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a b s t r a c t

In this paper, we present a multiscale analysis on dynamic wetting and liquid droplet
spreading on solid substrates. In the proposed multiscale dynamic wetting model, we
couple molecular scale adhesive interaction (the van der Waals type force) and the macro-
scale flow – that is: we combine a coarse-grain adhesive contact model with a modified
Gurtin–Murdoch surface elasto-dynamics theory to formulate a multiscale moving contact
line theory to simulate dynamic wetting. The advantage of adopting the coarse grain
adhesive contact model in the moving contact line theory is that it can levitate and
separate the liquid droplet with the solid substrate, so that the proposed multiscale moving
contact line theory avoids imposing the non-slip condition, and then it removes the subse-
quent singularity problem, which allows the surface energy difference and surface stress
propelling droplet spreading naturally.

By employing the proposed method, we have successfully simulated droplet spreading
over various elastic substrates. The obtained numerical simulation results compare well
with the experimental and molecular dynamics results reported in the literature.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Wetting or droplet spreading on a solid substrate is an interesting and fascinating phenomenon in colloidal science that
has many important applications in the fields of soft matter physics, chemistry, biology, and engineering, for example, cell
motility, self-cleaning biological systems, wet friction between tire and pavement, pharmaceutical drugs manufacturing and
delivery system, consumer electronics, e.g. hard disk drive, various bio- and soft matter sensors, etc.

In chemical physics, wetting is a physical process of liquid and gas phases concurrently interacting with the surface of a
solid phase, resulting from intermolecular interactions of a triple phase system when the three are brought together. The
degree of wetting is referred to as wettability, which is determined by the intermolecular force balance between adhesive,
cohesive, and other contact forces. Wetting and the related surface tension and surface energy effects that control wetting
are also responsible for other related physical phenomena, such as droplet spreading, capillary effect, surfactant assembly,
wet friction, etc.

Because of vast applications and potential transformative impact, there is a long history and large body literature of
attempting to establish a numerical method to simulate wetting and droplet spreading process at macroscale, e.g.
[25,33,22,9,10,12,14] to name a few. Among them, the most notable one is the so-called moving contact line hydrodynamics
theory [11,48,37,28]. However, there has been an outstanding challenge in the conventional moving contact-line
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hydrodynamics theory: a key technical ingredient of the moving contact line hydrodynamics is the non-slip boundary con-
dition along the liquid/solid interface, which will lead to singularity in shear stress distribution at the front of the moving
contact line between the liquid and solid phase (see Fig. 1 (a) and [51] for detailed discussion). In turn, the singular shear
stress on the droplet will force the liquid droplet moving along the interface, which then violates the a priori assumption
of non-slip condition. This technical difficulty has posted great challenge for macroscale simulation of dynamic wetting
and droplet spreading.

In this work, we propose a multiscale dynamic wetting model (MDWM) that combines the conventional hydrodynamic
contact line theory [11,48,37,28] and a modified Gurtin–Murdoch surface elasticity theory [16,17] with the coarse grain
adhesive contact model developed by Sauer and Li [38–41], so that the droplet is levitated above the solid substrate (see
Fig. 1(b)). In doing so, it completely eliminates singularity problem of the conventional hydrodynamic contact line theory
(see recent discussions in [51]), while retaining the surface energy description in dynamics wetting modeling. To understand
how the proposed method works, we have done a comparison simulation by using the conventional moving contact line
method and MDWM method proposed in the work (see Fig. 1). In the moving contact line hydrodynamics simulation, a sin-
gular shear stress arises due to the fact that the initial contact line front between the liquid phase and solid phase forms a
crack shaped cleavage (see Fig. 1(a)), and the abrupt change of surface tangent direction will cause stress concentration. On
the other hand, if one can levitate the liquid droplet over the solid substrate, and it will separate the liquid phase and solid
phase, i.e. creating a gap between the solid surface and liquid surface, as what really happens in reality. By doing so, the
mechanical or mathematical modeling induced pathology will naturally go away, which is one of the main motivations
and contributions of this work.

To accomplish this goal, in this work we have proposed a multiscale dynamic wetting model, and have established its
finite element formulation, and have carried out several numerical simulations. The paper is organized into eight sections.
We begin in Section 2 by setting forth the multiscale dynamic wetting model (MDWM) in terms of its mathematical strong
form, and subsequently in Section 3, we state and derive the Galerkin weak formulation of MDWM theory. With these prep-
arations, we discuss finite element discretization and implementations of MDWM in Section 4. In Section 5, we discuss a
special but important case of moving contact line theory, in which the surface stress is assumed to be constant in each sur-
face element; and in Section 6, we discuss the general surface contact line theory, in which the surface stress is non-uniform.
In Section 7, several numerical examples are presented, and finally in Section 8, we conclude the presentation by assessing
the advantages and limitations of the proposed MDWM model.

2. Multiscale dynamic and wetting model (MDWM)

We consider a general triple phase system of gas, liquid, and solid phase as shown in Fig. 2, in which Xa; a ¼ G; L; and S
are the bulk volumes for gas (G), liquid (L), and solid (S) phases. One can see from Fig. 1. that along each interphase, there are
two surfaces. For example, CGL is the gas surface of the gas–liquid interphase, whereas CLG is the liquid surface of the gas–
liquid interphase (see the order of letter G and L). By the same convention, we denote that CLS is the liquid surface of the
liquid–solid interphase, whereas CSL is the solid surface of the liquid–solid interphase; CGS is the gas surface of the gas–solid
interphase, whereas CSG is the solid surface of the gas–solid interphase. For the triple system configuration shown in Fig. 2,
we have @XL ¼ CLG [ CLS, @XS ¼ CSL [ CSG, and @XG ¼ CGL [ CGS.

As a hybrid multiscale model, we model the bulk medium by using continuum mechanics formulations, i.e.

@ra

@x
þ qaba ¼ qa €ua; a ¼ G; L; and S ð1Þ

Fig. 1. Comparison simulation results of (a) Singularity in shear stress (r12) distribution obtained from the moving contact line hydrodynamics simulation,
and (a) shear stress (r12) distribution from a MDWM simulation of adhesive contact and droplet spreading.
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where ra are the Cauchy stresses in each phase; qa are the mass densities per unit volume in each phase; ba are the body
forces per unit mass in each phase, and ua are the displacement fields in each phase. Since the stress in the gas phase is neg-
ligible, and we only consider the equation of motion in a ¼ L and S.

Inside three interphases and adjacent bulk media, we consider the small scale adhesive contact force, which has been de-
scribed in a number of mesoscale contact models, such as the JKR theory [23] or the DMT theory [8], and the recent coarse-
grained adhesive contact model e.g. [38–41]. In the coarse-grained adhesive contact model, the small scale adhesive inter-
action between two adjacent continua is described by the long-range van der Waals type of molecular interaction during the
contact.

The inter-continuum interaction is then homogenized so that it may be represented by a continuum interaction energy.
By the homogenization of the intersolid potential utilizing the Cauchy–Born rule, a continuous interaction energy that sur-
rounds each body is obtained. Fig. 3 illustrates the kinematic description of two interacting bodies in the framework of adhe-
sive continuum mechanics. The bodies are denoted by r1 2 X1 and r2 2 X2 in the current configuration, b1 and b2 are the
atom densities, and r is the distance between two points. Along the interphase of the two bodies, the inter-solid adhesive
energy density from body one to body two may be written as

W1!2ðr2Þ ¼
1
2

Z
X1

b1/ðjr1 � r2jÞdv1; where r2 2 X2; r1 2 X1:

where b1 is the atom or molecule density in body one, and / is the atomistic or molecular potential that determines the force
field between atoms or molecules in the body one and body two, and Xi; i ¼ 1;2 are the volumes for body one or body two.

Note that the atom density b1 is often referred to as the inverse of volume of the Wigner–Seitz cell (the primitive unit cell)
for crystalline solids, if the unit cell has only one atom. Similarly, we have

W2!1ðr1Þ ¼
1
2

Z
X2

b2/ðjr1 � r2jÞdv2; where r2 2 X2; r1 2 X1:

where b2 is the atom or molecule density in body two. Therefore, the total interaction energy PC for the two interacting
bodies may be written as

PC ¼
Z

X1

Z
X2

b1b2/ rð Þdv2 dv1; ð2Þ

where / rð Þ is the interatomic potential, and in simulations we often use the Lennard–Jones potential as the interatomic po-
tential to model the van der Waals type of adhesive force,

Fig. 2. Schematic illustrate of the triple phase system.

1x
2x

1β 2β

2Ω1Ω r

Fig. 3. The kinematics of two interacting bodies.
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/ rð Þ ¼ � r0

r

� �12
� 2�

r0

r

� �6
; ð3Þ

where the first term is the contribution of the repulsion when two atoms come close, and the second term is the contribution
of the van der Waals force; � is the depth of the potential well, r0 is the equilibrium distance, and r is the distance between
two atoms.

In principle, the coarse grain adhesive contact model should automatically take into account the surface tension effect in
different continuum media. However, if we do not or could not adopt atomistic enriched constitutive relation in continuum
formulation such as the surface Cauchy–Born model [34,35], which is very difficult to do for a liquid phase, the surface ten-
sion effect may not be captured by a coarse-grained inter-continuum interaction.

To amend such shortcoming, we include additional continuum surface description, i.e. a set of surface dynamic equations
that are similar to the Gurtin–Murdoch interface formulation [16–18], to supplement surface energy information along dif-
ferent interphase contact lines. In specific, we consider the following equations of motions on the gas, liquid, and solid
surfaces,

fD;a
:¼ rs1a þ ta ¼ qsaaa; a ¼ G; L; S ð4Þ

where qsa are the surface mass densities, and rs is the surface gradient operator that is defined as

rs :¼ r� nðn � rÞ; ð5Þ

where n is the out-normal of the surface tangent plane. The surface stresses of the triple system are denoted as 1a; a ¼ G; L; S,
and ta; a ¼ G; L; S are traction vectors on the surfaces of the different phases, and aa are surface acceleration at surface mate-
rial points.

Different from the Gurtin–Murdoch (GM) theory [16,18], in this work we are dealing with some supplement surface con-
ditions rather than the interface conditions as those in GM theory. This is because we assume that between any of two distinct
phases of the triple phase system there is an interphase; and at the two sides of the interphase there are two distinct sur-
faces. Second, in the Gurtin–Murdoch theory, the traction is defined as

ta ¼ ra � na;

where ra are the Cauchy stress in bulk media (phase). In the proposed MDWM theory, the traction force on the liquid–solid
interface may be taken as the projection of the adhesive force derived from CGCM theory, i.e.

ta ¼ Proja½f
adh� ¼ tadh

a ¼ f ðsÞðE � naÞE; a ¼ LS; SL;

where s is the distance of the surface separation at where the traction is measured, f ð�Þ is the specified function depending on
coarse grained adhesive potential, E is a vector depending on contact morphology, and na is the out-normal of the a-th sur-
face. The above surface traction can be calculated by using the well-known Derjaguin approximation technique [6], in which
E is unspecified and problem-dependent. The latest improvements and variants of the Derjaguin approximation, e.g. [7], pro-
vide detailed procedure to calculate adhesive surface traction, i.e. the terms E and f ðsÞ, for given adhesive potential and con-
tact surface morphology. By doing so, the multiscale dynamic wetting model is made consistent or compatible with the
coarse-grain adhesive contact model.

In contrast with the original Gurtin–Murdoch theory of elastostatic interface, in this work we must consider the inertial
effect because we study the phenomenon of dynamic wetting. The inertial effect is represented by the terms,
fD;a

; a ¼ G; L; S, which are the D’Alembert force densities on different surfaces. In this work, we postulate that the surface
D’Alembert force densities equals

qsaaa; a ¼ G; L; S; ð6Þ

where qsa is the surface mass density of a phase, and aa is surface acceleration of a phase. The surface D’Alembert force den-
sity has the unit (N/m2), and the traction ta; a ¼ G; L; S, have the same unit (N/m2), whereas the unit for the surface stresses,

Surface tension γ

n

nγκ=t

Surface traction

Fig. 4. The surface traction in terms of the surface tension.
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1a; a ¼ G; L; S, is (N/m). To focus on the dynamic wetting and droplet spreading problem, we make the following
assumptions:

2.1. Surface kinematic assumptions

A1. We assume that the stiffness of solid phase is much larger than that of liquid or gas phases, so that the magnitude of
velocity of the surface particle on the solid phase is much smaller than that of the surface particle on the liquid or gas
phase that shares the same interphase, i.e.

jaSj � jaLj ! jqsSaSj � 1:

A2. We assume that the surface particle acceleration on the gaseous phase is at the same order of magnitude of that of the
liquid phase; and because the mass density in the gaseous phase is much smaller than that of the liquid phase, we
have

jaGj � jaLj such that jqsGaGj � 1 ðqsG � qsLÞ:

These assumptions simplify Eq. (4) to following forms,

0 ¼ rs1G þ ProjG½f
adh�; 8x 2 @XG; ð7Þ

fD;L ¼ rs1L þ ProjL½f
adh�; 8x 2 @XL; ð8Þ

0 ¼ rs1S þ ProjS½f
adh�; 8x 2 @XS; ð9Þ

which govern the continuum surface equilibrium of the triple system under dynamic motions. In computations, we have
used the following formulas to calculate the surface stress,

1G ¼ cGIð2Þs ; ð10Þ
1L ¼ cLIð2Þs þrscL; ð11Þ

1S ¼ cSIð2Þs þ
@CS

@�s
þ cSrs � u; ð12Þ

where cS; cL and cS are the surface tension in different phases; CS is the solid surface strain energy; �s is the surface strain
tension; rs is the surface gradient operator defined in (5); and the operator � is the standard notation for tensor product in
tensor algebra or analysis e.g. in [44]. Note that Ið2Þs denotes the unit tensor on a smooth surface or two-dimensional man-
ifold, which is defined as [26],

Ið2Þs :¼ PI ¼ P; ð13Þ

where I is the unit tensor in a three-dimensional Euclidean space, and P is the projection tensor defined as,

P :¼ I� n� n;

where n is the out-normal of the surface at the point of interesting. In some part of the text, in order to emphasize the mate-
rial properties of the manifold, we write it as IðaÞs ; a ¼ G; L; S or LS; GS and LG etc. in a manner that is self-evidence.

If the solid surface is the surface of a crystalline solid, one may also use the Surface Cauchy–Born model [34,35] with the
atomistic potential of the crystal to derive both surface energy as well as surface stress 1S. In fact, we have calculated surface
energy by using the surface Cauchy–Born model in one example in Section 7.

For example, if we consider a equilibrium state of gas–liquid interface, we may let

fD;L ¼ 0; ProjG½f
adh� ¼ �rG � n ¼ þpGn

and

ProjL½f
adh� ¼ rL � n ¼ �pLn;

rs1G þ pGn ¼ 0; 8x 2 @XG; ð14Þ
rs1L � pLn ¼ 0; 8x 2 @XL: ð15Þ

Without loss generality, we may choose 1G ¼ cGIð2Þs and 1L ¼ cLIð2Þs . Recall Is ¼ PI ¼ P, rs ¼ r� nðn � rÞ, and P ¼ I� n� n is
the projection operator. Subsequently, one can readily show that

rsI
ð2Þ
s ¼ rsP ¼ 2jn;

where j is the average curvature of the surface.
Adding Eqs. (14) and (15) together and considering that liquid and gas surfaces have the same curvature when they form

a same interface, we have
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rs 1G þ 1Lð Þ þ ðpG � pLÞn ¼ 0; ! pL � pG ¼ 2ðcG þ cLÞj ¼ 2cLGj;

which is the standard Young–Laplace equation of the gas–liquid interphase. Alternatively, we may write

½t�LG :¼ rs 1G þ 1Lð Þ ! ½t�LG ¼ �2cLGjn: ð16Þ

This equation may be extended to the liquid–solid surface, if we take the following approximation,

1S ¼ cSIð2Þs þ
@CS

@�s
þ cSrs � u � cSIð2Þs ;

which leads to

½t�LS :¼ rs 1S þ 1Lð Þ ! ½t�LS ¼ �2cLSjn; ð17Þ

which is the formula used in standard text book of colloidal physics or chemistry.

3. Galerkin weak formulation of MDWM

In this Section, we discuss the Galerkin weak formulation of the multiscale dynamic wetting model.
We consider a triple system with negligible gas phase energy transfer. The total Lagrange of the system may be written as

L ¼
X
a¼L;S

Ta � ðPint
a �Pext

a Þ
h i

�PC ; and S ¼
Z t2

t1

Ldt; ð18Þ

where a ¼ L; S denotes the liquid and solid phases, Ta are the kinetic energies, Pint
a are the internal energies, and Pext

a are the
external energies.

Considering the least action or the stationary action principle, dS ¼ 0, we have

dS ¼
Z t2

t1

dLdt ¼
Z t2

t1

X
a¼L;S

dTa � ðdPint
a � dPext

a Þ
h i

� dPC

( )
dt ¼ 0;

8duL; duS 2 H1ðXLÞ [ H1ðXSÞ, where duL and duS are the variations of displacements in the liquid and solid phases. The vari-
ation of the kinetic energy is given by

dTa ¼
Z

Xa

qa _ua � d _uadva; a ¼ L; S; ð19Þ

where qa are the mass densities in the current configuration. The variation of the internal energy is given by

dPint
a ¼

Z
Xa

ra :
@dua

@x
dva; a ¼ L; S: ð20Þ

The variation of the external energy is given as

dPext
a ¼

Z
Xa

qaba � duadv þ
Z
@Xa

fD;a � duads; a ¼ L; S; ð21Þ

where ba are the body forces, and ta are the surface tractions. Since we assume that fD;G ¼ 0, we may rewrite the total exter-
nal virtual work as,

dPext ¼
Z

XL

qLbL � duLdv þ
Z

XS

qSbS � duSdv þ
Z
@XG

fD;G � duGdsþ
Z
@XL

fD;L � duLdsþ
Z
@XS

fD;S � duSds: ð22Þ

The variation of the interaction energy is given by

dPC ¼
Z

XL

Z
XS

bLbS
@/ rð Þ
@xL

� duL þ
@/ rð Þ
@xS

� duS

� �
dvS dvL: ð23Þ

Finally we can obtain following variational equations,Z t2

t1

X
a¼L;S

Z
Xa

qva � d _uadv �
Z

Xa

ra :
@dua

@xa
dv þ

Z
Xa

qaba � duadv þ
Z
@Xa

fD;a � duads
� �

þ
Z
@XG

fD;G � duGds

(

�
Z

XL

Z
XS

bLbS
@/ rð Þ
@xL

� duL þ
@/ rð Þ
@xS

� duS

� �
dvSdvL

�
dt ¼ 0; 8duG; duL; duS: ð24Þ

This is the Galerkin weak formulation of the multiscale dynamic wetting model. For finite element analysis and implemen-
tation of CGCM, readers may consult [38–41]. In this work, we shall focus on how to evaluate the virtual work due to surface
tension, i.e. the terms,
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Z
@Xa

fD;a � duads; a ¼ G; L; S;

where the superscript ‘D’ means that this is a dynamic force, and the superscript ‘a’ is the phase index.
In particular, we are interested in calculating the nodal surface tension force due to surface energy at the contact line as

shown in Fig. 5. On the contact surface of the each phase, the following modified Gurtin–Murdoch type equations of motion
are imposed, which are given as,

fD;S ¼ @1S

@x
þ ProjS½f

adh�; ð25Þ

fD;L ¼ @1L

@x
þ ProjL½f

adh�; ð26Þ

fD;G ¼ @1G

@x
þ ProjG½f

adh�; ð27Þ

where fD;S
; fD;L, and fD;G are the extra forces due to surface tension at the interfaces of triple system i.e. solid, liquid, and gas

surface D’Alembert forces, and they have the unit (N/m2); 1S; 1L, and 1G are the surface stress (N/m) with respect to different
surfaces, and we can use projection operator to project the interphase adhesive force onto three different surfaces as well by
denoting them as ProjS½f

adh�;ProjL½f
adh�, and ProjG½f

adh� where the subscript S; L and G denote solid, liquid, and gaseous sur-
faces, and the interphase adhesive force includes cohesive force as well as friction force (N/m2).

Since the solid substrate is assumed to be much stiffer than the liquid phase, we neglect the effects of the surface inertia
force on the solid surface, i.e. fD;S � 0 according to Assumption 1. Since the gaseous phase is much lighter than the liquid,
based on Assumption 2 we can neglect the surface inertia force on the gas surface as well, i.e. fD;G � 0.

The main task of MDWM finite element computation is to find the correct fD;L, so that the surface energy difference can
drive droplet spreading. Let us first exam the external virtual work due to surface stress. In doing so, we first choose all the
overlap surface virtual displacement as the same, i.e. dua ¼ w. We then have

0 ¼
Z
@XS

w � @1S

@x
dsþ

Z
@XS

w � ProjS½f
adh�ds; ð28ÞZ

@XL

w � fD;Lds ¼
Z
@XL

w � @1L

@x
dsþ

Z
@XL

w � ProjL½f
adh�ds; ð29Þ

0 ¼
Z
@XG

w � @1G

@x
dsþ

Z
@XG

w � ProjG½f
adh�ds; ð30Þ

where @XS; @XL and @XG denotes the solid, liquid, and gaseous surfaces. Consider @XS ¼ CSG [ CSL, @XL ¼ CLS [ CLG, and
@XG ¼ CGS [ CGL. Integration by parts yields,

0 ¼ �
Z

CSL

@w
@x

: 1Sds�
Z

CSG

@w
@x

: 1Sdsþ
Z

CSL

w � ProjS½f
adh�dsþ

Z
CSG

w � ProjS½f
adh�ds; ð31ÞZ

@XL

w � fD;Lds ¼ �
Z

CLS

@w
@x

: 1Lds�
Z

CLG

@w
@x

: 1Ldsþ
Z

CLS

w � ProjL½f
adh�dsþ

Z
CLG

w � ProjL½f
adh�ds; ð32Þ

0 ¼ �
Z

CGS

@w
@x

: 1Gds�
Z

CGL

@w
@x

: 1Gdsþ
Z

CGS

w � ProjG½f
adh�dsþ

Z
CGL

w � ProjG½f
adh�ds; ð33Þ

In the above derivation, we have assumed that 1ana ¼ 0 on @Xa; a ¼ G; L; S, in which na are the normal vectors of the surface
@Xa; a ¼ S; L;G . Here fD;L is an inertia force on the liquid surface (N/m2), and it is an unknown force vector that we are
solving.

Fig. 5. Illustration of the contact line.

H. Minaki, S. Li / Comput. Methods Appl. Mech. Engrg. 273 (2014) 273–302 279



Author's personal copy

On CSL, the projection of the adhesive force on the liquid surface, ProjL½f
adh�, has the same magnitude but the opposite

direction of the projection on the solid surface, i.e. ProjL½f
adh� ¼ �ProjS½f

adh�. Similarly ProjL½f
adh� ¼ �ProjG½f

adh�; 8x 2 CLG,

and ProjS½f
adh� ¼ �ProjG½f

adh�; 8x 2 CSG.
Adding Eqs. (31)–(33) together and utilizing the above relations between the projections of interface adhesive forces, we

have Z
@XL

w � fD;Lds ¼ �
Z

CSL

@w
@x

: ð1S þ 1LÞds�
Z

CSG

@w
@x

: ð1S þ 1GÞds�
Z

CLG

@w
@x

: ð1L þ 1GÞds: ð34Þ

Note that we have used the fact that CSG ¼ CGS, CLG ¼ CGL, and CSL ¼ CLS, where CSG is interpreted as the solid side surface of a
solid–gas interface, which equals to CGS – the gas side surface of the same solid–gas interface. Similar interpretations may be
made for CSL and CLG. Define

1LS :¼ 1S þ 1L; 8x 2 CLS; ð35Þ
1LG :¼ 1L þ 1G; 8x 2 CLG; ð36Þ
1SG :¼ rS þ 1G; 8x 2 CSG: ð37Þ

Finally, the virtual work expression in terms of the surface stress of the triple system can be recast as follows,Z
@XL

w � fD;Lds ¼ �
Z

CSG

@w
@x

: 1SGds�
Z

CLS

@w
@x

: 1LSds�
Z

CLG

@w
@x

: 1LGds: ð38Þ

Eq. (38) is the weak form of the proposed dynamic wetting model along the interface contact line, which is a main result of
MDWM. Since the gaseous phase and liquid phase are much softer than the solid phase, their surface strain energy (not sur-
face energy!) may be negligible.

4. Finite element implementation

In continuum physics, surface tension, which is equivalent to surface energy in many cases, is applied onto the surface of
contina [2,29,13,43]. In order to develop a multiscale computational method to solve dynamic wetting problem, we first
introduce a finite element method-based surface tension model in this Section.

4.1. Finite element discrete equations of motion

Since our focus is on the droplet spreading, we first consider the Galerkin weak form for the liquid droplet,Z
XL

qL
€u � dwdvL ¼ �

Z
XL

r :
@w
@x

dvL þ
Z

XL

qLbL � dwdvL þ
Z
@XL

fD;L � dwds�
Z

XL

Z
XS

bLbS
@/ rð Þ
@xL

�wdvSdvL; 8dw 2 H1ðXLÞ

ð39Þ

where w is the test function, which belongs the function space H1ðXLÞ and satisfies homogeneous boundary condition on
displacement boundary @XL. Eq. (39) is the Galerkin weak formulation of the multiscale dynamic wetting model.

We choose the following Bubnov–Galerkin finite element interpolation field in the bulk volume [1,21,52],

uðx; tÞ ¼
XNnode

I¼1

NIðxÞdIðtÞ; ð40Þ

wðx; tÞ ¼
XNnode

I¼1

NIðxÞwIðtÞ; ð41Þ

where Nnode is the total number of finite element nodes, NIðxÞ are the Finite Element shape functions, dI and wI are the nodal
displacement and the virtual displacement at node I; I ¼ 1;2; . . . Nnode.

Additionally we choose the following surface finite element interpolation field,

usðx; tÞ ¼
XNSnode

Is¼1

NIs ðxÞdIs ðtÞ; ð42Þ

wsðx; tÞ ¼
XNSnode

Is¼1

NIs ðxÞwIs ðtÞ; ð43Þ

where NSnode is the total number of surface element nodes, NIs ðxÞ are the surface finite element shape functions, dIs and wIs

are surface nodal displacement and the surface virtual displacement at surface node Is; Is ¼ 1;2; . . . Nnode. Note that the sur-
face FEM nodes are a subset of the bulk FEM nodes, and the virtual displacements of the surface nodes are not independent
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with the virtual displacements of the bulk nodes. There is a connectivity map, say MapcðIsÞ, to connect the two, i.e.
MapcðIsÞ ¼ I or vice versa.

Let

fadh
L :¼

Z
XS

bLbS
@/ rð Þ
@xL

dvS:

By substituting Eqs. (40)–(43) into Eq. (39), the preceding weak form becomes

XNnode

I¼1

XNnode

J¼1

wI �
Z

XL

qNIðxNJðxÞ€dJðtÞdvL ¼ �
XNnode

I¼1

wI �
Z

XL

r
@NI

@x
dvL þ

XNnode

I¼1

wI �
Z

XL

qNIðxÞbdvL �
XNnode

I¼1

wI �
Z

XL

NIðxÞfðadhÞ
L dvL

þ
XNSnode

Is¼1

wIs �
Z
@XL

NIs ðxÞf
D;LdsL: ð44Þ

Due to the arbitrariness of the virtual displacements, e.g. 8wI 2 H1ðXÞ, Eq. (44) can be cast into the following algebraic
equations,

M€dL ¼ Fext
L � Fint

L þ Fadh
L þ Fsrf

L ; ð45Þ

where

M ¼
XNnode

I¼1

XNnode

J¼1

Z
XL

qLNIðxÞNJðxÞdvL; ð46Þ

Fint
L ¼

XNnode

I¼1

Z
XL

r
@NI

@x
dvL; ð47Þ

Fext
L ¼

XNnode

I¼1

Z
XL

qLNIðxÞbdvL; ð48Þ

Fadh
L ¼

XNnode

I¼1

Z
XL

NIðxÞfðadhÞ
L dvL; ð49Þ

Fsrf
L ¼

XNSnode

Is¼1

Z
@XL

NIs ðxÞf
D;LdsL; ð50Þ

where Nnode is the total number of FEM nodes in the liquid phase, whereas NSnode is the total of FEM nodes on the liquid phase
surface, which is a subset of the total bulk FEM nodes. The internal force for the surface node have all four sources of con-
tribution. Eqs. (44) and (45) are the final discrete finite element dynamic equations for multiscale dynamic wetting model.

4.2. Surface tension force

In Eq. (44), the only new term is the last term, which is due to the contribution of surface tension or surface energy. We
call Fsrf

L as the surface tension force in liquid phase. Based on Eq. (38), this force can be re-written in two different forms,

Fsrf
L ¼

XNSnode

Is¼1

Z
CLS

NIs ðxÞrs1LSdsþ
Z

CLG

NIs ðxÞrs1LGdsþ
Z

CSG

NIs ðxÞrs1SGds
	 �

; ð51Þ

or

Fsrf
L ¼

XNSnode

Is¼1

NIs ðxÞ1LSjx2@CLS
�
Z

CLS

@NIs

@x
: 1LSds

� �
þ NIs ðxÞ1LGjx2@CLG

�
Z

CLG

@NIs

@x
: 1LGds

� �
þ NIs ðxÞ1SGjx2@CSG

�
Z

CSG

@NIs

@x
: 1SGds

� �	 �
:

ð52Þ

The above two formulations, Eqs. (51) and (52), are equivalent in mathematics, because the second expression is just the
integration by parts of the first expression. However, the two formulations lead two completely different implementation
procedures in the finite element computation.

We first consider Eq. (51). As shown in Section 3, if we neglect the surface energy gradient and surface displacement gra-
dient, we may write,

rs1LS ¼ 2cLSjn; rs1LG ¼ 2cLGjn; and rs1SG ¼ 2cSGjn: ð53Þ

where rs ¼ r� nðn � rÞ is the surface gradient operator. Based on the above expressions, once we have found the value of
the surface curvature and surface normal, we can compute the surface force due to surface tension, and the surface tension
effect can be incorporated into the finite element simulation.
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In passing, we note that it is a challenge to calculate the surface curvature at any point of an arbitrary surface in finite
element computations. This is because that in finite element calculations, it is difficult to track surface evolution of a com-
plex shaped continuum body and to calculate the surface curvature. However, in total Lagrangian finite element method, it is
easy to track the trajectory of any material point. If we know the position of a surface material point at the current spatial
configuration, we can use the Nanson formula to find the surface curvature.

Assume that surface normal vector in the reference configuration N is known, by Nanson’s formula [31], we have

nda ¼ JF�T NdA; ð54Þ

where da and dA are the infinitesimal areas in the current and reference configuration respectively, F is the deformation gra-
dient tensor, and J ¼ det F is the determinant of the deformation gradient. Subsequently, the following relationship between
the normal vector in the current and reference configuration may be obtained,

n ¼ F�TNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � C�1N

p ð55Þ

where C is the right Cauchy–Green tensor,

C ¼ FT F: ð56Þ

The mean curvature is related to the divergence of the surface normal (e.g. [36]) as

2j ¼ �r � n: ð57Þ

By substituting Eq. (55) into Eq. (57), the following equation can be obtained (see Appendix A for detailed derivation),

2j ¼
FTG..

.
C�1N� C�1N� C�1N
� �

�rXN : C�1N� C�1N
� �

N � C�1N
� �3=2 � nTG

� �
: C�1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � C�1N

p
C�1 : rXN; ð58Þ

where G is the derivative of the deformation gradient tensor, and it is defined as,

G :¼ @2x
@X� @X

: ð59Þ

One can see that using Eq. (51) to calculate the surface tension force requires the calculations of normal vector and the sur-
face curvature in the current configuration. In order to compute these quantities, we have to first compute the deformation
gradient and its derivatives. These calculations are computationally expensive. To improve the computational efficiency of
MDWM, we have used Eq. (52) to develop a systematic procedure in calculating finite element nodal force due to surface
tension, i.e.

Fsrf
L ¼ �

XNSnode

Is¼1

Z
CLS

@NIs

@x
� 1LSdsþ

Z
CLG

@NIs

@x
� 1LGdsþ

Z
CSG

@NIs

@x
� 1SGds

	 �
:

This formulation is very useful, when the surface elemental stress 1LS, 1LG; 1SG are constant surface tensors. This is because, if
the elemental surface stress is constant, we can choose linear finite element interpolation function for the surface element so
that for a fixed surface element J,Z

SJ

@NI

@x
ds ¼ 	ISJ

s ;

where ISJ
s is the unit surface tensor of the surface patch SJ . Here both I and J are free indices.

Therefore, Eq. (52) suggests a very simple way to calculate surface tension force. The following is how it works:
First, the surface tension is defined as the force per unit length, where the force is within the surface, and it is perpen-

dicular to surface element edge or boundary, e.g. [30], as shown in Fig. 6. Note that in Fig. 6 the direction of the surface ten-
sion is depicted as internal force.

If the thickness of the surface element is in unit length, in 2D cases the surface tension with unit (N/m) is simply the sur-
face force (N). Thus we may apply the surface tension as the surface force to each node of the surface patch, and the direction
of the force is parallel to the edge of the surface patch, shown in Fig. 7. By taking the summation of the surface tension forces
at each node, we can obtain the resultant forces. When two forces on a flat surface act in the opposite directions, the resul-
tant force is zero on a flat surface as shown in Fig. 8. It is consistent with the surface traction theory, and the proposed surface
tension model only requires to calculate the tangential direction of the surface patch and take the summation of the surface
tension forces in two dimensional case. When two nodes of the surface patch are x1 and x2, the direction of the surface ten-
sion force at node x1 and x2 are given by x2 � x1ð Þ= j x2 � x1 j and x1 � x2ð Þ= j x2 � x1 j. For example, in the case shown in
Fig. 8, the surface tension forces at node 1 and 2 are given by
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Fsrf
L;1 ¼ c

x2 � x1

j x2 � x1 j
þ c

x5 � x1

j x5 � x1 j
¼ c

1
0

� �
þ c

0
1

� �
¼ c

1
1

� �
; ð60Þ

and

Fsrf
L;2 ¼ c

x1 � x2

j x2 � x1 j
þ c

x3 � x2

j x3 � x2 j
¼ c

�1
0

� �
þ c

1
0

� �
¼

0
0

� �
: ð61Þ

In the three dimensional case, it is necessary to multiply the half of the edge length, since the unit of the surface tension is
the force per unit length (N/m), and there are two nodes in each edge for linear elements. The direction of the surface tension
force can be obtained by following way: First, we compute normal vector of the patch at node x1 by cross product as shown
in Fig. 9,

n ¼ x2 � x1ð Þ
j x2 � x1 j


 x4 � x1ð Þ
j x4 � x1 j

: ð62Þ

Eq. (62) can be replaced by Eq. (55) when the normal vector in the reference configuration is known. Note that the inner
product of the direction of the surface tension force e and vector x2 � x1 is zero, because that the surface tension is perpen-
dicular to the line. In addition, the cross product of x2 � x1ð Þ= j x2 � x1 j and e equals n because the surface tension is parallel
to the surface. Thus the direction of the surface tension force e can be obtained by computing the cross product of n and
x2 � x1ð Þ= j x2 � x1 j,

e ¼ n
 x2 � x1ð Þ
j x2 � x1 j

: ð63Þ

When there is no torsion in the surface patch, the direction of the surface tension at each node in an edge are the same. How-
ever, since there may exist torsion after the deformation, we should compute the direction of the surface tension at each
node in an edge checking for the consistency with the neighbor surface patch. Finally, in three dimensional case, the pro-
posed element surface tension model needs to calculate normal vector of the surface patch at each node and the direction
of surface tension and the length of the element edge.

5. Moving contact line formulation I: constant surface stress

The heart of the multiscale dynamic wetting model is multiscale moving contact line formulation, which is a finite ele-
ment formulation for surface tension force at the intersection of the gas/liquid/solid interface. Because the contact line is the
place where three phases in juncture, the differences of three surface energy at the contact line will drive the droplet spread-
ing. In this Section, we discuss the technical procedure of the multiscale contact line formulation, and it is essentially a mod-
ified dynamic Young–Laplace equation [50] in the framework of multiscale dynamic wetting theory with finite element
formulation.

Surface tension γ

Fig. 6. Surface tension acts on a surface patch in three dimensional space.

Elements

Surface tension γ

Fig. 7. The proposed surface tension model in two dimensional case.
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The proposed moving contact line formulation is mainly based on Eq. (52). We shall discuss the contact line formulation
for two different cases: (I) the special case with constant surface stress only, and (II) the general case with non-uniform sur-
face stress state. In this section, we shall discuss the case (I) first.

First, we consider a special case of constant surface stress, i.e.

1LS ¼ cLSIðLSÞ
s ; 1LG ¼ cLGIðLGÞ

s ; and 1SG ¼ cSGIðSGÞ
s ;

where IðLSÞ
s ; IðLGÞ

s , and IðSGÞ
s are the unit tensors on LS, LG, and SG interface. In this case, the internal force due the surface stress

contribution at the edge node I on the contact line can be obtained as,

Fsrf
L;I ¼ �

Z
CLS

@NI

@x
� cLSIðLSÞ

s dsþ
Z

CLG

@NI

@x
� cLGIðLGÞ

s dsþ
Z

CSG

@NI

@x
� cSGIðSGÞ

s ds
� �

: ð64Þ

Fig. 10 illustrates surface patches at the contact line in a setting of two-dimensional finite element computations. The
edge node in Fig. 10 is the contact line node. Surrounding that node, one may find that for linear FEM shape function,Z

CLG

@NI

@x
ds ¼

cos h

� sin h

� �
;

Z
CLS

@NI

@x
ds ¼

1
0

� �
; and

Z
CSG

@NI

@x
ds ¼ �

1
0

� �
: ð65Þ

Substituting Eq. (65) into (64) and projecting the surface tension force to the global coordinate system that is formed by
the tangential and normal vectors of the solid surface as shown in Fig. 10, we have the surface tension force at the contact
line node I as

Fsrf
L;I ¼ cLG þ cLS þ cSG;

where

cLG ¼
�cLG cos h

cLG sin h

� �
; cLS ¼

�cLS

0

� �
ð66Þ

and

cSG ¼
cSG

0

� �
: ð67Þ

1 2 3 4

5 6 7 8

Surface tension γ

x

y

Resultant forces are zero on a flat surface.

1,
1,

srfFx
2,

2 , srfFx

Fig. 8. The resultant surface tension force on a flat surface.
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Fig. 9. The direction of the surface tension force at surface nodes.
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Note that the angle h in (66) is the actual (dynamic) contact angle, and we measure it based on the position and orientation of
the liquid element at the contact line at each time step. The particular h used at the time step n for Fsrf

L;I ðnDtÞ is dynamic con-
tact angle calculated at the time step n-1, i.e. hn�1.

Finally, the resultant force of the node at the contact line Fsrf
L;I is given by

Fsrf
L;I ¼ cSG þ cLG þ cLS ð68Þ

¼
cSG � cLG cos h� cLS

cLG sin h

� �
: ð69Þ

5.1. Implementation in 2D finite element analysis

In the case of two dimensional Finite Element Method, the linear surface patch degenerates to two finite element nodes.
Fig. 11 shows three different cases of the surface patch of the liquid in the two dimensional Finite Element implementation of
MDWM.

� Case a (Fig. 11(a)):
Neither of two nodes are in contact with the solid surface.
The surface energy between the liquid and gas cLG is applied to the surface patch, because the surface patch is fully in
contact with the gas;
� Case b (Fig. 11(b)):

One of the nodes is in contact with the solid surface.
The surface energy between the liquid and gas cLG is applied to the surface patch. In addition, the surface energy between
the solid and gas cSG is applied to the node which is in contact with the solid surface in the tangential direction of the solid
surface;
� Case c (Fig. 11(c)):

Both of the nodes are in contact with the solid surface.
The surface energy between the liquid and solid cLS is applied to the surface patch, because this surface patch is fully in
contact with the solid surface.

5.2. Surface element in 3D FEM discretization

Fig. 12 shows the triangular surface patches in a three-dimensional finite element surface mesh. For a triangular surface
patch, we need to distinguish the following four cases:

SGγLSγ LSγ

LGγ

LGγ

Solid

Liquid

An edge node on the liquid surface

A node on the liquid surface

A node on the solid surface

T

N

Fig. 10. Surface patches at the contact line in two dimensional space.

Solid

Liquid

Surface patch Non-Contact
with the solid surface

Contact
with the solid surface

(a)

(b)

(c)

Fig. 11. Three cases of the liquid surface patch in 2D finite element discretization.
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� Case a (Fig. 12(a)):
None of the three nodes are in contact with the solid surface.
The surface energy between the liquid and gas phases, cLG, is applied to all edges a; b and cbased on the proposed FEM
surface tension model, because the surface patch is fully in contact with the gas;
� Case b (Fig. 12(b)):

Only one of the nodes is in contact with the solid surface.
The surface energy between the liquid and gas phases, cLG, is applied to the all edges, the same as Case a;
� Case c (Fig. 13(c)):

Two nodes are in contact with the solid surface.
The surface energy between the liquid and gas phases, cLG, is applied to all edges. Additionally the surface energy between
the solid and gas phases, cSG, is applied to the edge a. The direction of the surface tension cSG is shown in Fig. 13, where n is
the normal vector of the solid surface, and xa is the unit vector of the edge a, and e is the direction of cSG. The direction of
the surface tension between the solid and gas phases, e, can be obtained by the cross product,

e ¼ xa 
 n: ð70Þ

� Case d (Fig. 12(d)):
All nodes are in contact with the solid surface.
The surface energy between the liquid and solid phases, cLS, is applied to all edges, because the surface patch is fully in
contact with the solid surface.

Fig. 14 shows all possible cases of the rectangular surface patches in 3D finite element mesh surface. For rectangular sur-
face patches, there are five cases.

� Case a (Fig. 14(a)):
None of the nodes are in contact with the solid surface.
The surface energy between the liquid and gas phases, cLG, is applied to the all edges a; b; c and d based on the proposed
FEM surface tension model, because the surface patch is fully in contact with the gas;
� Case b (Fig. 14(b)):

Only one of the nodes is in contact with the solid surface.
The surface energy between the liquid and gas phases, cLG, is applied to all edges, the same as Case a.
� Case c (Fig. 14(c)):

Two nodes are contact with the solid surface.
The surface energy between the liquid and gas phases, cLG, is applied to all edges. Subsequently, the surface tension
between the solid and gas phase, cSG ,is applied to the edge a. The direction of cSG can be obtained by Eq. (70);
� Case d (Fig. 14(d)):

Three nodes are in contact with the solid surface.
The surface energy between the liquid and gas phases, cLG, is applied to all edges. Moreover, the surface energy between
the solid and gas phases, cSG, is applied to the edge aand b. The direction of cSG can then be obtained by Eq. (70).
� Case e (Fig. 14(e)):

All nodes are in contact with the solid surface.
The surface energy between the liquid and solid phases, cLS, is applied to all edges, because the surface patch is fully in
contact with the solid surface.

6. Moving contact line formulation II: general surface stress state

One of the main advantages of the above multiscale moving contact-line formulation is that it does not require quadra-
ture integration on the moving surface elements. However, when the surface stress is generally not constant in the surface

(a) (b) (c) (d) 

Non-Contact with the solid surface

a 

Contact with the solid surface

Fig. 12. The triangular surface patches of the liquid in the three-dimensional finite element implementation.

286 H. Minaki, S. Li / Comput. Methods Appl. Mech. Engrg. 273 (2014) 273–302



Author's personal copy

element, the simple procedure discussed in previous section is not applicable anymore. According to Eq. (13), on the general
solid phase surface, we have

1S ¼ cSIðSÞs þ
@CS

@�s
þ cSrs � u

and on the surface of a viscous fluid phase (Eq. (12)), we have

1L ¼ cLIðLÞs þrscL:

Suppose that the liquid–solid interphase is compatible. The most complex surface stress constitute model on liquid–solid
interface may be,

1LS ¼ cLSIðLSÞ
s þrscL þ

@CS

@�s
þ cSrs � u:

Similar situations occur in the gas–solid interface as well as the gas–liquid interface, if complex fluid models are involved.
Hence, the surface stress may vary within a surface element for general triple phase systems. Considering general cases

with inhomogeneous surface stress distribution, we cannot apply the procedure illustrated in Section 5 to obtain the nodal
surface force without integrating surface weak formulation in a surface element. The surface force due to inhomogeneous
surface stress field has to be calculated based the surface Galerkin weak form and surface element discretization, i.e.

Fsrf
L;I ¼ �

Z
CSG

1SG
@NI

@x
ds�

Z
CLS

1LS
@NI

@x
ds�

Z
CLG

1LG
@NI

@x
ds; ð71Þ

in which the surface stress may be non-uniform.

axe

n

SolidLiquid
patch

Non-Contact with the solid surface

Contact with the solid surface

Fig. 13. The direction of the surface tension between the solid and gas phases.
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Fig. 14. Rectangular surface patches on the droplet surface in 3D finite element analysis.
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To do so, we must first make sure that we have compatible finite element meshes on the both sides of an interphase. Tak-
ing the liquid–solid interphase as an example, we must have compatible meshes on both liquid surface and solid surface
such that the FEM nodal force transfer is consistent across the interphase. To have a compatible finite element mesh on
the both side of an interface, we introduce the following virtual solid surface approach.

6.1. Virtual solid surface

In the derivation of the surface weak form, we have implicitly assumed that at the element level the surface area of the
eth elements on two different surfaces have the relation: CSLðeÞ ¼ CLSðeÞ. However, in MDWM finite element implementa-
tion, the positions of the liquid and solid nodes are generally different along the interface, because there is a relative move-
ment between the liquid FEM nodes and solid FEM nodes. Therefore at the element level, IsðSLÞ– IsðLSÞ; Is ¼ 1;2 . . . NSnode.

To solve this dilemma, a virtual solid surface is introduced. To illustrate the concept, we first illustrate the virtual surface
approach in the two dimensional case as shown in Fig. 15. In Fig. 15, the positions of solid nodes on the virtual solid surface
are exactly the same as the positions of liquid nodes on the moving liquid surface. The values of any physical variable at the
virtual nodes on the solid surface are obtained from that of the fixed solid nodes on the real solid surface by using the iso-
parametric interpolation [1,21],

f ðxÞ ¼
Xnnode

I¼1

NIðnÞfI; ð72Þ

where f is a general field variable, which can be a scalar or vector field; nnode is the number of nodes in an element, NIðnÞ is
the FEM shape function for node I, and fI is the nodal value of the field variable at the fixed node I, and nnode is the total
number of nodes in an element. Note that since index I is a dummy index, we do not need to specific it as Is without
confusion.

This can be done provided that we know the parametric coordinate of the virtual node n and which element it belongs to.
In computations, we always know the position of a liquid surface node, which is exactly the position of the corresponding
virtual solid node.

The natural coordinate n and the physical coordinate x are related by the mapping

x ¼ U nð Þ:

For 2D cases, the surface patch is a one dimensional element; and in 3D cases, the surface patch is a two dimensional ele-
ment. Fig. 16 shows how to locate a virtual node in a fixed element. By using Eq. (72), the natural coordinate can be obtained
by inverting the following equations,

0 ¼
Xnnode

I¼1

NI nð ÞxI � x; ð73Þ

where nnode is the number of nodes in an element.
In the case of 1D linear elements, Eq. (73) becomes a linear equation, and it can be solved directly as follows,

0 ¼ N1 nð Þx1 þ N2 nð Þx2; ð74Þ

n ¼ 2
x� x1

x2 � x1
� 1: ð75Þ

Virtual solid surface

Solid nodes on the 
virtual solid surface

Liquid nodes on the liquid surface

Liquid 
elements

Solid 
elements

Solid nodes on the solid surface

Fig. 15. A virtual solid surface in two dimensional case.
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In general, Eq. (73) cannot be solved directly for higher order elements, for instance, the two dimensional quadrilateral ele-
ment, this is because that it is a non-linear algebraic equation due to the bilinear term. The standard Newton–Raphson meth-
od may be used to numerically invert Eq. (73), and the following is a step-by-step solution procedure,

F nð Þ ¼
Xnnode

I¼1

NI nð ÞxI � x ¼ 0; ð76Þ

F ni
� �

� F ni�1
� �

þ F0 ni�1
� �

ni � ni�1
� �

; ð77Þ

ni � ni�1 � F0�1 ni�1
� �

F ni
� �

; ð78Þ

where ni is the ith iterative solution, and i ¼ 1;2; . . . ;N denoting the iteration of the Newton–Raphson method. In Eq. (78),

F0 nð Þ ¼
Xnnode

I¼1

@NI

@n
nð ÞxI: ð79Þ

Since the Newton–Raphson method has quadratic convergence rate, it only takes a few steps to find the numerical solution
of Eq. (76).

6.2. Two dimensional finite element analysis for dynamical wetting

In the following, we discuss how to implement Eq. (71) in two dimensional finite element computations. Here the surface
patch is a one dimensional surface element as shown in Fig. 17. In Fig. 17, x denotes global coordinate, x0 denotes local coor-
dinate that x0 axis and y0 axis are parallel and perpendicular to the surface patch, and h is the angle between xand x0 axis.
Then, the relationship between x-axis and x0-axis is given as

x0 ¼ Rx; ð80Þ

where

RT ¼
cos h � sin h

sin h cos h

� �
¼ 1

L
x2 � x1 y1 � y2

y2 � y1 x2 � x1

� �
; ð81Þ

where L ¼j x2 � x1 j is the length of the surface patch. The local coordinates of the node I are given by

x0I ¼ RxI; ð82Þ

where I ¼ 1;2. Here, one dimensional Finite Element interpolation is used to compute the derivatives of FEM shape functions
with respect to x0,

@NI

@x0

� �T

¼ @NI

@x0
0

� �
; ð83Þ

(a) 
-1 1 1x

ξ x
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ξ x
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Fig. 16. The isoparametric interpolation.
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where y0 components of x01 and x02 are zero. The derivatives of shape function with respect to x is as follows,

@NI

@x

� �T

¼ @NI

@x
@NI

@y

� �
;

which can be obtained by using the chain rule,

@NI

@x

T

¼ @NI

@x0

T @x0

@x
: ð84Þ

From Eq. (80), we have

@x0

@x
¼ R: ð85Þ

Thus,

@NI

@x

T

¼ @NI

@x0

T

R or
@NI

@x
¼ RT @NI

@x0
: ð86Þ

Once the surface stress is obtained, the CLG and CLS terms in Eq. (38) can then be computed.
For the integration term over CSG in Eq. (38), the solid–gas interface element is introduced. Fig. 18 shows the solid–gas

interface element in the two dimensional FEM example. One can see that we only need the surface nodal force at node 1
in Fig. 18, and a shape function at node 1 is given by

N1 x0ð Þ ¼ 1
L

L� x0ð Þ; ð87Þ

where L is the length of the solid–gas interface element, and x0 is the local coordinate, x0 ¼ 0 at node 1 and x0 ¼ L at node 2.
The derivative of shape function with respect to x0 is given by

@N1

@x0
¼ 1

L
�1
0

� �
: ð88Þ

Thus the term CSG in Eq. (38) can be written as,Z
CSG

1SG
@NI

@x
ds ¼

Z
CSG

1SGRT 1
L
�1
0

� �
ds � 1

2
1SG x1ð Þ þ 1SG x2ð Þf gRT �1

0

� �
; ð89Þ

where the trapezoidal rule is used for the surface integration. In the case that L � 0 1SG x1ð Þ � 1SG x2ð Þ. Finally, CSG term in Eq.
(38) is obtained asZ

CSG

1SG
@N1

@x
ds � 1SG x1ð ÞRT �1

0

� �
� 1SG x1ð Þ

� cos h

sin h

� �
: ð90Þ

6.3. 3D FEM formulation for dynamical wetting

For three-dimensional droplet spreading problems, the surface patch is a two dimensional element as shown in Fig. 19. In
Fig. 19, x denotes the global coordinate, and x0 denotes the local coordinate on the tangent space. The local coordinate is cho-
sen such that x0 is along the direction of the unit vector x21 ¼ x2 � x1ð Þ= j x2 � x1 j, and the surface patch is in the x0 -y0 plane,
and z0-axis is in the direction of the normal vector of the surface patch n . The unit vector of y0 axis, y1 , is obtained by

y1 ¼
n
 x21

j n
 x21 j
: ð91Þ

Fig. 17. Surface patch in 2D finite element analysis.
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Then, the relationship between x and x0 coordinate systems is given by

x0 ¼ Rx; ð92Þ

where

RT ¼ x21; y1;nð Þ: ð93Þ

The local coordinates of node I; I ¼ 1;2;3;4 , is given by

x0I ¼ RxI: ð94Þ

Two dimensional finite element shape function can be used in the surface element, and we can then compute the deriv-
atives of shape functions with respect to the local coordinate x0,

@NI

@x0

� �T

¼ @NI

@x0
@NI

@y0
0

� �
:

Since z0 components of x0I is zero. The derivatives of shape function with respect to x are,

@NI

@x

� �T

¼ @NI

@x
@NI

@y
@NI

@z

� �
;

which can be obtained by using the chain rule, the same as the implementation in 2D case.
The solid–gas interface element in three-dimensional finite element calculation is shown in Fig. 20. In Fig. 20, L1 is the

length between node 1 and node 2, L2 is the length between node 2 and node 3, and the shape of the solid–gas interface
element is rectangular. We only need the nodal forces at node 1 and 2 in Fig. 20. The shape function at node 1 is given as

N1 x0; y0ð Þ ¼ 1
L1L2

L1 � x0ð Þ L2 � y0ð Þ: ð95Þ

The derivative of shape function with respect to x0 is given by

@N1

@x0
x0; y0ð Þ ¼ 1

L1L2

� L2 � y0ð Þ
� L1 � x0ð Þ

0

0
B@

1
CA: ð96Þ

Virtual solid surface

Solid-gas interface element

Liquid 
elements

Solid 
elements

Node 1 Node 2

Fig. 18. Two-dimensional solid–gas interface element.

Fig. 19. Surface patch in the three dimensional FEM discretization.
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Thus the surface weak form term on CSG in Eq. (71) can be written asZ
CSG

1SG
@N1

@x
ds ¼

Z
CSG

1SGRT @N1

@x0
x0; y0ð Þds � L1L2

4
1SG x1ð ÞRT @N1

@x0
0;0ð Þ þ 1SG x2ð ÞRT @N1

@x0
L1;0ð Þ1SG x3ð ÞRT @N1

@x0
L1; L2ð Þ

	

þ1SG x4ð ÞRT @N1

@x0
0; L2ð Þ

�
� �1

4
1SG x1ð ÞRT

L2

L1

0

0
B@

1
CAþ 1SG x2ð ÞRT

L2

0
0

0
B@

1
CAþ 1SG x4ð ÞRT

0
L1

0

0
B@

1
CA

8><
>:

9>=
>;; ð97Þ

where the trapezoidal rule is applied to the surface quadrature integration. In the case that L2 � 0, 1SG x1ð Þ � 1SG x4ð Þ. Finally,
the integral term on CSG in Eq. (38) at node 1 is obtained as

Z
CSG

1SG
@N1

@x
ds � � L1

2
1SG x1ð ÞRT

0
1
0

0
B@

1
CA ¼ � L1

2
1SG x1ð Þ

y1x

y1y

y1z

0
B@

1
CA: ð98Þ

Similarly, the integration term on CSG in Eq. (38) at the node 2 is given as

Z
CSG

1SG
@N2

@x
ds � � L1

2
1SG x2ð ÞRT

0
1
0

0
B@

1
CA ¼ � L1

2
1SG x2ð Þ

y1x

y1y

y1z

0
B@

1
CA: ð99Þ

7. Numerical examples

7.1. Validation of the discrete surface tension model

In this section, we validate the proposed surface tension model by conducting a few numerical examples. In the first
example, we exam the surface tension effect on two dimensional model of water drop as shown in Fig. 21. The initial shape
of the water drop is an ellipse, and its major axis is 100 (nm) and its minor axis is 50 (nm). The constitutive relation of the
water drop is modeled as a compressible Newtonian fluid,

r ¼ jðln JÞIþ lðr � v þ ðr � vÞTÞ;

where v is the velocity of water, J ¼ q0=q, and q0; q are the water density in the reference configuration and the current
configuration. The bulk modulus and the viscosity of water are chosen as j ¼ 2:2 (GPa) and l ¼ 0:6 (MPa s). The ambient
space is modeled as the air, and the surface energy of water–air interface is c ¼ 72:75 (MN/m) (see [46]).

Fig. 22 shows the time sequences of the radial distances between the center of the water drop and the points A and B on
the surface of a water droplet as shown in Fig. 21 by prescribing the surface tension based on analytical solution of Young’s
equation, which we refer to as The Surface Traction Method, and by using the proposed multiscale FEM dynamic wetting mod-
el, which we refer as The Proposed Method. One may find that first as time increases the radial coordinates of point A and
point B become the same, i.e. the original ellipse becomes a circle. This makes sense because the surface of a liquid drop

Fig. 20. The solid–gas interface element in three dimensional simulation.
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tends to contract in order to attain the smallest possible surface area, and a sphere (in 2D a circle) has the smallest surface
area for a given volume [42]. This ellipse to circle deformation process is displayed in Fig. 23, and the simulation is conducted
by using the proposed discrete surface tension method. A same numerical simulation is conducted for a suspended 3D water
droplet, in which we apply surface tension the surface of an ellipsoidal by using the proposed method. Under the action of
the surface tension, the ellipsoid becomes a sphere (see Fig. 4). Moreover, from Fig. 22, one may find that the proposed dis-
crete surface tension method provides the exact same results as that by using the analytical surface traction method, which
validates the discrete surface tension method. The same validation is also performed in three dimensional case, in which the
surface tension is applied to a water drop with initial ellipsoidal shape by using the discrete surface tension method. Fig. 24
shows the deformation time sequence in which an ellipsoid becomes a sphere under the prescribed surface tension by using
the proposed discrete surface tension method.

7.2. Capillary rise

In this example, we simulate the capillary rise and compare the simulation result with the analytical result. The analytical
solution of the capillary rise in a tube is known as the solution of the Lucas–Washburn equation [27,49], which can be ex-
pressed in the following expression,

hðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rc cos h

2l
t

s
; ð100Þ

where hðtÞ is the equilibrium height, R is radius of a tube, c is surface tension between the liquid and gas, h is contact angle, l
is dynamic viscosity of the liquid, and tis time.

The analytical solution for the equilibrium height for a 2D channel is

hðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Rc cos h

3l
t

s
ð101Þ

and the equilibrium height is also proportional to square root of time (see Fig 25).
In this section, a two-dimensional simulation is performed, and it is compared with the analytical solution Eq. (101). The

finite element model of capillary rise is shown in Fig. 26, in which the symmetric condition is used in computations. The
distance between two walls is 2R ¼ 8 (nm), surface energy between the liquid and gas is c ¼ 72:75 (MN/m), contact angle
is h ¼ 50�, dynamic viscosity is l ¼ 1 (MPa s), and the solid is considered to be a rigid body. The body-surface interaction
method of the Coarse Grained Contact Model is applied to the interaction between the liquid and solid.

When the Coarse Grained Contact Model is used in simulation, there is a gap between two contacting bodies. To check
whether or not a node of liquid surface node is in contact with the solid surface, the following contact detection algorithm
is applied in the computation: In the case of two dimensional simulations, the solid surface equation may be represented as a
linear equation axþ byþ c ¼ 0, where a; b and c are constant coefficients, and the liquid node is defined as x0 ¼ x0; y0ð Þ, thus,
the distance between the liquid node and solid surface D is given by

D ¼ j ax0 þ by0 þ c jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p : ð102Þ

In three dimensional computations, the solid surface equation is described by axþ byþ czþ d ¼ 0, where a; b; c and d are
constant coefficients, and the liquid node is x0 ¼ x0; y0; z0ð Þ, and thus, the distance between the liquid node and solid surface
D is given by

D ¼ j ax0 þ by0 þ cz0 þ d jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2 þ c2

p : ð103Þ

If D < �, where � is the contact tolerance, the liquid node is in contact with the solid surface.

100 [nm]

50 [nm] A

B

Fig. 21. Two dimensional model of water drop under surface tension.
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The comparison between the analytical solution and the numerical solution of the equilibrium height is shown in Fig. 27.
In Fig. 27, the method 1 and 2 refer to the two different FEM implementations: (1) FEM implementation based on Eq. (51)

and (2) FEM implementation based on Eq. (52).
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Fig. 22. The radial coordinates of points A and B calculated by using the surface traction method and the proposed surface tension method.

Fig. 23. Deformation of an ellipse due to the surface tension: (a) 0 (ns), (b) 20 (ns), (c) 40 (ns), (d) 60 (ns), (e) 80 (ns), (f) 500 (ns).

Fig. 24. Deformation of an ellipsoid due to the surface tension: (a) 0 (ns), (b) 20 (ns), (c) 40 (ns), (d) 60 (ns), (e) 80 (ns), (f) 500 (ns).
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Both method 1 and 2 yield almost the same results, but they are different from the analytical solution at the beginning of
the simulation. The analytical solution, Eq. (101), assumes the constant contact angle during the capillary rise, and this is the
reason why the equilibrium height of the analytical solution sharply rises at the beginning of the simulation. On the other
hand, the contact angle in dynamic wetting changes with time during the actual physical event, as well as in the virtual sim-
ulation by using the proposed dynamic wetting model. Because of these differences, the analytical solution and the numer-
ical solution obtained in computations are different at the beginning of the simulation. Furthermore, the equilibrium height
of the analytical solution keeps increasing because the equilibrium height is simply proportional to square root of time (see
Eq. (101)). On the other hand, our simulation shows that the simulated equilibrium height of the proposed method is sat-
urated after 0.1 (ns).

R2

h

θγ cos

θγ cos

Fig. 25. Capillary rise between two walls.

Fig. 26. FEM model of the capillary rise.
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Fig. 27. The analytical solution and numerical simulation result of the equilibrium height.
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Fig. 28 shows the relationship between the equilibrium height and the square root of time. The factor of proportionality of
analytical solution is 11:167 ðnm=

ffiffiffiffiffiffi
ns
p
Þ, and the slope of the approximation line of the numerical simulation result is

11:035; ðnm=
ffiffiffiffiffiffi
ns
p
Þ. Hence, it is fair to say the result obtained from the proposed dynamic wetting model is in good agreement

with the analytical solution, especially in middle section the simulation. The deformed liquid column at the time 0.1 (ns) is
shown in Fig. 29.

7.3. Droplet spreading

In this example, we report the simulation of droplet spreading by using the proposed MDWM method. In this example,
the liquid phase is a water droplet, and it is modeled as a Newtonian fluid. The solid phase is chosen as a single crystal copper

Fig. 29. The deformation of the capillary rise at 0.1 (ns).

10 [nm]

Fig. 30. FEM simulation model for droplet spreading in two dimension.
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Fig. 31. The comparison of the contact angles between numerical results and experimental data.
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substrate, whose material properties, including surface energy and surface tension, are derived by an atomistic potential in
combination of the surface Cauchy–Born rule. In specific, we adopt the EAM-Holian potential in the computation [19,47].
Last the gas phase is chosen as air. A two-dimensional FEM droplet/substrate model is shown in Fig. 30. There is no FEM
discretization for ambient air environment.

(a) (b)

(c () d)

(e) (f)

(e) (f)

Fig. 33. The deformation: (a) 0 (ns), (b) 0.01 (ns), (c) 0.03 (ns), (d) 0.06 (ns), (e) 0.10 (ns), (f) 0.15 (ns), (g) 0.20 (ns), (h) 1.00 (ns).
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Fig. 32. The contact force in the parallel direction of the solid surface at the contact line.
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In this triple system, the bulk modulus and the viscosity of water are given as j ¼ 2:2 (GPa) and l ¼ 0:6 (MPa s). The sur-
face energy between the water and air is cLG ¼ 72:75 (MN/m) [46], the surface energy between the copper and air is
cSG ¼ 1780 (MN/m) [45]. The surface energy between the water and copper is derived from the Young equation and the
experimental contact angle which is about 40� [24],

cLS ¼ 1780� 72:75 cos 40 ¼ 1724 ðMN=mÞ: ð104Þ

The material parameters of EAM-Holian/Cauchy–Born rule are listed in Appendix.
The parameters of Lennard–Jones potential used in the Coarse Grained Contact Model are computed from the arithmetic

and geometric mean of the parameters from the pure water (w) and pure copper (c):

�cw ¼
ffiffiffiffiffiffiffiffiffiffi
�c�w
p

ð105Þ

and

rcw
0 ¼

1
2

rc
0 þ rw

0

� �
: ð106Þ

The parameters of Lennard–Jones potential for water are obtained from [3], �w ¼ 0:0067 (eV) and rw
0 ¼ 0:355 (nm). The

parameters of Lennard–Jones potential for copper are �c ¼ 0:073 (eV) and rc
0 ¼ 0:260 (nm). Hence, from these equation,

�cw ¼ 0:022 (eV) and rcw
0 ¼ 0:3075 (nm).

The history of dynamic contact angle is shown in Fig. 31. In this figure, the experimental contact angle is the equilibrium
contact angle. FEM calculation results fluctuate, this is because that the liquid element makes contact with the solid surface
one at time along the contact line in the spreading front, which causes numerical fluctuation. The numerical results also de-
pend on the integration techniques used in the coarse-grain contact model (CGCM). The readers may find the detailed dis-
cussions on the body-to-body and the body-to-surface integrations in [32].

To calculate adhesive interaction of two bodies, we use either the body-to-body integration technique or the body-to-sur-
face integration technique introduced in CGCM [38–41]. If we use the body-surface interaction method in simulations, the

(a) (b)

(c d)

(e) (f)

(g

()

() h)

Fig. 34. The deformation: (a) 0 (ns), (b) 0.005 (ns), (c) 0.01 (ns), (d) 0.02 (ns), (e) 0.04 (ns), (f) 0.06 (ns), (g) 0.08 (ns), (h) 0.10 (ns).
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Fig. 35. The simulated dynamic contact angle.
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Fig. 36. The dynamic contact angle.

Table 1
The material parameters of EAM-Holian. The experimental date are obtained from [5].

Parameter Experiment EAM-Holian

Cu C1111 (GPa) 169 168:2
C1122 (GPa) 122 117:5
C1212 (GPa) 75:3 83:2
� (eV) 0:43894774
r0 (Å) 2:57110688

Ag C1111 (GPa) 123 121:0
C1122 (GPa) 92 84:5
C1212 (GPa) 45:3 59:8
� (eV) 0:45921505
r0 (Å) 2:91297151

Al C1111 (GPa) 108 95:4
C1122 (GPa) 62 66:7
C1212 (GPa) 28:3 47:2
� (eV) 0:35153936
r0 (Å) 2:88448279

Au C1111 (GPa) 190 186:7
C1122 (GPa) 161 130:4
C1212 (GPa) 42:3 92:3
� (eV) 0:70311064
r0 (Å) 2:90584933

Ni C1111 (GPa) 247 239:1
C1122 (GPa) 153 167:0
C1212 (GPa) 122 119:2
� (eV) 0:58932496
r0 (Å) 2:47623650
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dynamic contact angle converges to 41�, which is almost the same as the experimental contact angle. On the other hand, if
we use the body-body integration method, the dynamic contact angle converges to 35�. Fig. 32 shows that the contact force
is in the parallel direction of the solid surface at the contact line. Since copper is much stiffer than water, the deformation of
the copper substrate is almost negligible. Moreover since the solid surface is large enough, the contact force in the horizontal
direction must be zero. Indeed, the body-surface interaction method shows zero horizontal force, but the body-body inter-
action method shows large horizontal force compared to the value of surface energy. Due to the existence of this imbalance
force, the contact angle of the body-body interaction method may converge to a different angle from that observed in the
experiment. A time sequence of the 2D water droplet spreading is shown in Fig. 33.

In addition to the two dimensional analysis, three dimensional simulations have also been performed. The simulation
conditions of three dimensional analysis are exactly the same as that of the two dimensional analysis. The spreading se-
quence of the water drop are shown in Fig. 34.

Second, the proposed MDWM method is also tested against with Molecular Dynamics simulation of droplet spreading
reported by Blake et al. [4]. The simulation model is the same as that shown in Fig. 30. The liquid is assumed to be hexadec-
ane, and the parameters of Lennard–Jones potential between the liquid and solid are chosen as: �ls ¼ 0:0259 (eV) and
rls

0 ¼ 0:39 (nm). The viscosity of the liquid is: l ¼ 5:82 (MPa s), and the surface energy between the liquid and gas is chosen
as: 27.5 (MN/m), which are obtained based on the data of molecular dynamics simulation. In the MD simulation [15], the
material of the solid phase is not specified. However by analyzing the MD simulation results, we find that the interface en-
ergy between the solid substrate and the air is close to that of copper/air interphase, cSG ¼ 1780 (MN/m) [45]. In this triple
system, the equilibrium contact angle is 120�, the surface energy between the liquid and gas is cLS ¼ 1794:25 (MN/m) which
can be estimated from the Young equation. Similarly, if the equilibrium contact angle changes to 90� or 50�, the surface en-
ergy between the liquid and gas will change to cLS ¼ 1780 (MN/m) and cLS ¼ 1761:68 (MN/m) respectively.

In this simulation, the contact angle is defined as the average angle of three elements along the contact line as shown in
Fig. 35. The dynamic contact angle history obtained by using the proposed method is displayed in Fig. 36. Although the re-
sults obtained via the proposed method fluctuate due to the discrete nature of finite element method, the dynamic contact
angle of the proposed method are in general agreement with the result obtained by using Molecular Dynamics.

8. Discussions

In this work we have presented, derived and studied a multiscale dynamic wetting model at mesoscale or maybe even
macroscale level. The proposed multiscale dynamic wetting model is a nonlinear continuum model with featured capacities
such as describing surface energy and surface tension, modeling adhesive contact, and capturing large and finite
deformation.

The heart of the proposed MDWM model is the admixture of the coarse-grained contact model (CGCM) and the finite ele-
ment based contact line theory. Because of this combination, the colloidal repulsive force levitates or separates the liquid
phase from the solid substrate, which effectively eliminates the singularity problem that has been plagued with in the con-
ventional contact line theory for many years. It is this advantage that allows us to simulate dynamic wetting phenomena
such as droplet spreading, capillary rise, and more at continuum scale.

Two different implementations of the surface stress algorithm are discussed in this paper. We have implemented the
method to simulated both capillary rise and droplet spreading problems in both two-dimensional and three-dimensional
spaces. The results of the numerical simulations are in general agreement with either the analytical, experimental, or molec-
ular dynamics simulation results.

The proposed multiscale dynamic wetting model can be naturally extended as a general theoretical and computational
framework that incorporates the surface Cauchy–Born model based surface continuum mechanics theory instead of using
the phenomenological Gurtin–Murdoch theory, which will be discussed in the future work.
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Appendix A. The Embedded Atom Method: Holian et al. Model

In this section, the Embedded Atom Method developed by Holian et al. [19,47,20] is introduced. This method is called
EAM-Holian in this dissertation.

The pairwise interaction function has the cutoff form,

/ rð Þ ¼

vw rð Þ r < rspl;

v w rspl

� �
þ @w

@r rspl

� �
r � rspl

� �
� 1

6 A r � rspl

� �3
n o

rspl 6 r < rmax;

0 rmax 6 r;

8>><
>>:
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where v is a weighting parameter between zero and one, the parameter value v ¼ 1=3 is taken for the Embedded Atom
Method, rspl is the inflection point in the potential, rmax is the cutoff distance,

w rð Þ ¼ � r0

r

� �12
� 2

r0

r

� �6
	 �

and

A ¼
8 @w

@r rspl

� �� �3

9 w rspl

� �� �2 ;

where � is the depth of the potential well, r0 is the equilibrium distance. The inflection point rspl can be obtained by

@2w
@r2 rspl

� �
¼ 0

and the value is rspl ¼ 1:244455r0 . The cutoff distance is given by

rmax ¼ rspl �
3w rspl

� �
2 @w
@r rspl

� �
and the value is rmax ¼ 1:547537r0. For r < rspl, the pairwise interaction function is the exactly same as the Lennard–Jones
potential, and the intermediate-range cubic spline [20] for rspl 6 r 6 rmax. The derivative of the pairwise interaction function
is

/ rð Þ ¼
v @w

@r rð Þ r < rspl;

v @w
@r rspl

� �
� 1

2 A r � rspl
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n o
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>>:
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:

The electron density function is given by

q rð Þ ¼
1

d dþ1ð Þ
r2

max�r2

r2
max�r2

0

� �2
r < rmax;

0 rmax 6 r;

8<
:

where dis the dimensionality. The derivative of the electron density is given by

@q
@r
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� 4

d dþ1ð Þ
r r2

max�r2ð Þ
r2

max�r2
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The embedding energy function is chosen to be a nonlinear function of the form,

F qð Þ ¼ 1� vð Þ� d dþ 1ð Þ
2

eq ln q;

where e is the base of the natural logarithms. Clearly, at normal density, where the local embedding energy is q ¼ 1=e, the
embedding energy contributes a fraction 1� v to the total cohesive energy. The derivative of the embedding energy function
is given by

@F
@q

qð Þ ¼ 1� vð Þ� d dþ 1ð Þ
2

e ln qþ 1ð Þ:

Finally, there are only two material parameters, the depth of the potential well � and the equilibrium distance r0. These
parameters are not shown in references and are obtained by following way in this dissertation. First, the equilibrium dis-
tance r0 is determined as r ¼ 0 when there is no deformation, F ¼ I. The Cauchy stress is computed from the Cauchy–Born
rule. In this calculation, � is taken to be unity, � ¼ 1, and up to the third nearest neighbors on FCC lattice are considered. Sec-
ond, the depth of the potential well � is obtained by least squares method,

Cexp
1111 � �C

CB
1111

� �2
þ Cexp

1122 � �C
CB
1122

� �2
þ Cexp

1212 � �C
CB
1212

� �2
¼ Min;

where Cexp
1111; Cexp

112 and Cexp
1212 are the experimental values, and CCB

1111; CCB
112 and CCB

1212 are obtained from the Cauchy–Born rule. By
taking the derivative with respect to �, we have
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� ¼ Cexp
1111CCB

1111 þ Cexp
1122CCB

1122 þ Cexp
1212CCB

1212

CCB
1111

� �2
þ CCB

1122

� �2
þ CCB

1212

� �2 :

Table 1 shows the fitting results and the material parameters. The experimental data are taken from [5].
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