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Abstract In this paper, we present a novel theory of the higher-order quantum stress and its formulations in the
framework of density functional theory. Specifically, we have systematically derived the third-order quantum
stress expression based on the higher-order Cauchy–Born rule in combination with the higher-order strain gra-
dient theory. The higher-order quantum stress formulation provides a theoretical foundation for first-principle
calculation of stress couples at atomistic scale, which may help us understand possible quantum strain gradient
effects, and related ferroelectric and flexoelectric effects at small scales.

1 Introduction

Stress is a key physical quantity or statistical measurement variable of condensed matters, because it not only
manifests the thermodynamics state of the material, but also influences or relates to other physical quantities
or state variables of the material, such as temperature, strain, electron density distribution, chemical element
concentration, and electric and magnetic polarizations. In continuum mechanics, stress or Cauchy stress is
defined as the intensity of the internal force based on a phenomenological physical model and mathematical
idealization. Even though the concept of the stress is extensively used in macroscale engineering design, the
physical origin of the stress has never been emphasized there. On the other hand, the application of continuum
theory-based stress concept to nanoscale engineering design is severely limited, because of the ambiguity in
the definition of stress at atomistic scale and nanoscale where is now the frontier of nanoscience and nano-
technology. Hence, understanding the quantum mechanical interpretation of stress or the quantum mechanical
origin of the stress will greatly facilitate and promote the growth of nanotechnology.

For crystalline or quasi-crystalline solids at nanoscale or atomic scale, the stress state usually corresponds
to nonuniformity or heterogeneity of lattice structure and electronic structure. The term of quantum stress is
almost uniquely reserved for those stress states caused by the distortion of electronic structures. Moreover,
the development of contemporary material engineering and nanotechnology has lead to a host of applications
where we encounter highly localized strain gradient at atomistic scale, such as lattice point defects, atomic
interstitial, quantum dots, other related quantum confinements, and ultra thin film. In these cases, both local
and nonlocal strain gradient or the gradient of electric polarization will generate a significant amount of stress
dipole distribution or couple stress that will significantly alter the material responses and hence change its
overall behaviors. The objectives of this work are examining the concept of higher order quantum stress and
deriving its formulation.
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In continuum mechanics, strain gradient theory [5] has been developed to understand the plastic deforma-
tion in mesoscale or other nonlocal elastic deformation [1]. The general higher-order stress is defined as work
conjugate of the corresponding strain gradient. Several specialized versions were investigated to simplify the
theory and provide physical interpretation. Among them, couple stress theory that deals with only a subset of
strain gradient tensor is popularly used, which follows a theoretical framework of work conjugate between
couple stress and deformation curvature. We shall adopt a similar mathematical framework in this work as
well.

This paper is organized in six sections. We shall first review the Nielsen-Martin quantum stress theory in
Sect. 2. In Sect. 3, we start to introduce the concept and to derive the general expressions of the third-order
quantum stress. In Sect. 4, we discuss the density functional theory (DFT)-based higher-order quantum stress,
and in Sect. 5, we shall derive the DFT-based couple stress formulation. Finally, in Sect. 6, we conclude the
presentation by making a few remarks on the proposed quantum strain gradient theory and the quantum couple
stress theory.

2 Review of quantum stress theory

Regarding to its atomistic origin, stress in crystalline solids comes from the two sources: (i) the deformation
and vibration of crystal lattice or configuration of atom (nuclei or ion) assembly, and (ii) the deformation or
re-configuration of both local and global electronic structure in the material.

With respect to the first source, i.e., the origin of stress is due to the kinetic (vibration) as well as kinematic
(geometric and deformable) change of lattice structure of the material, this type of stress is mainly associated
with the so-called virial stress,

σ = 1

|�|
∑

i∈�

⎛

⎝−m(i)(v(i) − v̄)⊗ (v(k) − v̄)+ 1

2

∑

j∈�
(x( j) − x(i))⊗ f (i j)

⎞

⎠ (1)

where i and j are indices for atoms inside the unit cell �; x(i) and x( j) are the position vectors for the i-th
atom and j-th atom; v(i) and v( j) are the velocity vectors for the i-th atom and j-th atom, while

v̄ = 1

N

N∑

i=1

vi

is the average velocity, where N is the total number of atoms inside the unit cell Ω . We further note that in
Eq. (1) m(i) is the mass for the i-th atom, and f (i j) is the interatomic force from the i-th atom to the j-th atom.

There are several different ways to derive and to interpret the virial stress, and the most cited source is the
so-called Irving–Kirkwood formalism [14]. The virial stress of an atom or molecule assemble can be calcu-
lated in molecular dynamics computations. One may also note that the virial stress depends on three things:
(i) vibrational state of an assembly of atoms, (ii) deformation or the strain state of the assembly that displace
the atom position, and (iii) defect state of the assembly, e.g., adding or deleting an atom from the assembly by
radiation or ion diffusion, which will also induce strain eventually, but that is usually called relaxation strain.
Since this is beyond the scope of this work, we refer readers to consult the relevant literature, e.g., [14,15].

In this paper, we are concerned about another type of stress that is the quantum stress. Quantum stress
is originally referred to the stress induced from the change of the electronic structure or electron density
of the many-body quantum system. The change of the electronic structure may be due to different sources,
for example, deformation state may distort electron structure, light scattering or radiation may knock some
electrons away from bulk materials, holes/electron diffusion, etc. We refer to the quantum stress due to the
change of electron density from non-mechanical sources as either Quantum Electronic Stress [13] or Quantum
Radiation Stress if the change of the electronic structure is due to an optical/electrical source or the source
of high-energy particles. In fact, those topics are also active and exciting topics in nanomechanics, but in this
paper, we are focusing on strain or mechanical source-induced electronic structure change, and its consequence
on high-order stress states.

It may be noted that since we do include the interaction among nuclei in the ground state, some part of the
lattice virial stress may also be taken into consideration in the quantum stress formulation as well. On the other
hand, the atomistic potential used in virial stress may be calibrated by using first-principle-based quantum
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mechanical methods, and thus, it contains some information of electron density change, so does the quantum
stress, for instance if we use the embedded atom method (EAM) [3]. However, such inclusion of quantum
stress is empirical, and until today, no higher-order virial stress has been derived, which remains to be an open
subject in nanomechanics.

In their pioneer work, Nielsen and Martin [8,9] first introduced the concept of quantum stress due to a
mechanical source, which reveals the quantum mechanical origin of stress–strain relation, and its dependency
on the electronic structure and its deformed configuration. The expression of the quantum stress derived by
Nielsen and Martin is

T = −
∑

i

〈
Ψ

∣∣∣
pi ⊗ pi

mi
− ∇Vint ⊗ ri

∣∣∣ Ψ
〉

(2)

where pi is the moment vector of the electron, mi is the mass of the electron, ri is the position of the electron,
Ψ is the wave function, and Vint is the internal potential energy. In the literature of physics, we often write the
component form of Eq. (2) as

Tαβ = −
∑

i

〈
Ψ

∣∣∣
piα piβ

mi
− riβ�iα(Vint)

∣∣∣ Ψ
〉

(3)

where Ψ is the wave function, piα is the momentum of particle i , Vint denotes the internal potential energy, mi
and riβ represent mass and coordinate of i-th particles, and T is the quantum Cauchy stress of the many-body
system.

The quantum stress expressed in Eq. (2) is, however, difficult to evaluate due to the complexity of the
wave function of the many-body problem. In computational chemistry or computational materials, density
functional theory (DFT) [6,7] is proved to be an efficient approach to obtain the ground-state wave function
and electron density with satisfactory accuracy.

The total internal energy Eint of a many-body system in the framework of DFT has five parts:

Eint = Ekin + Eion−electron + Eion−ion + EHartree + Exc, (4)

that is: Ekin—the kinetic energy, Eion−electron—the potential energy due to the ion–electron interaction,
Eion−ion—the potential energy due to the ion–ion interaction, EHartree—the Hartree potential, and Exc—the
exchange-correlation potential energy. In general, the exchange-correlation potential energy is unknown; how-
ever, it can be estimated under different approximations. In this paper, the so-called local density approximation
is adopted.

Hence, the total DFT quantum stress based on the local density approximation (LDA) [12] consists of five
parts corresponding to the five parts of internal energy. For reference, we list the five parts of the quantum
stress one by one as follows:

1. The kinetic contribution of noninteracting electrons,

−
∑

i

1

mi
〈ψi |pi ⊗ pi |ψi 〉 , (5)

where mi is the mass of the electron, and ψi are wave funcions of a noninteracting system;
2. The ion–electron stress,

− 1

2
e2

∑

I

∫
n(r)V ′

ion−e(|r − RI |) (r − RI )⊗ (r − RI )

|r − RI | d3r, (6)

where Vion−e is the potential energy between nuclei and electrons, n(r) is the electron density, and e is the
charge of the electron;

3. The ion–ion potential stress,

− 1

2
e2

∑

I,J
I �=J

Z I Z J
(RI − RJ )⊗ (RI − RJ )

|RI − RJ |3 , (7)

where RI and ZI are the I -th nuclei’s position and charge number;
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4. The Hartree stress,

− 1

2
e2

∫∫
n(r)n(r′) (r − r′)⊗ (r − r′)

|r − r′|3 d3rd3r′, (8)

5. The exchange and correlation stress,

δαβ

∫
n(r)[ϑxc(n)− μxc(n)]d3r, (9)

where ϑxc and μxc represent the exchange-correlation energy density and the exchange-correlation potential,
respectively.

The sum of the above five parts of the stress is the total quantum stress based on DFT theory, which provides
an average measure of stress for a many-body system in the ground state.

3 Higher-order quantum stress theory

Our objective is to study the higher-order quantum stress caused by electronic structure polarization, distor-
tion, and defect. Therefore, in this paper, we neglect the kinetic energy of the nucleus and the effects of its
probability distribution (wave function).

We employ an electronic coordinate transform technique that is a generalization of the coordinate trans-
form adopted by Nielsen and Martin [9]. We scale the electronic coordinates in the ground state by using the
following second-order transformation.

ri → Fi · Ri + 1

2
Gi : Ri ⊗ Ri = Bi · Ri , i = 1, 2, . . . , Ne (10)

where Ne is the number of electrons in the system. For simplicity in the rest of the paper, we sometimes drop
the index i if no confusion will be caused.

Considering the case of infinitesimal deformation, or the case of small strains, we let

F = 1 + ε

be the first-order deformation gradient. By defining the gradient of the strain tensor as

G := ∇ ⊗ ε,

we can express the second-order Taylor expansion of the deformation gradient as follows:

B = F + 1

2
G · R = I + ε + 1

2
∇ ⊗ ε · R. (11)

One can readily show that

B−1 = I − ε − 1

2
∇ ⊗ ε · R + O

(
|ε|2, |∇ ⊗ ε · R|2

)
. (12)

For the convenience of subsequent derivation, we denote

c := B−T · B−1 = I − 2ε + ε · ε + ε · ∇ ⊗ ε · R − ε · R + 1

2

(
∇ ⊗ ε · R

)T ·
(
∇ ⊗ ε · R

)
. (13)

Now, we consider the total energy of the quantum-mechanical system, i.e., the expectation of the Hamil-
tonian of a many-body system,

E =
〈
Ψε

∣∣∣ H
∣∣∣ Ψε

〉
, (14)

where the many-body Hamiltonian is defined as

H =
Ne∑

i=1

pi ⊗ pi

2mi
+ Vint({ri }, {rI })+ Vext({ri }, {rI })
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where Vint is the internal potential energy, and Vext is the external potential energy. Note that the index
i = 1, 2, . . . , Ne indicates the number of electrons, and the index I = 1, 2, . . . , Na indicates the number of
nuclei in the system, and we use symbols

{ri } := {r1, r2, . . . , rNe} and {rI } := {r1, r2, . . . , rNa }

to denote their assembly sets.
In Eq. (14), Ψε is the scaled wave function, which is defined as

Ψε(r) = 1

J 1/2Ψ (R) = 1

J 1/2Ψ (B
−1 · r) = 1

J 1/2Ψ ((I + ε + 1/2∇ ⊗ ε · R)−1r)

where J = detB. The factor J 1/2 will ensure the probability normalization condition,

∫
ΨεΨ

∗
ε dVr = 1,

because the volume element in the current configuration dVr is the product of the Jacobian and the volume
element in the referential configuration, i.e., dVr = JdVR .

Changing the variable r → R, we have

E =
〈
Ψε

∣∣∣ H
∣∣∣ Ψε

〉

=
∫
Ψ ∗(R)

[
∑

i

1

2mi

(
c : pi ⊗ pi

) + Vint(B · R)+ Vext(B · R)

]
Ψ (R)dVR (15)

where Ψ ∗(R) is the complex conjugate wave function.
We first change the dummy variable to conform with the standard notation, i.e., Ri → ri and RI → rI .

By assuming that the many-body system is in equilibrium, the stationary condition of the equilibrium system
reads as

∂E

∂{G}
∣∣∣{ε}=0,{G}=0

=
∑

i

〈
Ψ

∣∣∣ −pi ⊗ pi ⊗ ri

mi
+ 1

2
∇i (Vint + Vext)⊗ ri ⊗ ri

∣∣∣ Ψ
〉

= 0 (16)

where

{G} = {G1,G2, . . . ,GNe}, and {ε} = {ε1, ε2, . . . , εNe}.

If one defines the higher-order quantum stress as

Q := −∂ < Eext >

∂G
= −1

2

∑

i

〈
Ψ

∣∣∣ ∇i Vext ⊗ ri ⊗ ri

∣∣∣ Ψ
〉
, (17)

then, based on Eq. (16), we have the following expression for the quantum stress in terms of electronic kinetic
energy, position, and their electrostatic interaction:

Q =
∑

i

〈
Ψ

∣∣∣ −pi ⊗ pi ⊗ ri

mi
+ 1

2
∇i (Vint)⊗ ri ⊗ ri

∣∣∣ Ψ
〉
. (18)

The above expression may be interpreted as

Q = ∂

∂G

(
< Eint >

)
, and Eint = Ekin + Vint.
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4 Higher-order quantum stress in the Kohn–Sham density functional theory

The higher-order quantum stress formulation derived in Eq. (18) is very difficult to be evaluated, because it
needs the complete solution of the many-body Schrödinger equation.

Similar to the quantum stress formulation, a more practical approach is to evaluate the higher-order quan-
tum stress by only considering the contribution from the ground-state wave function, or the electronic density,
which can be obtained from the standard DFT calculation.

Again, the total energy of the many-body system based on the density functional theory can be split into
five parts,

Eint = Ekin + Eion−electron + Eion−ion + EHartree + Exc, (19)

where

Ekin =
∑

i

〈
ψi

∣∣∣∣∣
p2

i

2mi

∣∣∣∣∣ψi

〉
, (20)

Eion−electron =
∫

n(r)
∑

i

Vion−e(r − RI)d
3r, (21)

Eion−ion = 1

2

∑

I �=J

2Z2

|RI − RJ| , (22)

EHartree = 1

2

∫∫
n(r)n(r′)
|r − r′| d3rd3r′, (23)

Exc =
∫

n(r)ϑ(n)d3r, (24)

Define the third-order quantum stress as the work conjugate of G,

Q = ∂Eint

∂G
= ∂Eint

∂r
· ∂r
∂G

+ ∂Eint

∂R
· ∂R
∂G

. (25)

Thus, by applying the transformation (10) to Eqs. (22)–(20), the second-order quantum stress Q can be
derived from Eq. (25), and for clarity, we write down the contribution of each part:

1. The kinetic contribution:

Qkin = −
∑

i

〈
ψi

∣∣∣∣
pi ⊗ pi ⊗ ri

2mi

∣∣∣∣ψi

〉
; (26)

2. The ion–electron part:

Qie = −1

4
e2

∑

i

∫
n(r)V ′

ion
(r − RI )⊗ (r ⊗ r − RI ⊗ RI )

|r − RI | d3r; (27)

3. The ion–ion part:

Qi i = −1

4
e2

∑

I,J
I �=J

Z I Z J
(RI − RJ)⊗ (RI ⊗ RI − RJ ⊗ RJ )

|RI − RJ |3 ; (28)

4. The Hartree part:

QH = −1

4
e2

∫∫
n(r)n(r′) (r − r′)⊗ (r ⊗ r − r′ ⊗ r′)

|r − r′|3 d3rd3r′. (29)

It is noted that under the local density approximation [7] the exchange and correlation energy in Eq. (24) is
a local function of r, and it gives rise to an isotropic pressure. Thus, it does not contribute to the higher-order
quantum stress, namely Qxc = 0.
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5 Quantum couple stress

In this section, motivated by the continuum coupled stress and flexoelectricity, e.g., [4,5,11] and [2,10], we
consider a special class of higher-order quantum stress, i.e., the quantum couple stress. Taking into account the
quantum effects, we derive the quantum couple stress by using the gradient of rotation to simplify the general
quantum strain gradient theory, and moreover, we give plausible physical interpretation of the quantum couple
stress.

We first start from decomposing the general second-order strain into a symmetric part GS representing the
stretch gradient, and an anti-symmetric part of curvature measure GA,

G = GS + GA. (30)

Similarly, Q can also be partitioned into a symmetric part and an anti-symmetric part, that is,

Q = QS + QA. (31)

According to strain gradient theory [5], QS is orthogonal to GA ; thus, the density of the virtual work can
be written as

δw = σ : δε + QS ...δGS + QA...δGA. (32)

In this paper, we mainly focus on the anti-symmetric contribution, which has a clear physical meaning.
This term represents the work done by the couple stresses m acting through the curvature increment δχ [5] ,
that is,

QA...δGA = m : δχ . (33)

Since the curvature is defined as [5]

χi j = 1

2
eiqr G A

jqr , (34)

we then have the relationship

G A
i jk = 2

3
(eikpχpj + e jkpχpi ) (35)

where eikp is the permutation symbol.
Hence, the transformation becomes

ri → Fi jr j + 1

2
G A

i jkr j rk

= Fi jr j + 1

3
(eikpχpj + e jkpχpi )r jrk . (36)

Therefore, the quantum couple stress can be derived as

m = ∂Eint

∂χ
= ∂Eint

∂r
· ∂r
∂χ

+ ∂Eint

∂R
· ∂R
∂χ

. (37)

Following a similar procedure as the derivation of general higher-order quantum stress and substituting
Eq. (36) into Eqs. (22)–(20), and using Eq. (37), we can then write each part of quantum couple stress as
follows:

1. Contribution from kinetic energy:

mkin = −4

3

∑

i

〈
ψi

∣∣∣∣
(pi × ri)⊗ pi

2mi

∣∣∣∣ψi

〉
; (38)
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2. Contribution from the ion–electron interaction:

mie = −1

6
e2

∑

i

∫
n(r)V ′

ion−e(|r − RI |) (r × RI )⊗ (r − RI)

|r − RI| d3r (39)

where n(r) is the electron density, and Vion−e is the potential energy among nuclei and electrons;
3. Contribution from the ion–ion interaction:

mi i = −1

6

∑

I,J
I �=J

Z I Z J
(RI × RJ)⊗ (RI − RJ)

|RI − RJ|3 (40)

where Z I is the charge number of I -th ion (nucleus).
4. Contribution from the electron–electron interaction (the Hartree part):

mH = −1

6

∫∫
n(r)n(r′) (r × r′)⊗ (r − r′)

|r − r′| d3rd3r′. (41)

Again the exchange-correlation part of the potential energy is isotropic in the case of local density approxi-
mation (LDA), and hence it does not contribute to the quantum couple stress.

6 Summary

The objective of studying higher-order quantum stress is to explore the atomistic origin of the continuum
higher-order stress, so that it can help us design novel materials that exhibit desired higher-order effects, for
example, the possible flexoelectric effects in advanced materials. In this paper, we have introduced a theory
of the higher-order quantum stress, and we have derived for the first time the analytical expressions of the
third-order quantum stresses and their expressions based on the Kohn–Sham density functional theory. In
particular, we have derived the analytical expression of the quantum couple stress for anisotropic materials in
ground state.

For crystalline, quasi-crystalline solids, or even some polymers, the continuum higher-order stress comes
from two sources: (i) the polarized lattice structure or the polarized molecular structures, and (ii) the polarized
electronic structures. Most time, these two are related, but they are not the same. The higher-order quantum
stress derived in this paper is a second part of the origin of the continuum higher-order stress.

Finally, an important point that we would like to emphasize is even though we might refer to the quantum
stress as the physical origin of the continuum stress, or continuum stress is the statistical manifestation of the
quantum stress, but the concept of continuum stress can never replace the concept of quantum stress. This is
because that at the atomistic scale or even nanoscale the concept of the continuum stress may not be valid
anymore, and at small scale, quantum stress is the only meaningful physical quantity for measuring material
stress state. Therefore, the formulas and expressions derived in this paper for the higher-order quantum stress
provide theoretical foundation for a first-principle study on higher-order stress and their applications.
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