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Al~tract--By employing the second-order Noether's theorem, several new invariant integrals have 
been derived for the non-linear shallow shell--the Marguerre-von K~irm~in shell. The dynamic effect 
is considered in the derivations. These invariant integrals are path-independent over the projection 
image of the middle surface of the shell in a Cartesian plane, in which the projection area of the 
middle surface of the shallow shell is maximum. The proposed invariant integrals can be used to 
evaluate the asymptotic field around a defect embedded in the shell. Unlike most other studies, the 
Lagrangian density of the invariant variational principle used here belongs to a mixed type vari- 
ational principle. © 1997 Elsevier Science Ltd. 

1. INTRODUCTION 

Since Eshelby first introduced his energy-momentum tensor in 1956, the conservation laws 
in elasticity theory have been thoroughly studied in the last three decades by, for example, 
Eshelby (1956, 1975), Rice (1968), Knowles and Sternberg (1972), Fletcher (1976), Edelen 
(1981), Delph (1982), Olver (1984a, 1984b, 1988), Eischen and Herrmann (1987), Suhubi 
(1989), Yeh et al. (1993a, 1993b) and others. 

A main reason for this seemingly ever-lasting interest in the subject is that some of  
these path-independent integrals can be related to the material properties near the vicinity 
of  a defect embedded in the continuum. The "J-integral" proposed by Rice (1968) exem- 
plified how powerful these invariant integrals can be in the application of  fracture mech- 
anics. 

Knowles and Sternberg (1972) and Fletcher (1976) systematically studied the con- 
servation laws of  elasticity by using the first-order Noether 's theorem, which mainly consider 
the invariant properties of  variational principles under a group of infinitesimal trans- 
formations. Although later Olver (1984a, 1984b, 1988) used Lie group theory to categorize 
all the invariance transformations and invariant integrals in linear elasticity, in practice, 
the J, L, and M integrals remain as the most important invariant integrals in applications. 
This is largely due to the fact that they represent some basic, intrinsic symmetry properties 
of  an isotropic continuous medium. 

However, how to apply the conservation laws of three dimensional (3-D) elasticity to 
engineering problems seems to be a nontrivial task, because, in reality, most practical 
engineering problems are modeled by specific structural theories, such as the theory of  
plates and shells, instead of  3-D elasticity itself. 

There are two different ways to approach the problem. The first approach takes 
invariant integrals of  3-D elasticity for granted and inserts particular forms of  energy, or 
energy rate of  the structure into those invariant integrals of 3-D elasticity, such as Bergez 
(1976), Nicholson and Simmonds (1980), Simmonds and Duva (1981 ). The main hypothesis 
behind this procedure is that the structure theory is viewed only as a degeneracy of  general 
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3-D elasticity. There may be some truths in doing so, but the effort or the attitude may not 
be always appreciated by both down-to-earth engineers and rigorous mathematicians. The 
reason is simple: if an engineer can use 3-D elasticity formulae to analyze a structural 
component, why does he need the theory of plates and shells at all? On the other hand, if 
one adopts the theory of plates and shells in the analysis, due to the fact that almost all the 
structural theories involve a priori  assumptions, the path-independent integral of  3-D 
elasticity is most likely not the actual invariant integrals for the particular differential 
equations that describe the behaviour of the particular type of structures involved. Precisely 
speaking, the invariant integrals in 3-D elasticity may not be compatible with the commonly 
used plate and shell theories. Indeed, those approximated or analogous integrals are usually 
not path-independent in the theories of plates or shells. As pointed out by Sosa and 
Herrmann (1989), a group of analogous invariant integrals proposed by Bergez (1976) for 
linear shell theory are not path-independent in the shell theory at all. In fact, most of the 
established structure theories are a set of closed, self-consistent mathematical system rather 
than just a degeneracy of 3-D elasticity. Therefore, the degeneracy approach of invariant 
integral for structural theory has its generic deficiency. 

The second approach is a series work conducted by G. Herrmann, H. Sosa and their 
colleagues (Sosa et al., 1988; Sosa and Herrmann, 1989; Chien et al., 1993); their phil- 
osophy relies upon the fact that the partial differential equations that govern the motions 
of a particular class of structures may yield their own invariant integrals. Therefore, it would 
be both technically significant and aesthetically appealing to establish the conservation laws 
based on the original structural theory, as the counterparts to complement those in 3-D 
elasticity. From this perspective, we believe, Sosa et al. (1988) first derived the three basic 
types of invariant integrals for Reissner-Mindlin plate theory via an efficient procedure, 
which was proposed early by Eischen and Herrmann (1987). 

Up to today, to the authors' knowledge, the issue on invariant integrals of nonlinear 
plate theory and shell theory in general are still open and far away from being completely 
resolved. In this paper, we present some new results about invariant integrals for a class of 
nonlinear shallow shell--the Marguerre-von K~rmfin theory, hoping to add some con- 
tribution to this matter. In the paper, the technical term, nonlinear shallow shell, is also 
used as the synonym of the initially deflected non-linear plate. 

It should be noted that since Olver's work (1986), using the tool of  Lie group and Lie 
algebra has become a standard technique in deriving invariant integrals from a variational 
principle, owing to the fact that the method possesses remarkable simplicity, and it 
approaches the matter in a systematic manner. Nevertheless, it may, sometimes, obscure 
the physical meanings of a mathematical operation. In order to keep a clear picture in 
physics, we adopt an old fashioned, engineering type derivation in this paper, such that it 
can be easily accessible, and more useful in engineering applications. 

2. PRELIMINARIES 

Most studies conducted on conservation laws of  elasticity are primarily based on the 
Noether's celebrated theorem (Noether, 1918), which was demonstrated only for the first- 
order variational problem, although a higher order, abstract expression was outlined in 
principle. For  the conventional elasticity theory, the Lagrangian density only involved with 
the first-order derivatives of the displacements, thus, the application of Noether's theorem 
is straight forward. On the other hand, the curvature-- the primary variable in the theory 
of plates and shells--is expressed in terms of  the second order derivatives of  the deflection 
of a plate, or a shell; consequently, the associated variational problem is a second-order 
variational problem. Thus, the derivation procedure of  invariant integrals based on the 
first-order Noether theorem needs to be modified and extended to encompass this general 
case. It should be mentioned that the method that was employed by Sosa et al. (1988) has 
been only used to derive invariant integrals for linear plate theories, and since the Mar- 
guerre-von K~rm~n theory is a nonlinear shell theory, there might be some difficulties to 
apply the method in this particular case, if not entirely impossible. 
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In fact, Noether's theorem was indeed extended to the second-order variational prob- 
lem (Logan and Blakeslee, 1975 ; Blakeslee and Logan, 1976, 1977). From the pure math- 
ematics view point, the extension is straight forward and elementary; however, from the 
physics, or application standpoint, for example the nonlinear shallow shell theory in this 
case, it certainly deserves special attention, and merits an independent treatment. For the 
sake of easy reference, we shall first outline the generalized version of Noether's theorem 
and the Marguerre-von K/trmfin shallow shell theory; and then we will derive the con- 
servation laws of the nonlinear shallow shell by applying the second order Noether's 
theorem. 

2.1. The second-order Noether Theorem 
Let D c ~" be a single, simply-connected region. We consider the following second- 

order fundamental integral, 

J(q) = Io L(x, q, c~q, c~2q) dx, (1) 

where x..=(xl . . . . .  x,), dx..= dxldXz. . .dx, ,  q.'=(ql(x) . . . . .  qm(x)), and q(x) e~ e~, 
c C4(D).  Note that 

C~ (D) .'= C 4 (D) x C 4 (O) . . . C 4 (D); (2) 

m 

The notation aq(x) and d2q(x) denote the collection of the first order and the second 
order derivatives of q, i.e. 

Oq,={q,k i ,=~ix i l<~k<~m,  1 <<.i<~n}, (3) 

{ e2¢1 t 632q : =  q,kj ._ OXiOX: <~ k <~ m, 1 <~ i,j <~ n . (4) 

Let the field undergoing the following r-parameter family transformation, 

= ~ ( x ,  q, ~), q = ,p(x, q, s). (5) 

where e . '=(el, . . . ,  ~r)  is a r-parameter family. 
Moreover, it is assumed that the transforms (5) are always uniformly continuous 

around the origin of e. Specifically, 

~b(x,q,O)=x and ~ ( x , q , O ) = q ;  (6) 

or in component form, 

q~i(x,q,0) = x, and qjk(x,q, 0 ) = qk. (7) 

The associated infinitesimal generators of the transformations (5) are defined as follows 

z~(x,q) = ~ , ~k(x,q) := ~ k  , (8) 

where l  <~ i <~ n, 1 ~<k~<m, a n d l  <~ s <~ r. 
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Definition 2.1. The fundamental integral (1) is said to be invariant under the r-par- 
ameter family of transformations (5), if and only if 

fz L(R, q, Oil, 82q) dR = fD L(x, q, 8q, 32q) dx. (9) 

Moreover, the fundamental integral (1) is said to be infinitesimally invariant, if and only if 
3(I)~ such that 

f L(R,q, Oq, O24)dR-fDL(x,q,  Sq, Sq)dx = o(a)+a; f ~ O ~ d x  
• Jo &, 

(10) 

Remark 2.1. (1) The definition of infinitesimally invariant integrals given in eqn (10) is 
taking into account a null class of Lagrangian function, (I)'~. There is, however, a danger 
coming out from this generalizationf : whenever the variational problem involves with 
Neumann boundary condition, the definition (10) is no longer valid, because the associated 
Neumann boundary data will change due to the presence of the null Lagrangian. This was, 
probably, first noted by Courant and Hilbert (1953), and it was further elaborated in detail 
by both Edelen (1981, 1985) and Olver (1983). Nevertheless, by taking into account the 
null Lagrangian, additional conservation laws may be found under restriction; such as 
those found in elastostatics by Delph (1982). In this paper, we only consider the case 
(I)~ = 0. (2) Clearly, if the fundamental integral J(q) is invariant, it must be infinitesimally 
invariant ; nonetheless, the converse is not true. 

The following theorems are the main technical ingredient of this work, which are the 
second-order Noether theorem derived by Logan and Blakeslee. Since the proofs are 
elementary and calculus in nature, they are outlined right after the theorems are stated. For 
detail information, readers may consult Logan (1977). 

Theorem 2.1. (Logan and Blakeslee) If the fundamental integral J(q) (1) is infini- 
tesimally invariant under the r-parameter family transformation (5), the Lagrangian density 
and its derivatives satisfy the following r identities, 

0 c  , 0 c  k 0 c ( 0 ¢ f  
~ixi ~'~+ o ~ S  + Oq~\Oxi -qJ~xixi) 

(11) 

The proof of the theorem is just taking the derivative of ~s with respect to (10). 

Theorem 2.2. (Noether) Let q~C4m(D) and q satisfying the following second-order 
Euler-Lagrangian equation 

8L 8 8L 8 2 8L 
E(~ ~) ,= + - -  - o. (12) 

8¢ 8xi 8q~. 8x~Sxj 8q~j 

? This has been pointed out to us by an anonymous referee. 
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If the fundamental integral (1) is invariant under the r-parameter family transformations 
(5), then the following r-conservation laws hold true, 

0 F . OL k OL OC~ a OL k ,] ~,¢2):,k O, (13) 
7--- ILz's + - -  C, + - -  = = VX, L a¢ a~j axj a~ a ~  c,  - ~ ,  - , ~  , ~ ,  

where k k Zt c ,  , = ~ s - ~  . 

Proof With some rearrangement, one may rewrite (11) as follows 

O• . OL k OL OC~ 
, (L~;) + 7¢ c,  + a~ ax, 

O L  2 k a c, 0¢; 
+ Oq~j Oxiaxj 8 X  i • (14) 

Considering 

OL OC~ a I'OL k\ 0 / O L \  k 
aq k ax~ - -~x~ ~ , ~  C, ) - -  -~ixi ~-~,gC, (15) 

OL 2 k OCs 
O~j Ox~xj 

--,--a/at ac~ a az, ~\ a ~ az. 
_---7-C,1+ - -  C~, (16) ax,\a~j axj axj aEj / ax,axj a~j 

one can readily show 

O _ ~ ( L ~ + a L c ~  aLOC~ 0 aL ) (aL  d 8L a2 a L \  k 

= E~)C~ = 0 .  ( 1 7 )  

2.2. The Marouerre-von Kdrmdn shallow shell theory 
In this section, we shall briefly outline the Marguerre-von K~irm~in shallow shell theory 

to supply the ground information. There are quite a few standard documents about the 
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Marguerre-von Kfirm~in shallow shell theory, and our reference is mainly taken from 
Marguerre (1938), Chia (1977), and Washizu (1975). To facilitate the later derivation, the 
notations are slightly changed. 

Take the x - y  plane of a three-dimensional Cartesian basis as the reference plane. The 
undeformed middle surface of the shallow shell is described as 

z = z ( x , y ) .  (18) 

The actual displacements of a point (x,y) in the middle surface are denoted as u, v, w. 
Subsequently, with some a pr ior i  assumptions, the corresponding strain components in the 
middle surface can be deduced as follows 

e<< = ~ + Yx  ~ + 2 t a x  ) ' (19) 

~gv 0zcgw _1 (c~w)' (20) 
e ,~, = Oy + ay ~?~' + 2 \ ay ) ' 

#u 0v ~?z aw ~?zaw ~?waw 
2~y = e?y + ~xx + ~xx~-y + ~yy~xx + Ox ~y" (21) 

We denote the following strain components as the "in-plane membrane strain", 

0u! 0~ au 

e~O) . -  Ox "-  cox' (22) 

% {0) 
/7(o ) . - -  Cuv ~b '  

yy  Oy ' -  c~y' (23) 

l(e.: °, auj°,]._ e,) 
(24) 

In the Marguerre-von K~irmfin shallow shell theory, the curvatures of the shell still 
remain the same as those in the linear plate theories, 

E w  Z w  O2w 
(25) 

{~X 2 ' (~l,, 2 a x a y  

Introduce the Airy stress function such that the stress resultants can be expressed as 

~2 F 6~2F c~2F 
N,~ = , N/~.- , N ~ -  (26) 

• (~y2 " ax 2 ~ OxOy" 

Then, one can readily verify the following relationships between the "in-plane mem- 
brane strain" and the Airy stress functions along with the gradient of plate's deflection : 

~0c0'¢) = - -  E h  1) ~ x  2 a x  # x  2 \ # x )  ' (27) 

= _ - ox--r + - G 7t )' 
(28) 
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(l+v) 6qZF !(63zOw 8zaw)  1 8wOw (29) 
Eh OxOy 2kOx 8y + Oy ~x 2 8x Oy " 

The constitutive relations between the stress couples and curvatures are listed as follows 

M ~  = kax 2 +Vay2j ,  (30) 

Myy = --O v - -  + (31) 
ax ~ ay ~ J' 

~2 w 
= , (32) Mxy --D(1 --V)OxOy 

where D = Eh3/12(1 - v). 
The equations of  motion of  the nonlinear shallow shell read as 

OUx~ aU~, aUx, aNy, 
8--~-+-~y +27=0,-ff~x +-~y +f=O, (33) 

a:Mx~ a2M~, a~M,, a t  /az aw\ /az aw)} 
8x: +2 O~y  + 8y2 

+ y Ux, g+Vx Vy+  (34) 

where X and I7 are the components of  in-plane external force distribution per area. It 
should be noted that, in this paper, it is always assumed that the normal external load 
distribution p is uniform. 

To derive a variational principle concerning the above system with the independent 
variable F and w, a formal procedure is suggested by Washizu (1975). A mixed, three-field 
variable variational principle for the Marguerre-von Kfirmfin shallow shell may be proposed 
as follows 

Eh 2 n., = fo. { t( xx + e.) "k 2(1--V)(82xy--13xxSyy)] 

D 
+ ~-[(Kxx + xy~)2 + 2(1 - v) (~d, - XxxX,,)] - £ u -  fv-pw 

1 2 1 2 

-- __ 1 . . . .  W,xW y)]Nx" I~xy 2 (U,y'JI-V,X'~-ZyW x'JI-ZxW y "J[- 

+ (Kxx -- W ww)Mxx + (l'~yy -- w , y y ) M , y  -'{- 2(Kx, - -  W.xy)Mxy } dx dy 

+ ;  [The terms on the boundary] dF, 
d0 tip 

(35) 

where the integral area, f~p, is the projection of the middle surface ~ onto the x-y  plane. 
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Consider the stationary conditions, 

Eh 
Nxx - - -  (Gx + Veyy), (36) 

(1 - v  2) 

Eh 
Nyy - - -  (vGx + eyy), (37) 

(1 - v  2) 

Gh 
N x y  = ~-G,.,  (38) 

ONxx ONxv 
~ -  + ~ +_~ = 0, (39) 

ct  N x v  O N,,,, 
a T  + ~ + £ = O, (40) 

and substitute eqn (25) and (26) into the functional (35). It then yields a new functional, 

l "  t" 
17" ,= / Wdf~ + (~ [The boundary terms] dF 

3~ p ,)Oflp 
(41) 

where 

W,= __ _ _  
l F(O 2F ~2F~2 ( (  02F~ 2 

2 /~hL\~x  z + ~y2) +2(1-v)kkOxOy j 

 -Pfw a wV ((o w ? 
+ 2Lt, a ;  +7~-y ~) +2(l-v)tt, axay ) 

ax 2 ay~ ) J 

ax 2 ay = )J 

+ Lay2 \ax ~x + 21t-b-dx) )+ax2t, ay-d-yy + 2ray) ) 

 wow)l.w 
\axaUka~ ay + Vy ~ + ~x (42) 

Suppose that the boundary conditions are automatically satisfied. The system's Ham- 
iltonian density can be then expressed as 

L = W -  T, (43) 

where 

1 //(~wX~ 2 
T , = ~ p h ~ )  . (44) 
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V2V2F+ ~-~h ~(w, w ) + E h ~ ( z ,  w) = O, (45) 

D V 2 V 2 w + p h  =/~ + ~(z,  P-') + ,~(w, F), (46) 

where the bil inear fo rm N(. ,  .) is defined as 

(O2f O2g 
~(f,  g) ,= \Fx ~ ~ + 

°~f°~g 2 a2I ~g 
8y 2 c3x 2 OxOy O--~-y ]" (47) 

Let  xl = x, x2 = y, and x3 = t. By using the s tandard  abbrevia ted  notat ion,  one can 
verify that  

OL 
= 0, i = 1 , 2 , 3 .  (48 )  c~F, 

In t roduce  the two-dimensional  pe rmuta t ion  symbol  as 

i .e . ,  

e,~ .-= e3~ # or e,~ .'= e~# 3 0~, fl = 1,2 (49) 

ell  =e22  = 0 ,  el2 = - - e 2 1  = 1. (50) 

It  can then be shown that  

Ow., = e~,ae¢,F.,,(w.¢+ z.~), 0~,fl,~,r/= 1,2 (51) 

and 

OL 
- -  -- phw,3 .  (52) 
~W,3 

Moreover ,  

OL 
. . . .  (0) a, fl, [, r / =  1,2 (53) 

OL 
= 0 ,  i =  1,2,3 (54) 0F3; 
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3L 
3w~ M=~, ~,/~ = 1,2 (55) 

3L 
- 0, i = 1 , 2 , 3 .  (56)  

~W3i 

In order to emphasize the physical meaning, we also use the notation 

in the sequel. 

w, := w3, F,.-= F3, Q~ := M~,t~.~, (57) 

3. CONSERVATION LAWS 

In this section, we shall present the main results of this study. Consider the following 
fundamental integral 

J(q) = fo L(y, q, 3q. 32q) dy, (58) 

where y~ ~2 × ~+, D ,= f~p × [0, T], 11~ ~2. By letting 

)'j = x j ,  Y2 = X2, Y3 = t; (59)  

q~ = F(x~,x~, t) ,  q2 = w(xj ,Xz,  t), (60) 

the Lagrangain density L is assumed in the form of (43), (42), and (44). The corresponding 
Euler-Lagrangain equations, 

3L 3 3L 62 0L 
g~, 2) :-- + -- 0 (61) 

3q" Oy~ 3q!) 3y~3yj 3q,~j 

are (45) (46). For the superscript or subscript, the Greek letters range from 1 to 2, and the 
Latin letters range from 1 to 3. 

Denote ~ = C4(D), J-  ~ C~(D), LP ~ C2(D). We assert the following theorem. 

Theorem 3.1. Let (y, q, 3q, ~2q) ~ D × U × .Y-- × S and q being the solution of the Euler- 
Lagrangain eqns (45)-(46). The following conservation laws, (i)-(iv) hold true. 

(i) 
3 

( w +  r ) -  ~x {e.~e~.r~.(w ~ + ~ ~)w ,-e~e~,.~l'r~, 

co~ + Q=w ,} - M~w,~, + e=~e~e¢~ F,  = 0 ; (62) 

( i ib )  ~ Y e  e e~0) 3x=t ~ ~ ~,,~ = 0; (64) 

3 3 
(iia) ~ ( p h w , ) - ~ , , { e , ¢ e ~ , F ~ , ( w z + z ~ ) + Q =  } = 0, p = 0; (63) 

tJ.% 
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(iii) ~ (phw.,w.~3r~) + -~x { L 6 , , -  e,aec, F.a, (w z + z c)wr6~ 

(o) (o) + e.~e~e~, F#,6~ + M=~w.~6~.- e~e#,e~,.~F~6~.- Q~w~6~} = 0 ; (65) 

(iv) O~{2(W+T)t+phw, ,w,x ,}+ ~ { L x ~  

-- e~ae~.F~ (w,~ + zz)(w,~x~ + 2w:t) + ~o) e~cea.ec. (F~axr + F a + 2Flat) 

+ M ~ ( w ~ x  ~ + w ~ + (o) , , 2w:#t) - e~e~e~,~(F~x~ + 2Ftt) 

-Q,(w,rxr+2w,t)}  = O, p = O. (66) 

If the shell is isotropic, the following conservation law holds, 

(v) ~t{phw.tw.re,¢x¢} + ~x {Le,~x¢-- e,ae¢,F~,(w.¢ + z.¢)w.~.er¢x¢ 

(o) (o) I + e~¢e~e~ (F~e~¢x¢ +F~e~) +M~(w.~e~¢x¢ +F.~e~) = O. --e<ea.ecn,aF~ercx¢ --  Q , w  re~¢x¢: 

(67) 

Let f~o ~ fl~. The above conservation laws can be put into the integral forms, i.e., 
Vte [0, T], 

dIo - +z,c)w,, e~¢e~,e¢, F, flt (i) ~ (W+ T) d~o {e~e~.F#, (w,~ _ (o) 
0 ~0 

- M ,  ew,a~+e~¢ea.e~°)Ft+Q~w,}n, dF = O; (68) 

(iia) d-~ (phw,)df2o-  {e,#e:,F.a,(w.~+z.¢)+Q~}n~dF = 0. p = 0; (69) 
d~o f~o 

(iib) ; {e~cea, e~°!~}n, dF = 0; (70) 
3o flo 

d 
(iii) ~tfno(phw.w,6,.)dno+fono{L6~s--e.:¢,FMw.c+z~)w..6,s 

(o) (o) Q~wrfr,}n~dF = 0' (71) e~¢etjnec.,#F, v6r~ - 

d fa {2)(W+ T)t+phw,wrxr} df~o (iv) ~ o 

+ ~ {Lx~ - e~#e,~Fa. (w, + zz) (w~x~ + 2w,t) + e~,ea~e~ °) (F~ax~ + F a + 2F~a t) 
o 

+ m~a (w.~ax~ + w,a + 2w,,a t) -- e<ea.e~°!a(F~x~ + 2Ffl) 

+Q~(w.~x~;+2w.tt)}n~dF = 0, p = 0; (72) 

(v) dfno{phw.tw.,ercx¢} dflo +~Ono {Le,#xa--e,ae¢,Fa,(w.c+z.¢)w.,e,¢x¢ 

(o) + e  e e F e x + F e  + M  w e x + F e  ~ 8 7 ~ , ( . . ~  ~ .~.~) ~( .~,~ ~ . ~ )  

(o) -- Q,w~e~ex¢}n~ dr" = 0. (73) -- eace#n~n.#Frer¢x¢ 
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Before proceeding to the proof, a few remarks are in order. Conservation laws (i) and 
(ii) are the consequences of  the conservation of energy and conservation of  linear momen- 
tum respectively. For the Marguerre-von K~rm~n shallow shell, the in-plane inertia is 
neglected (Chia, 1977), whence there is no time derivative terms involved in conservation 
law (iib). By the assumption that the projection of the deformed middle surface of the 
nonlinear shallow shell onto the x - y  plane is always the same, the primary unknown 
variables, the Airy stress function F and the shell deflection w, are not perceptible to the in- 
plane rigid-body rotation. Thus, no conservation laws correspond to the conservation of 
the angular momentum. 

The conservation laws, (iii)-(v), are the counterparts to the classic conservation laws 
of J, M, and L integrals. In the Marguerre-von K~irm~in shallow shell theory, these three 
types of invariant integrals can be expressed as follows 

e<e~.e~,~F~6~-Q~w n6~,s}n " d r  ; (74) 

L = fv  {Le~x~ - e~e¢.F,~. (w z + zz) w~,e./ex¢ 

+ e<e~e~ °) (F.~e~¢x¢ + F ye.~) + M,~(w.leeycx ~ + F~e~) 

(o) - e<e~,e~,,~F.~e~x¢ - Q, w~.e~¢x¢ } n, dF ; (75) 

M = ~r {Lx~ - e~,e~,Ft~,(wz) (wzx,; + 2wfl) 

+ e<ep, e~ °) (F~t~x ~, + F p + 2F,fl) + M,~(w,~Bx~ + w.t j + 2w,M) 

(o) - e<e~e~,,~(F~x~ + 2F,,t) + Q~(w,~,x. l + 2w/)}n~ dE. (76) 

It is arguable, however, whether or not the M integral (76) is still invariant in the static 
case. 

Proof: (i) The invariant transformation in this case is the time translation. Let 

) ~ , = y , = x ~ ,  )~3 = t + e ,  and q~=qX. 

It is obvious that the integral (58) is invariant, i.e., J(q, Oq, Ozq) = J(q, Oq. 8Zq). 
Substitute 

(77) 

and 

T~-- 8 e ~ = o = 0 '  ~s 0e ~=o=1 '  ~ = 0 ,  (78) 

c~ = - C ,  C~s=-W,,, 

into (13). Then the conservation law (i) follows immediately. 
(ii) In this case, the transformation is rigid-body translation, i.e., 

)~ i=y ,  P=P&ls ,  and q~=q~+e6~ .  

(79) 

(80) 
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One can show that integral (58) is invariant under the above transformation. However, 
there is a constraint imposed on the normal distribution load p. Substitution of 

z~=O, ~ = 6 z .  C~=6z, (81) 

into (13) furnishes the conservation law (ii). 
(iii) Consider the following spatial coordinate transformation, 

y~=y~+e6~,  )73 =Y3, #~=q~. (82) 

It is quite obvious that J(q, Oq, O2q) = j (q ,  Oq, O2q). Subsequently, it follows that 

" ~6 (83) z , = 6 ~ ,  r~=O,  ~ = 0 ,  C ~ = - q . r  r~. 

Making these substitutions in (13), one may obtain the conservation law (iii). 
(iv) Let 

)7 ,=( l+e)y , ,  )73=(l+2e)t ,  qa=qa,  and p = 0 .  (84) 

Under the above dilatation transformation, the fundamental integral (58) is no more 
invariant, but it is still infinitesimally invariant, i.e., 

J(q, Oq, O2q) = j(q, 0q. aZq) + o(e). (85) 

One can find that 

furthermore 

z~ = x , ,  T) =2t, ~ = 0 ,  (86) 

C ~ = - F ~ x ~ - 2 F , , t ,  C ~ = - w r x r - 2 w . , t .  (87) 

Substitution the above expressions into eqn (13) yields the conservation law (iv). Once 
again, the conservation law holds, if only the normal external load p = 0; otherwise, an 
additional surface integral will be involved. 

(v) For isotropic, elastic shell, the fundamental integral (58) is invariant under in- 
plane coordinate rotation, i.e., 

~ = Q,a(e)xt~, (88) 

#Z=q~, (89) 

where Q~p(e) is the element of orthogonal transformation. 
For the sake of simplicity, if e << 1, the in-plane rotation transformation can be sim- 

plified as follows 

)7~ = y~ + e~ype, )73 = Y3, q~ = q~. (90) 
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After some elementary algebra manipulation, one may be able to show that 

( an,an, av 1 2 -qalf= a2q,, a2q ( ~ ax,ax2 a2qi 1 2 - jpyp a2# 1 a2& 2 +44, 

(91) 

(92) 

whence, 

mati, aw = a, aq, aw + 44. 

It can be readily shown that 

(94) 

z: = enBxil (95) 

(96) 

Substitution (95)-(96) into (13) yields the conservation law (v). H 

Remark 3.1. The only difference between the Marguerre shallow shells and the von 
Karma, plates is the presence of the initial deflection z. In the above proof, we have 
implicitly assumed that the initial deflection z to be an infinitesimal algebraic invariant 

function (see Olver, 1986) i.e. 

z(X) = z(x) + O(F). 

This is a very severe restriction on the conservation laws in categories (iii) and (iv). 
Nevertheless, there is still a large class of functions that fit the requirement. For example, 
for the conservation law (iii), 

R, = x,+c, Rz = x,; 

z = x:+x;-2x, -2x,+c. 

Then 

z(n) = (x, +&)2+x;-2x, -2x,+c 

= x:+x:-2x,-2x2+c+&2 

= z + O(E). 

For case (iv), however, it seems that the only admissible initial deflection is constant, 
or fractional functions. 
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The fundamental integral for the Marguerre-von K~rmfin shallow shell is generally 
not invariant under dilatation transformation. This is even true in the linear plate theory (see 
the discussion in Sosa et al., 1988). However, if we loosen our definition on "invariance", we 
might still be able to find some semi-invariant integrals. As pointed out by Sosa et al. 
(1988), in general, this type of integrals can be expressed in the form, 

I = ~ Ltme dF + f Laom~. d~. (97) 

As a matter of fact, by using the second-order Noether theorem (Section 2.2), one can 
construct such invariant integrals in a systematic manner. In what follows, a specific 
example is demonstrated for how to construct such invariant integrals. 

To illustrate our point, we assert the following statement : 

Theorem 3.2. Assume that the initial deflection satisfying z(~) = z(x) + o(e) under the 
admissible infinitesimal transformation. For the Marguerre-von Kfirmfin shallow shell, if 
the primary variable pair (F, w) satisfies the governing eqns (45)-(46), the following integral 
is invariant, 

.A/.'= f~no (L1 x. + e.pe~,F a, z z(w - w.~x~) + e.ae¢,e¢.oF pyx~ + M~aw a.;x~ 

+ e~e~. e¢~o.~ (F-- F~x.~) + Q~ (w - w.~x~))n~ dF 

(98) 

where 

Ll(Sq, a2q) . . . .  
I [(OZq~ ~2q,~2 (OZql  ~2 02q, a~q__,.l 

2EhL\ax~ + 8x-~2J + 2 ( l + v ) \ ~ /  8x~ 8xz2J 

D_F(O2q2 02q2~2 / 82q2 \2 82qZa=q= 1 
+ 2 L\ + ax /+ 2(1-  v)(ax~ff-~) ax~ ax~ J 

FdZql ~z @2 ~2ql Oz @2 ~2ql (~Z ~q2 ~3Z ~q2~l 
(99) 

Note that e,~o # e~ °). Here, 

1[ .(0) (0) Z W "3[-2,qW,~). (100) 

Before proceeding to the proof, one may verify the following equalities, 

a L l  
- -  O ,  aFj 

(lOl) 

aLl 
8w,~ - e~e~F ~.z,~. (102) 

aLl 
~F,~p e~pe~e~o, (103) 
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OL, 
O w  ~ - - M ~ .  ( 1 0 4 )  

Proof: Split the Lagrangian density (43) into two parts, 

L(q, Oq, 02q) = L, (02q) +Lz(q, Oq, a2q), (105) 

where L~ is defined in (99) and L2 is defined as follows 

l[-02q~[Oq2,~2 6q2ql [,Oq2\2 ~2qI 8q2 a q : ]  _ 2 1 ,[Oq2"~ 2 
+ - ox,ox  o,<, -pq - 7Pnt- 7-) " (106) 

Under the infinitesimal dilatation transformation, 

q~ = (1 +e)x, (107) 

: ( l + ~ ) q ,  (108) 

and the assumption, 

it is not difficult to show that 

is infinitesimally invariant, i.e., 

z (q )  = z (q )  + o(e) ,  (109) 

J '(q) = in L~(Oq'~2q)d~ (110) 
P 

J ,  (rl) = J~ (q) + o(~). 

Based on the definitions, one may find that 

z~= 0-~-' = o =  
X~ 

~E e=o 

C~ ~.~ ~ ~ q~-  oq~ = - q,~x,. = - - x . . .  

Thus, utilizing the Noether theorem (Section 2.2), one has 

~--~-[L~x~+ --c~L' C~ + __t~L' dC~__ c~ aL C~-] = ~(2),-~ 
ax~L 0q,~ s 0q~p dxa c~x~ ¢3q,~a ] - -  ~t~ l~. ~-'s" 

However, 

( I l l )  

(112) 

(113) 

(114) 

(115) 
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E(2) OL~ 0 0 L  1 0 2 t~L 1 
1~-'= - -  + - - - -  -#0, 

Oq~ Ox~ ~q~ ~x~Ox~ Oq~ 

1 2 2 I 1 2 E~ 2~ = - ~ - ~ V  V q - ~ ( z , q  2) = ~9~(q ,q2), 
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(1161 

(117) 

~2q2 
E ~  = DV2VEq 2 -98(z, q~) = l O - p h - - ~ t  2 + ~ ( q l ,  qZ). 

Recall q~ .'= F, q2 : =  W. One can show the following semi-conservative equation, 

& 
- - {  LI x,  + e,,e¢,F a, z,¢ ( w -  w rxr) + e~,e~,e¢qo F avxr + M,,w,,~x r 

+ e,,e¢,e~,o.,(F- F rxr) + Q , ( w -  w rxr)} = 

- ( ~ B ( w , w ) ( F - F . r x ~ ) + ( B ( w , F ) - p - p h w . , ) ( w - w , ~ x r ) ) ,  

(118) 

(119) 

which leads to (98). 
If  one neglects the nonlinear deformation, dynamic effects, and the external load, a 

truly path-independent integral holds for the linear shallow shells, i.e., 

J[  = ~no { L~ x,  + e,pe~,F,p,z,¢(w - w rxr) + e,ae¢,e¢,oF ,rx~ + M,,w,¢rxr 

+ e~pe¢,~¢,o,~(F-F~x~) + Q~(w-  w,~x~)}n~ dF = 0. (120) 

4. CLOSURE 

In this study, several conservation laws for the Marguerre-von K~irmfin shallow shell 
theory have been derived. Since the Lagrangian density concerned here belongs to a mixed 
variational functional, which is involved with both deflection and stress function ; thus, the 
corresponding conservation laws may have inherent difference from those derived from the 
energy based variational principles. Based on this fact, one might speculate that the J- 
integral obtained here may be related to a mixed-mode energy release rate. With the help 
of these new path-independent integrals, the asymptotic field around a stress concentrated 
area in the shell can be evaluated and estimated with convenience. 

This work was done 3 years ago. Recently, we found a paper by Djondjorov et al. 
(1996), which also deals with the conservation laws for von Kfirm~in plate. In that paper, 
by using Lie group technique, a complete list of conservation laws has been given. Never- 
theless, the results presented here not only offer a list of all the important conservation laws 
for Marguerre-von Kfirm~in shallow shell, but also provide much more explicit expressions 
for these conservation laws, such that they can be easily applied to practical engineering 
problems. 

By employing the second order Noether theorem on covariant field, e.g., Blakeslee and 
Logan (1977), the same procedure can be used to derive conservation laws for general thin 
shell theory, which is subjected to further study. 
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