrinsic charac-
teristics being slender and flexible, this makes it prone to vibration
induced by functional activities or wind loads. Accordingly, pedes-
trian or wind-induced vibrations have become a focal point in the
cable-supported footbridge design and research e.g. [27,6,23], and
[15]. Obviously, increasing suspension footbridge’s deck or girder
stiffness is one of the best ways to improve the structure’s load
bearing capacity. However, this approach will increase the overall
dead-load-to-live-load ratio, and hence it is often expensive.
Therefore instead of increasing footbridge’s deck/girder stiffness,
researchers have attempted to enhance the load bearing capacity
as well as dynamic performance of the bridge by modifying the
hanger system, such as adding stay cables, and so on, e.g.
[24,13,8]. Among of them, an effective approach to enhance the
suspension bridge’s overall stiffness and to control the bridge’s
deformation amplitude under external loads is to add an inverse
pre-tensioned cable below the bridge deck to form a cable-truss
structure (see Fig. 1(a) and (b)), and this technique was originated
from the cable-truss roof construction. The cable-truss footbridge
is composed of a bi-concave cable and tension hangers, whereas
conventional cable-truss structures are usually designed to be
composed of a bi-convex cable and compression struts. Compared
to traditional suspension bridges, the deck system in a cable-truss
footbridge can be designed solely as a local load-bearing member,
whose vertical stiffness is very small so that it can be neglected in
the mechanical analysis; the prestressed reverse profiled cable is
set up to share the load and to enhance the overall stiffness of
the bridge. This form of structure is also called cable-truss beam
developed by Swedish engineer, David Jawerth in the 1960s (see:
Buchholdt [2]), and then this structural system was late applied
to roofs (Fig. 1c) and footbridges by other engineers such as Maj-
owiecki [21], Schlaich and Englesmann [11], and Strasky [12] and
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Fig. 1. Cable-truss structures.
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others. Zetlin’s Municipal Auditorium in Utica, New York was the
first cable-truss structure, and comprehensive analytical treat-
ments of cable-truss structures used in buildings were given by
Schleyer and Møllmann (see: Irvine [9]), and then some celebrated
roof structures including David L. Lawrence Convention Center in
Pittsburgh, PA, Chonju World Cup Stadium in Korea, and an exhibi-
tion hall for the Hanover Fair [14] also adopted similar structural
design. After that, reverse profiled cables have been extensively
used to enhance the lateral stiffness of suspension bridges, such
as the M-bridge built in 1999 [28].

Huang et al. [19,20] proposed a shallow suspension footbridge
with reverse profiled pre-tensioned cables, and conducted a series
of studies examining the deformation and vibration characteristics
of this type of footbridge by using finite element method. To re-
duce cable’s shape change under the action of non-uniform loads,
Goremikins et al. [30] replaced the main cable by a cable truss
beam with cambered top and bottom chords and inclined web ele-
ment, where all truss elements are tensioned, and subsequently
their vertical displacements are reduced. In general, the application
and research of cable-truss structure on bridge engineering lags
relatively behind to those of roof structures.

Cable-truss structure is a complex structural form with strong
nonlinearity. As the development of finite element method, nonlin-
ear finite element method has been extensively used to analyze
mechanical strength and performance of cable-truss structures
[17,16,30]. However, in preliminary/conceptual designs, a rela-
tively simple analytical method can provide a reasonable and quick
estimate for structural engineers in analysis and design of cable-
truss bridges. As mentioned above, comprehensive analytical treat-
ments of cable-truss structures used in buildings were given by
Schleyer and Møllmann [9]. They neglected all the second-order
terms in the differential equations of both cable equilibrium and
compatibility conditions to obtain a linearized approximation the-
ory to analyze static responses of cable-truss structures under
external loads. This method also had been adopted in the some la-
ter works, e.g., Baron and Venkatesan [5], Urelius and Fowler [29]
and Buchholdt [2]. Monforton and EI-Hakim [7] used the energy
method to analyze pin-ended cable-truss structures. In this work,
both geometric and material nonlinearities are directly incorpo-
rated within the structural mechanics formulation. Recently, Kmet
and Kokorudova [25,26] have proposed a more sophisticated struc-
tural mechanics model for cable-truss structures. They kept the
high-order terms neglected in the linearized approximation theory
mentioned above, and considered a suspended biconvex and
biconcave cable-truss with unmovable, movable, or elastic yielding
supports subjected to vertical distributed loads applied over the
entire or semi span. The proposed mathematical model for
cable-truss structure is derived on the basis of initial cable shape
and the structure response that was obtained from the load equi-
librium equations and cable compatibility equations. And all of
the methods mentioned above assumed that the hangers are
arranged vertically and inextensible.

In this paper, a novel structural mechanics model for cable-
truss bridges under either entire or semi span loading is proposed.
Different from the previous cable-truss bridge models, whose solu-
tions require the load conditions of two different cases, the struc-
ture’s deformed configuration is determined at first in terms of
mid-span sag and external load parameters, and then the cable
compatibility equations are used to acquire the mid-span sag. By
this way, the derivations are greatly simplified. During the deriva-
tions, some approximations or assumptions are being made, which
are similar to that of the existing models. Even though, for long
span footbridge, the pedestrian or wind induced vertical or trans-
verse vibration are important issues, and they have attracted the
much attention of many researchers e.g. Taylor and Vezza [10],
Fiore and Monaco [1], Ingólfsson and Georgakis [4]. However, these
factors are not considered in the proposed model, because the
objective of this paper is to build a simple model for preliminary/
conceptual static design. The reliability and accuracy of the pro-
posed model is validated through a comparison study with the
nonlinear finite element method. Besides these studies, a system-
atic parameter analysis has been performed to investigate the stiff-
ness relationship between the main cable and deck cable according
to different dead or live load conditions. The optimal analysis was
also conducted to determine the affordability range for cable-truss
bridges, which is depended on the load conditions and material
strength.

2. Mechanics model for single cable structures

First, it is necessary to establish a single cable statics model,
which can serve as the basis of the cable-truss bridge model. An ex-
act analysis of simply suspended cable problems is somewhat re-
stricted because the solution methods are cumbersome.
Simplifications can be made when the profile of the cable is flat,
and this often corresponds to situations in which cables with rela-
tively low sag are used for structural purposes. The approximation
method based on parabola theory provides explicit and consistent
methods for finding the static response to applied loads that are
accurate to the third order of small quantities [9]. All of the deriva-
tions in this paper are based on structural mechanics and analytic
geometry instead of energy approaches. The following assump-
tions are made for the derivation of the mathematical governing
equations:



Z. Chen et al. / Engineering Structures 68 (2014) 121–133 123
(1) The bridge is subjected to a uniformly distributed dead load
including deck load and weight of cables and hangers.

(2) The cable configuration is parabolic based on the first
assumption.

2.1. Expression of a single cable’s configuration

Based on Assumption 1 and by using the notations shown in
Fig. 2, the deformed configuration of the cable can be found when
the supports are at the same level according to the solution of an
analogous simply supported beam model with the same span sub-
jected by the same external load [24].

The cable configuration, as shown in Fig. 2, may be expressed as

y ¼ �MðxÞ
H

ð1Þ

where M(x) and H represent the bending moment distribution of
the simply supported beam and the horizontal force of the cable
respectively.

Based on Eq. (1) and Assumption 1, the following cable profile
equations under the three different load cases shown in Fig. 2
can be derived:

y ¼ f
a2 xðx� 2aÞ ðDead loadÞ ð2Þ

y ¼ f1

a2 xðx� 2aÞ ðLoad case 1Þ ð3:1Þ

y ¼
2ðpþwÞx2�ð3pþqþ4wÞax

ðpþqþ2wÞa2 f2 ð0 6 x 6 aÞ
2ðqþwÞx2�ð5qþ4w�pÞax�2ðp�qÞa2

ðpþqþ2wÞa2 f2 ða < x 6 2aÞ

8<
: ðLoad case 2Þ

ð3:2Þ

where f, f1, and f2 are the sag of the cable at the mid-span for the
dead load, load case 1, and load case 2, respectively; w is the uni-
form dead load, including the weight of the cable and deck system;
p and q are the external loads acting on the different semi-spans.
The equation for the deformed cable configuration as expressed in
Eqs. (3.1) and (3.2) are in terms of one or both of the new mid-span
sag and load parameters (w,p,q) under external load cases. These
two different types of parameters determine different forms of
cable displacement, respectively, which will be explained below.

When considering the stiffness of the pylon and backstays, two
linear or nonlinear lateral springs with stiffness coefficients ka and
kb, as shown in Fig. 2, can be added in the model by replacing span
2a with 2a� Hð 1

ka
þ 1

kb
Þ, and H is an additional horizontal compo-

nent of cable tension owing to the applied load. In this way, the de-
formed configuration of the cable with unmovable, movable or
Fig. 2. Single cable paramete
elastic yielding supports subjected to vertical distribution can be
obtained.

2.2. Compatibility equation for a cable

In order to determine f1 and f2 in Eq. (3), the compatibility
requirement that the unstressed cable length remain the same un-
der different load cases can be used.

The cable’s total length after stretching under external load s is
determined by the following equation:

s ¼
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ dy
dx

� �2
s

dx ð4Þ

For cables with a maximum inclination of approximately 0.8
(dy/dx <0.8), the following approximation can be applied [24]:

s ¼
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ dy
dx

� �2
s

dx �
Z

1þ 1
2

dy
dx

� �2
" #

dx ð5Þ

Total elongation Ds is given by

Ds ¼
Z l

0
eðxÞ @s

@x
dx ¼

Z l

0

H
EA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ dy

dx

� �2
s

@s
@x

dx

¼ H
EA

Z
1þ dy

dx

� �2
" #

dx ð6Þ

The cable’s unstressed length s0 under the dead load and the
live load, as well as the compatibility equation, can be expressed as

s0 ¼ sd � Dsd ¼ sl � Dsl

where sd and Dsd represent the cable’s total length and elongation
length under the dead load, respectively; sl and Dsl represent the
cable’s total length and elongation length under the live load,
respectively.

According to the compatibility equation, the sag of the cable at
mid-span can be calculated based on the given live load.

2.3. Calculation of the cable’s deformed sag at mid-span

According to Eqs. (5) and (6) and the compatibility requirement,
f1 and f2 can be calculated by the following equations:

(i) For load case 1

a 1þ 2
3

f1

a

� �2
" #

� ðwþ pÞa2

EA
a

2f 1
þ 2f 1

3a

� �

¼ a 1þ 2
3

f
a

� �2
" #

�wa2

EA
a

2f
þ 2f

3a

� �
ð7Þ
rs and three load cases.



Fig. 3a. Deflection curves under LC1.

Fig. 3b. Deflection curves under LC2 when q = 0.
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The left side is the unstressed length of cable under load case 1,
and right side is the length of the cable under the dead load,
assuming that the influence of the stiffness of the pylon and back-
stays is neglected, and no movements at the top of the pylons. A
cubic equation can be obtained by rearranging Eq. (7):

f1

a

� �3

�ðwþpÞa
EA

f1

a

� �2

þ wa
EA

f
a
þ3a

4f

� �
� f

a

� �2
" #

f1

a
�3 wþpð Þa

4EA
¼0

ð8Þ

(ii) For load case 2

1
3

16w2 þ 16wpþ 16wqþ 6pqþ 5p2 þ 5q2

aðpþ qþ 2wÞ2
f 2
2

� 1
6
ð16w2 þ 16wpþ 16wqþ 6pqþ 5p2 þ 5q2Þa

EAðpþ qþ 2wÞ f2

� ðpþ qþ 2wÞa3

2EAf2
¼ 4a

3
f
a

� �2

� 2wa2

EA
a

2f
þ 2f

3a

� �
ð9Þ

The following equation can be obtained by rearranging Eq. (9):

1
3

C1

C2
2

f2

a

� �3

� wa
6EA

C1

C2

f2

a

� �2

þ wa
EA

a
f
þ4f

3a

� �
�4

3
f
a

� �2
" #

f2

a
� wa

2EA
C2¼0

ð10Þ

where

C1 ¼ 16þ 16
p
w
þ 16

q
w
þ 6

pq
w2 þ 5ðp

w
Þ

2
þ 5ðq

w
Þ

2

C2 ¼
p
w
þ q

w
þ 2

From Eqs. (8) and (10), the mid-span sag in the two load cases, f1

and f2, can be obtained. The deformed cable configurations are given
by Eq. (3). The stress can be determined according to the cable con-
figuration functions and horizontal force H.

2.4. Deformation behaviors of single-cable structures

As we know, for a single-span simply supported beam, the max-
imum displacement occurs at the time when the external loads
acts on the entire span of the bridge (load case 1, LC1, as shown
in Fig. 2). However, there are certain distinctions for cable struc-
tures. In contrast to frame structures, the deformation of the cable
structures, including elastic deformations and non-straining (kine-
matic) deformations, consists of two parts. Under different load
cases, different type of deformations controls the total displace-
ments. Kinematic deformations are caused by initial shape change
of the cable, resulting from local or asymmetric loads, such as load
case 2 (LC2, as shown in Fig. 2). To more clearly illustrate the defor-
mation behaviors of single-cable structures, and determine the
controlling load cases for cable-truss structures, some parametric
analysis for a single cable structure were carried as figured in
Fig. 3. The geometric, material and load parameters of a single
cable are illustrated in the figures.

It is not difficult to find that the cable will keep its parabolic
shape, and only the mid-span sag has changed under external load
based on Eq. (3.1). However, different from load case 1, from
Eq. (3.1), the cable does not keep its initial parabolic shape any-
more, and the final configuration is depended on the load condi-
tions and new mid-span sag under load case 2. According to the
derivations of the new mid-span sag under two load cases, the
mid-span sag can only be determined by the elastic deformation
because Eqs. (8) and (10) were derived from the cable’s unstressed
length. Therefore, the change of mid-span sag, which reflects the
elastic deformations and the bridge configuration, can be
determined by the load parameters, which are proportional to
mid-span sag.

Fig. 3a shows that the structure’s deflection decreases as sag–
span ratio f/l increases. It means that a cable structure with a large
sag–span ratio is stiffer than one with a small sag–span ratio under
LC1. However, the opposite is true under LC2, and the structure
deflection is far larger under LC2 compared to LC1, even though
the external load acting on the structure in LC2 is smaller than that
in LC1, as shown in Fig. 3b. It is because the elastic deformation
controls the cable structure’s deflections under LC1. Fig. 3a also
shows that the changes of the mid-span sag are very small com-
pared to their initial mid-span sag, even thought the live load is
2.5 times of the dead load. As described above, under load case 2,
the cable’s deformation is determined by the load parameters,
and it is proportion to mid-span sag. From Eq. (3.1), it is easy to
find that the cable displacement is only determined by the final
mid-span sag when the cable is subjected to the same load. It
has been proved that the change of the mid-span sag is very small
under external load, and it may be neglected compared to their ini-
tial mid-span sag from Fig. 1a. Therefore, under the same asym-
metric loads, the deflection is proportional to the cables’ initial
mid-span sag. This is the reason that the results shown in Fig. 3b
show an increase in structure deflection as sag–span ratio f/l in-
creases. From another perspective, the cable is longer when the
sag–span ratio is larger, and it is easier to deform and have large
displacement. Finally, it is obvious that the deflection under LC2
is the main factor that controls the cable’s structure stiffness de-
sign, whereas the stress/force under LC1 controls the cable struc-
tural strength design according to Eq. (1).

Fig. 3c shows the cable’s deflection with different q. The magni-
tude of q has a significant influence on the cable’s deflection. When
k = 0, the deflection curve is the same as the curve in Fig. 3b, with f/
l = 1/10. When k = 1, the deflection curve is the same as the curve in
Fig. 3a, with f/l = 1/10. Compared to k = 0, the maximum



Fig. 3c. Deflection curves under LC2 with different q.
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displacement decreases by 66%, 53%, 40%, 0.28%, and 0.21% when
k = 0.2, 0.4, 0.6, 0.8, and 1.0, respectively. It can be concluded that
q can effectively reduce the cable’s deformation and displacement.
However, for most cable structures, e.g., single-cable structures
and traditional suspension bridges, k is always chosen close to 0
under LC2, this is because that its influences on the girder’s stiff-
ness and the horizontal displacement of the hangers are limited.

3. Mechanics model for cable-truss footbridges

For the cable-truss footbridge shown in Fig. 1, the two cable sys-
tems are the main load-bearing members, and the vertical stiffness
of the deck system, which is usually made of thin steel plates, can
be neglected. The main cable undertakes the total dead load of the
bridge, including the weight of the deck system and the two cable
systems; the initial tension, which guarantees the deck cable’s ini-
tial configuration under the bridge finished state, also acts on the
main cable through hangers. The live load can be assumed acting
on the deck cable directly, and then applied on the main cable
through the hangers’ tension. Therefore, the mechanics model of
the cable-truss footbridge is actually a tension–tension mechanical
system combining the stiffness of the main cable and that of the
deck cable. Before proceeding to the derivation, the following
two assumptions are made in addition to the assumptions for sin-
gle cable.

(3) The hangers form a uniform curtain suspended between the
main cable and deck cable, and the hangers are inextensible.
It means that the cables are only subjected to vertical load,
and the horizontal deformation is not considered in the fol-
lowing derivations. Even though the use of inclined hangers
may stiffen the cable-truss structures significantly, the
mechanics model proposed here is not really suitable to deal
with that effect, because of the simplifications on cables’
mechanical properties under horizontal loads. In that case,
it is best to resort directly to finite element method.

(4) The deck system is a local load-bearing member; and only its
vertical stiffness is considered in the derivations.

According to Eq. (2), the main cable and deck cable under the
bridge finished state (dead load case) can be expressed as follows:

ym
w ¼

f m
w

a2 xðx� 2aÞ ð11Þ

yd
w ¼ �

f d
w

a2 xðx� 2aÞ ð12Þ

where f m
w and f d

w denote the design sag at the mid-span of the main
cable and deck cable, respectively, under the uniform dead loads wm

and wd, respectively.
The following relationship between wm and wd can be found un-
der the bridge finished state:

wm ¼ wdeck þwcm þwcd þwt ð13Þ

where wdeck denotes the weight of the deck system; wcm and wcd

represents the self-weight of the main cable and the deck cable,
respectively; wt is the deck cable’s initial tension to guarantee the
deck cable’s initial configuration under the bridge finished state,
and is equal to wd. Hereafter, wd is substituted by wt to describe
the initial tension acting on the deck cable under the bridge finished
state.

3.1. Deformation analysis

Similar analysis has been conducted by Huang et al. [17] using
FEM analysis. In this section, we shall conduct a deformation anal-
ysis based on the proposed mechanics model, which includes the
case of the semi-span loads that were not considered by Huang
et al. The mathematical formula for the cable-truss bridge defor-
mation under full-span and semi-span loads are derived based on
the single cable theory and an iterative method. When the deriva-
tion involves the deck cable, for simplicity and convenience, we
can reverse the deck cable’s profile, and load analysis can be done
by using the same coordinate systems as that of the main cable
when the derivation involves the deck cable.

3.1.1. Deformation under load case 1
Under load case 1, there is a uniform load p acting on the total

span. The two cable profiles under load case 1 are expressed as

yi
1 ¼

f i
1

a2 xðx� 2aÞ ði ¼ m; dÞ ð14Þ

where superscript i = m denotes the main cable, and d refers to the
deck cable when i = d; the external load p sustained by the main
cable is pm, and that for the deck cable is pd; p = pm�pd.

According to Assumption 3, the relative displacement of the
main cable and the deck cable is 0, and hence,

dðxÞ ¼ ym
1 � ym

w ¼ yd
1 � yd

w ð15Þ

where d(x) is the bridge deflection function.
By substituting Eqs. 11, 12, and 14 into Eq. (15), the following

equation can be derived:

f m
1 � f m

w

a2 xðx� 2aÞ ¼ � f d
1 � f d

w

a2 xðx� 2aÞ ð16Þ

Therefor to calculate live load p carried by the main cable and
deck cable, only the condition f m

1 � f m
w ¼ �ðf d

1 � f d
wÞ needs to be

satisfied.
By solving Eq. (8) for a given initial pm or pd, the sag of the cable

at mid-span under load case 1 can be obtained, and the iterative
method can be utilized to guarantee the agreement of Eq. (16).
After completing these procedures, the deformation function d(x)
for the bridge can be calculated from Eq. (15).

3.1.2. Deformation under load case 2
As shown in Fig. 4, in contrast to load case 1, the force under

load case 2 will produce upward displacement in the unloaded re-
gion, which will change hangers’ tensile forces. q denotes the ten-
sion in the hangers produced by the external force in the unloaded
region, and pm and pd are the same as in load case 1.

According to Eq. (4), under load case 2, the cable configuration
can be expressed as

ym
2 ¼

2ðpmþwmÞx2�ð3pmþqmþ4wmÞax
ðpmþqmþ2wmÞa2 f m

2 ð0 6 x 6 aÞ
2ðqmþwmÞx2�ð5qmþ4wm�pmÞax�2ðpm�qmÞa2

ðpmþqmþ2wmÞa2 f m
2 ða < x 6 2aÞ

8<
: ð17Þ



Fig. 4. Cable-truss footbridge’s deformation under load case 2 (arrows represent
the direction of internal forces).
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yd
2 ¼

� 2ðpdþwdÞx2�ð3pdþqdþ4wdÞax
ðpdþqdþ2wdÞa2 f d

2 ð0 6 x 6 aÞ

� 2ðqdþwdÞx2�ð5qdþ4wd�pdÞax�2ðpd�qdÞa2

ðpdþqdþ2wdÞa2 f d
2 ða < x 6 2aÞ

8<
: ð18Þ

The deformation equations of the cables are
ym
2 � ym

w ¼
½2ðpmþwmÞf m

2 �ðpmþqmþ2wmÞf m
w �x2�½ð3pmþqmþ4wmÞf m

2 �2ðpmþqmþ2wmÞf m
w �ax

ðpmþqmþ2wmÞa2 ð0 6 x 6 aÞ
½2ðqmþwmÞf m

2 �ðpmþqmþ2wmÞf m
w �x2�½ð5qmþ4wm�pmÞf m

2 �2ðpmþqmþ2wmÞf m
w �ax�2ðpm�qmÞf m

2 a2

ðpmþqmþ2wmÞa2 ða < x 6 2aÞ

8<
: ð19Þ

yd
2 � yd

w ¼
� ½2ðpdþwdÞf d

2�ðpdþqdþ2wdÞf d
w �x2�½ð3pdþqdþ4wdÞf d

2�2ðpdþqdþ2wdÞf d
w �ax

ðpdþqdþ2wdÞa2 ð0 6 x 6 aÞ

� ½2ðqdþwdÞf d
2�ðpdþqdþ2wdÞf d

w �x2�½ð5qdþ4wd�pdÞf d
2�2ðpdþqdþ2wdÞf d

w �ax�2ðpd�qdÞf d
2 a2

ðpdþqdþ2wdÞa2 ða < x 6 2aÞ

8><
>: ð20Þ
In Eqs. (19) and (20), qm and qd represent the loads acting on the
main cable and the deck cable respectively, and they are equal to
the hangers’ tension, q.

In order to satisfy Assumption 3, the two piecewise deformation
functions should be compatible, which means that the five coeffi-
cients of the two functions must be equal, so there are five con-
straints to be fulfilled. However, there are only two variables, pm

(pd) and q, in the two functions for the cable sag obtained from
Eq. (10). First, assuming the deformation functions of the two
cables are compatible in the loaded region, the following equation
with respect to pm and q can be derived:

2ðpmþwmÞf m
2 �ðpmþqmþ2wmÞf m

w
ðpmþqmþ2wmÞ þ 2ðpdþwdÞf d

2�ðpdþqdþ2wdÞf d
w

ðpdþqdþ2wdÞ
¼ 0

ð3pmþqmþ4wmÞf m
2 �2ðpmþqmþ2wmÞf m

w
ðpmþqmþ2wmÞ þ ð3pdþqdþ4wdÞf d

2�2ðpdþqdþ2wdÞf d
w

ðpdþqdþ2wdÞ
¼ 0

8<
:

ð21Þ

Using the iterative method, pm and q can be obtained, and the
corresponding sags of the two cables, f m

2 and f d
2 , can also be calcu-

lated according to Eq. (10). Because both equations in Eq. (21) are
quadratic equations, so they have multiple roots, and one of them
is the real. Therefore, the choice of the root of the equations is very
important. When a bridge is reasonably designed, the parameters
f m
2 and f d

2 should be very close to the parameters f m
w and f d

w respec-
tively, and this characteristic can be used as a criterion to select the
real root for Eq. (21).

Since Eq. (21) neglects the deformation compatibility condition
in the unloaded region, whether the compatibility condition is sat-
isfied or not should be discussed separately. Both the deformed
and un-deformed bridge profile functions are continuous func-
tions, and it is obvious that the deflection functions expressed in
Eqs. (19) and (20), composed of two piecewise parabolic functions,
are also continuous. For unloaded region [a,2a], x = a is also in-
cluded in region [0 a], and the deflection functions are continuous;
therefore, the compatibility condition at x = a is satisfied. The two
cables are fixed at x = 2a and their displacement is 0, so that the
compatibility condition is automatically satisfied. In other words,
the compatibility conditions are satisfied at the two boundary
points, x = a and x = 2a.

For a parabolic function, when the two boundary points are
satisfied, only the third supererogatory condition that determines
the parabolic function’s quadratic term coefficient is needed to
determine its profile. From Eqs. (19) and (20), the quadratic term
coefficient of the displacement function in region [a,2a] can be
expressed by the two coefficients of the displacement functions
in region [0,a], i.e., two times the liner term coefficient minus
three times the quadratic term coefficient. Hence, the deforma-
tion compatibility condition is also satisfied on the unloaded area
by using Eq. (21), even though it is only established on the loaded
area.
3.2. Internal force and stress analysis

To this end, the deformation functions for the cable have been
obtained. The moment M(x) of the simply supported beam with
the same span shown in Eq. (1) can be calculated easily according
the total external load acting on the beam. The horizontal compo-
nent of the cable’s tension, H, will be obtained according to Eq. (1),
and the cable tension N(x) can be calculated by the following
equation:

NðxÞ ¼ H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ dy

dx

� �2
s

ð22Þ

Subsequently, the stress can be calculated based on N(x), by divid-
ing N(x) with the effective cross-section of cable A.
4. Verification of the proposed model

To investigate the reliability and accuracy of the proposed
structural mechanics model, comparisons between the proposed
model and the finite element model (FEM) have conducted. The
structural parameters used in the comparison tests are chosen
from a planned double-cable planed cable-truss bridge with a span
of 120 m and a width of 2 m. The spacing of the hangers is 2 m, and
the bridge deck is made of steel plates in the longitudinal direction
and flange beams in the transverse direction. According to the de-
sign, the dead load in the deck system is only 1.8 kN/m, and the
crowding load is 2.5 kN/m2. The main cable is made of wire cable,
whose tensile strength and elastic modulus are 1570 MPa and
1.10 � 105 MPa respectively. The bridge deck slope is 5%, which
means the sag–span ratio of the deck cable is 1/40. In the



Fig. 5. Comparison of vertical deflection calculated by the FEM and the proposed method.

 (a) Maximum cable stress 

(b) Maximum displacement 

Fig. 6. Comparison of the maximum cable stress and deck displacement with
respect to different sag–span ratios (dots denote the FEM results, and lines denote
the results calculated by the proposed method).
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calculations, the effective cross-section of the main cable and deck
cable are 2000 mm2 and 2500 mm2 respectively. These material
model and load model parameters will also be used in Section 5.

The FEM analysis was conducted by using ANSYS, and the main
and deck cables were divided by the 59 hangers into 60 elements.
Link10 element supplied by ANSYS was used to model the cables
and hangers, and the element’s tension-only option was activated.
The initial strain for each link element is calculated from the dead
load and initial cable configuration. The weight of the deck system
was modeled by Mass21. There are total 161 nodes and 240 ele-
ments in the FE model, and the larger displacement option was
opened before the calculations.

Fig. 5 shows the deflection curves of the bridge with a
sag–span ratio of 1/10 and 1/20 under both LC1 and LC2. The
deformation curves calculated by using the proposed structural
mechanics model agrees well with those calculated by using the
FEM under load case 1 (LC1). Under load case 2 (LC2), the
deformation curves do not agree well with the FEM calculations;
however, the differences between the two methods are within the
allowable range. There are two main reasons for these disparen-
cies. First, the load acting on the FEM model is with respect to
the undeformed state, which ignores the second order effects of
the external load on the load-acting region, whereas the proposed
bridge model is with respect to the deformed state, which takes
account the external load’s second order effects. Second, the
proposed bridge model ignores the hangers’ lateral effect, which
can reduce the cable’s deformation; this is also the reason that
the deformation calculated by the proposed method is larger than
that of the FEM. More comparisons are presented in Fig. 6,
Tables 1 and 2.

Fig. 6a shows the main cable and deck cable stress profile under
load case 1 and load case 2. The results calculated by the proposed
method agree very well with those of the FE analysis under both
live load cases (in contrast to the displacement results illustrated
in Fig. 6b) and dead load. In FE analysis, the displacement results
have higher-order accuracy than that of stress, but in the proposed
mathematical model for cable-truss bridges, the stress results have
higher-order accuracy. The calculation of stress, expressed in Eq.
(22), is dependent on both the structure deformation and the
bridge’s initial geometric configuration.

According to Figs. 5 and 6b, it can be concluded that the pro-
posed method predicts larger sag–span ratio under load case 2,
which is different from the conventional methods. The reason for
this distinction is that the larger sag–span ratio and the larger
deformation will occur under load case 2. From Fig. 6b, it can be
seen that the deck’s deflection displacement under load case 2 in-
creases as sag–span ratio decreases. This finding is completely
opposite to the traditional suspension bridges or single-cable
structures, and the following section will offer some explanations
and insights to this problem based on parametric analysis.

Tables 1 and 2 show the cable’s maximum stress value and dis-
placement value, respectively, and one may find that the maxi-
mum difference occurs between the two methods under the load
case 2. As listed in the two tables, the maximum difference rate



Table 1
Cable stress results under load case 2.

f/l Maximum cable stress (MPa) Maximum deck stress (MPa)

FEM Proposed method Difference (%) FEM Proposed method Difference (%)

1/8 232.30 226.42 �2.60 202.35 205.47 1.52
1/9 251.67 246.11 �2.26 198.05 200.22 1.08
1/10 270.93 265.60 �2.00 193.55 195.04 0.77
1/11 289.93 284.78 �1.81 188.95 189.98 0.54
1/12 308.60 303.58 �1.65 184.35 185.04 0.37
1/13 326.88 321.95 �1.53 179.81 180.26 0.25
1/14 344.73 339.88 �1.43 175.36 175.64 0.16
1/15 362.15 357.35 �1.34 171.05 171.21 0.09
1/16 379.15 374.39 �1.27 166.90 166.97 0.04
1/17 395.73 391.00 �1.21 162.93 162.93 0.01
1/18 411.92 407.21 �1.16 159.14 159.11 �0.02
1/19 427.74 423.05 �1.11 155.55 155.50 �0.04
1/20 443.21 438.53 �1.07 152.16 152.09 �0.05

Table 2
Deck displacement results under load case 2.

f/l Maximum downward displacement (m) Maximum upward displacement (m)

FEM Proposed method Difference (%) FEM Proposed method Difference r (%)

1/8 0.60 0.69 12.14 �0.48 �0.56 14.10
1/9 0.62 0.69 9.96 �0.45 �0.52 12.56
1/10 0.63 0.69 8.28 �0.42 �0.48 11.51
1/11 0.65 0.69 6.90 �0.39 �0.44 10.76
1/12 0.66 0.70 5.72 �0.36 �0.40 10.23
1/13 0.68 0.71 4.82 �0.33 �0.37 9.74
1/14 0.69 0.72 4.07 �0.30 �0.33 9.54
1/15 0.71 0.74 3.47 �0.27 �0.30 9.38
1/16 0.73 0.75 2.96 �0.25 �0.27 9.29
1/17 0.74 0.76 2.45 �0.22 �0.24 9.41
1/18 0.76 0.78 2.07 �0.20 �0.22 9.38
1/19 0.77 0.79 1.73 �0.17 �0.19 9.76
1/20 0.79 0.80 1.48 �0.15 �0.17 9.85
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of the cable’s stress is less than 2.6% under load case 2. The maxi-
mum difference rate for the deck’s downward displacement is
12.14%, and that of upward displacement is 14.10%, when sag–span
ratio is 1/8. For most sag–span models, the displacement difference
rates are less than 10%. Considering the differences in the two
methods’ external load-acting patterns, these difference rates are
acceptable. Generally speaking, the proposed cable-truss bridge
model is reliable and accurate.
5. Parametric analysis

The biggest difference between the cable-truss footbridge and
traditional suspension footbridges is that the former has a tensed
deck cable. Using this method, the weight and stiffness of the
bridge deck, which can only be designed as a local load-bearing
member, can be reduced in order to save materials. On other side,
the cable-truss footbridge transforms the traditional footbridge
from a flexural system or flexural-tensile system to a pure tensile
system, which is the most economical structural system. The
tensed deck cable not only increases the main cable’s initial/gravity
stiffness, but also reduces the cable’s displacement and deforma-
tion, which can be seen in Fig. 4. According to the mathematical
expressions in static equilibrium calculations, the deck cable also
undertakes the external load with the main cable together. In this
section, the following two issues are discussed: (1) internal force
distribution between the two cable systems; (2) optimal material
usage of cable-truss bridges compared to the traditional suspen-
sion footbridges.

A bridge with the same structural parameters and materials as
described in Section 4 is used to conduct the parametric analysis.
The deck cable’s sag–span ratio remained unchanged at 1/40 to
meet the bridge deck’s longitudinal design requirement.
5.1. Internal force distribution between the two cable systems

In the design of a footbridge, the pedestrian crowd load is al-
ways known in advance. Therefore, in the parametric analysis, kdl

is defined as the ratio of the dead load to the live load, and wd/wdeck

is defined as the ratio of the deck cable’s initial tension to the dead
load of the deck system. Other structure and load parameters are
the same as that in Section 4. To investigate the influence of wd

in-depth, the weights of the two cables are neglected in the para-
metric analysis.

Since it is easier to understand the deformation and stress state
of a single cable than that of a cable-truss bridge, if the external
load sustained by the main cable is known, it is often convenient
to model the cable-truss bridge as a single-cable structure. We de-
fine two parameters, pm/p and q/pm, here to describe the external
loads acting upon the main cable, and the bridge’s structure char-
acteristics, which are analyzed based on the single-cable model of
the cable-truss bridge. As defined previously, p is the external load
and pm denotes the load carried by the main cable. q is the tension
acting on the main cable in the unloaded region under LC2. It is
obvious that pm/p reflects the stiffness ratio between the main
cable and deck cable. q/pm may be regarded as a kinematic defor-
mation reduction coefficient (the larger the q/pm, the smaller the
kinematic deformation). Reducing kinematic deformation is the
second function or task of the deck cable under asymmetric loads;
the first function is to enhance the structure’s gravity stiffness.



Fig. 7b. pm/p under LC2 (f/l = 1/10).
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According to the mechanics model for suspension bridges,
Steinman’s stiffness factor a describes the ratio between the elastic
stiffness of the stiffness girder and the gravity stiffness of the cable
[3]. a is given as

a2 ¼ EI

Hl2 ð23Þ

where EI is the vertical stiffness of the beam, H is the horizontal
component of the cable’s force, and l is the span of the bridge. Sim-
ilarly, kG, a parameter for describing the gravity stiffness ratio be-
tween the main cable and deck cable for a cable-truss footbridge,
can be defined as

kG ¼
Hm

Hd
¼

wml2

8f m

wdl2

8f d

¼ wm

wd

fd

fm
¼ wdeck

wd
þ 1

� �
fd

fm
ð24Þ

where wd represents the pre-stressed uniform tension of the deck
system.

According to Eq. (24), it is not difficult to see that the deck
cable’s stiffness increases faster than that of the main cable. And
the same conclusion can be drawn from the numerical results, as
shown in Figs. 7 and 8. In Fig. 7, the expression of kdl is defined as

kdl ¼
wdeck

wlive

where wlive is the live load acting on the bridge, and is equal to
p = 5.0 kN/m.

f/l = 1/10 is a commonly used sag–span ratio in traditional sus-
pension bridge design, therefore the main cable sag–span ratio in
the study of the cable-truss bridge’s mechanical behaviors with re-
spect to wd/wdeck was set at 1/10.

It is worth mentioning that the stiffness and strength of the
bridge are the two key factors in bridge design. These two factors,
which must be balanced with economic considerations, should be
addressed simultaneously. For the cable-truss bridge, kdl and wd/
wdeck are small, so that the structure’s stiffness is small, and the dis-
placement under live load cases will be large, which makes stiff-
ness the controlling factor in design. Increasing kdl and wd/wdeck

will increase the stiffness of the bridge, and more materials will
be needed, leading to a strength controlling design.

As shown in Fig. 7a and Fig. 7b, under both LC1 and LC2, the pm/
p curves reveal the same trend. The external load sustained by the
main cable decreases as wd/wdeck increases, which means that the
deck cable will carry a greater load when the initial tension in
the hangers under the bridge finished state increases. The effective
cross section areas of both cables can be used as parameters in de-
sign to adjust the bridge’s internal force distribution because the
redundancy can enhance the cable load carrying capacity. Another
Fig. 7a. pm/p under LC1 (f/l = 1/10).
notable result is that when wd/wdeck remains constant as kdl in-
creases, which means that the bridge’s gravity stiffness increases
when pm/p decreases. Usually, the cable’s stress controls the de-
sign, as the gravity stiffness is large. However, when the load car-
ried by the deck is greater, the deck cable’s section should be
increased. A large sag–span ratio is more economical when the
cable’s stress is the controlling factor in the design, but here the
deck cable’s sag–span ratio is only 1/40. This implies that the util-
ity ratio of the main cable is low, and the cable-truss bridge is not
suitable when the weight of the deck system is large, especially for
cases when stress controls the design.

Fig. 7c illustrates that when dead-load-to-live-load ratio kdl is
less than 1.0, kinematic deformation reduction coefficient q/pm in-
creases as wd/wdeck increases. For the main cable with a small kdl, it
is economical to increase the deck cable’s initial tension wd, be-
cause the structure’s maximum displacement is significantly re-
duced compared with that of a single-cable structure with the
same structural parameters. However, this advantage disappears
when kdl is larger than 1.0, especially for larger values of wd/wdeck.
From this perspective, the cable-truss bridge is only suitable when
kdl is small, meaning that stiffness controls the design.

In Figs. 8a and 8b, the relationship between gravity stiffness ra-
tio kG in Eq. (24) and wd/wdeck is illustrated again. Therefore, Eq.
(24) can be used to adjust the internal force distribution between
the main cable and the deck cable by qualitatively modifying the
deck cable’s initial tension.

According to the deformation analysis of single-cable bridge as
shown in Fig. 3a, when wd/wdeck and kdl are the same, a main cable
with a large sag–span ratio, f/l, will be stiffer than that with a small
sag–span ratio under LC1. This is the reason why the curves in
Fig. 8a declines as f/l decreases, because pm/p reflects the stiffness
Fig. 7c. q/pm under LC2 (f/l = 1/10).



Fig. 8c. q/pm under LC2 (kdl = 0.4).

Fig. 8b. pm/p under LC2 (kdl = 0.4).

Fig. 8a. pm/p under LC1 (kdl = 0.4).

(a) Cable-truss structure

(b) Single-cable structure

Fig. 9. Optimal cable material usage of the cable with different sag–span ratio and
k.
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ratio between the main cable and the deck cable, and this is incom-
patible with Eq. (24), which only reflects the cable’s gravity stiff-
ness and neglects the elastic stiffness. Fig. 8b shows that the five
curves almost coincide with each other, which implies that pm/p
is not sensitive to the main cable’s sag–span ratio. However,
Fig. 8c illustrates that the larger sag–span ratio f/l is, the greater
the q/pm is. Combining Fig. 8b and Fig. 8c, it can be observed that
the cable-truss structures’ maximum displacement increases as
the main cable’s sag–span ratio decreases under LC2. This phenom-
enon has already been described in Section 4, but it is explained
here. From Fig. 6b, it is easy to see that influenced by the deck cable
the structure’s maximum displacement decreases as the main
cable’s sag–span ratio increases under semi span loads, and this
is entirely different from the traditional suspension bridges.

Fig. 8 illustrates that a main cable with a large sag–span ratio is
always stiffer than one with a small sag–span ratio under both LC1
and LC2. Eq. (24) can be used to adjust the external load distribu-
tion between the main and deck cables when the cable-truss
bridge’s geometrical and material parameters are the same. How-
ever, when a bridge has different sag–span ratios, Eq. (24) is no
longer applicable. The relationship between the maximum dis-
placement and sag–span ratio are different from that of the tradi-
tional suspension bridge. The cable-truss bridge with larger main
cable sag–span ratio always obtains smaller maximum displace-
ment under external load. Therefore, a larger main cable sag–span
ratio is recommended, when the stiffness of the bridge is the main
concern of the design.

In the following section, a qualitative analysis that involves
with the bridge’s economic considerations obtained from Figs. 7
and 8 is performed using a structural optimization method.
5.2. Optimal cable material usage analysis

Generally speaking, the main cable is the most important load-
bearing member for a suspension bridge. The bridge’s stiffness is
derived mostly from the gravity stiffness of the main cable. There-
fore, the suspension bridge may be viewed as a single-cable struc-
ture in conceptual analysis. In this section, the optimal cable
material usage of the proposed cable-truss bridge model and that
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of a single-cable structure with the same span and under the same
crowding load are compared. Before the analysis, the ratio between
the dead load and live load is defined as k. The main cable’s safety
factor is 4.0, and the maximum structural displacement is 6L/150.
For the cable-truss bridge, the unstrained cable length of the deck
cable equals the span of the bridge (120 m); therefore, equivalent
initial tension wt can be calculated by Eq. (25). The allowable stress
for the cable is 250 MPa and the effective area of the deck cable is
P500 mm2.

wt ¼
64EdAdf 3

d

16f 2
d l2 þ 3l4 ð25Þ

where Ed and Ad represent the elastic modulus and effective area,
respectively, of the deck cable; fd is the sag of the cable at mid-span,
and l is the span of the bridge.

As shown in Fig. 9, there is an extreme point in each optimal
material usage curve for both cable-truss structure and single-
cable structure. Comparing the displacement and stress curves
shown in Figs. 10 and 11, it is easy to find that when kdl is small,
the maximum displacement of the structure controls the design,
so that more cables are needed to supply the stiffness to resist
structure deformation under the live load (LC2). As kdl increases,
the gravity stiffness increases, and the stiffness demands from
the cable decrease; therefore, the material usage of the cable
shows a downward trend. However, these explanations are only
adequate when the structure stiffness controls the design. After
the extreme points as shown in Fig. 9, which corresponds to the
same kdl in Figs. 10 and 11, the cable stress controls the design,
so that more cables are needed to reduce the cable’s stress. This
is the reason for the increase of the cable material usage curves
in Fig. 9 after the inflection points. Fig. 9 also shows that the
(a) Cable-truss structure

(b) Single-cable structure

Fig. 10. Maximum displacement under optimal solutions.
cable-truss bridge with larger main cable sag–span ratio is always
more economical.

Comparing Figs. 9a and 9b, before the inflection point, the
cable-truss bridge is much more economical than the single-cable
structure, which is a good representative of traditional suspension
footbridges. As listed in Table 3, when kdl = 0.2 and f/l = 1/10, the
steel cost of the single-cable bridge is 10.38 times that of the
cable-truss bridge, and this multiplying factor will reach 14.81
when kdl = 0.2 and f/l = 1/8. Due to the limited length of this paper,
Table 3 only lists the optimal results of the effective area of the
cables with a sag–span ratio of 1/8 and 1/10. For the planed bridge,
the dead load is 1.8 kN, which means kdl = 0.36, and the steel cost
multiplying factor is about 10.0 when f/l = 1/10. Therefore, for a
small value of k, the cable-truss bridge is a more feasible option
than the traditional suspension footbridge.

The reason for this feasibility is that for the cable-truss bridge
its main cable gravity stiffness increases according to the magni-
tude of deck cable tension, and the deck cable can reduce the struc-
ture’s deflection amplitude under LC2. In contrast, the single-cable
structure has to increase its stiffness according to the cable’s elastic
stiffness and weight. The later method for increasing the stiffness
of the structure is inefficient and expensive. This can be seen from
Fig. 11b, in which the cable’s stress is very small before the ex-
treme point. However, the stress in Fig. 11a is close to the allow-
able stress.

According to Figs. 10 and 11, if the cable-truss bridge is adopted,
the range of kdl corresponding to the displacement-controlling re-
gion will be reduced, which means that the stiffness controlling re-
gion will shrink, especially for a large sag–span ratio. According to
Table 3, in the stress-controlling region, the cable-truss bridge is
(a) Cable-truss structure

(b) Single-cable structure

Fig. 11. Maximum stress under optimal solutions.



Table 3
Partial optimal results of the effective areas of the cables (unit: mm2).

kdl f/l = 1/10 f/l = 1/8

Cable-truss structure Single cable Cable-truss structure Single cable

Main cable Deck cable Main cable Deck cable

0.2 1564.10 2431.52 40857.68 1299.03 2507.62 54954.85
0.4 1655.91 2033.14 34560.12 1415.30 2153.67 48799.83
0.6 1825.23 1596.32 28220.98 1560.97 1805.31 42633.40
0.8 1996.00 1196.56 21802.59 1707.14 1483.85 36449.70
1.0 2167.42 825.21 15196.22 1853.77 1183.51 30237.92
1.2 2342.32 500.00 7782.91 2000.80 899.98 23975.63
1.4 2556.71 500.00 2648.90 2148.20 630.20 17605.82
1.6 2770.83 500.00 2706.24 2310.34 500.00 10913.56
1.8 2984.72 500.00 2918.92 2486.79 500.00 2647.36
2.0 3198.44 500.00 3131.60 2663.13 500.00 2605.81
2.0 3412.03 500.00 3344.26 2839.38 500.00 2781.44
2.4 3625.49 500.00 3556.92 3015.56 500.00 2957.07
2.6 3838.87 500.00 3769.58 3191.67 500.00 3132.70
2.8 4052.16 500.00 3982.23 3367.73 500.00 3308.32
3.0 4265.38 500.00 4194.87 3543.75 500.00 3483.95
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not as economical as the single-cable structure is. Therefore, with-
out incurring the high cost needed to build pylons and anchoring
systems, the cable-truss bridge is suitable for the case that the
maximum displacement is the controlling factor in design,
whereas the conventional types of bridges are often troubled by
how to minimize the maximum displacement of the structure. In
other words, the cable-truss bridge is recommended when the
bridge’s dead-load-to-live-load ratio is small, because in this situ-
ation, the bridge’s gravity stiffness is small, and it may have large
displacement under external loads. This is also the reason that
the cable-truss bridge is recommended to be used as footbridge,
which always has small dead-load-to-live-load ratio. However,
the cable-truss bridge is not suitable for the case when the cable’s
strength is the controlling factor in the design.

6. Conclusions

In this paper, a simplified structural mechanics model for cable-
truss footbridges is proposed for a fast and preliminary analysis in
the bridge design. The model is derived based on the assumptions
that the hangers are vertically arranged, and the stiffness of the
deck system can be neglected. The reliability and accuracy of the
proposed model have been validated by a systematic nonlinear fi-
nite element analysis. Based on the proposed mechanics modeling
and corresponding parametric analysis, the main findings of the
study are summarized as follows:

(1) The proposed structural mechanics model for the bridge can
be used as a simplified method in the conceptual/prelimin-
ary design of a cable-truss footbridge to determine the opti-
mal structural parameters, and it is also an effective method
for validating other approaches based on more complex
models.

(2) The pre-tension force of the deck cable can be used as a
mechanism to adjust internal force distribution between
the two cable systems. The larger the pre-tension force,
the less the external force shared by the main cable under
the same geometrical and material conditions.

(3) Influenced by the deck cable, the maximum displacement of
the structure decreases as the main cable sag–span ratio
increases under semi span loads, which is entirely opposite
to that of traditional suspension bridges. However, the semi
span load case is still a maximum displacement-control load
case. Therefore, a large main cable sag–span ratio is recom-
mended when the maximum displacement of the cable-
truss bridge does not meet the requirements.
(4) According to the optimal cable material usage analysis,
cable-truss bridge is far more economical than the tradi-
tional suspension bridge, because it does not need to con-
sider the cost of pylons and anchoring systems, which is
used to be the main option to reduce the maximum dis-
placement of the bridge. It also reveals that a large main
cable sag–span ratio is more suitable in this case.

Finally, the proposed model did not consider the transverse
loads, and the human activities or/and wind induced vibration that
need to be investigated in future.
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