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A formalism for SystematicaIIy deriving second order accurate finite difference algorithms which 
conserve certain invariant quantities in the original nonlinear PDEs is presented. Three algorithms are 
derived for the nonlinear Klein-Gordon equation (NLKGE) based on the proposed formalism. The 
local conservation laws of the NLKGE form the basic starting point in our derivation, which hinges 
essentially on the commutativity of certain finite difference operators. Such commutativity in the 
discrete approximations allows a preservation of the derivation properties of the continuous counter- 
parts at the PDE level. With appropriate boundary conditions, the proposed algorithms preserve in the 
discrete sense either the total system energy or the system’s linear momentum. Several variants of the 
present algorithms and their relation to previously proposed algorithms are discussed. An analysis of 
the accuracy and stability is conducted to compare the different variants of the proposed algorithms. 
The preservation of energy of the present algorithms for the NLKGE can also be viewed as providing a 
method of stabilization for conditionally stable algo~thms for the linear wave equation. The computer 
impIementation of the proposed algorithms, with the treatment of the boundary conditions, is 
presented in detail. Numerical examples are given concerning soliton collisions in the sine-Gordon 
equation, the double sine-Gordon equation, and the cb”, (‘phi-four’) equation. The numerical results 
demonstrate that the present algorithms can preserve accurately (up to 10 decimal digits) the total 
system energy for a very coarse grid. Reliable algorithms for Josephson junction models, which contain 
dissipation, damping mechanisms and driving bias current, are obtained as direct by-products of the 
proposed invariant-conserving algorithms for the NLKGE. Even though presented mainly for the 1-D 
case, the proposed algorithms are generalizable to the 2-D and 3-D cases, and to the case of 
complex-valued NLKGE. 

1. Introduction 

For the past two decades, there has been extensive interest in a class of nonlinear evolution 
equations that admits extremely stable solutions termed solitons. An example of such 
equations is the sine-Gordon equation 

U,, - AU + sin(U) = 0 , (1.1) 

where the function U has (x1, x2, x3, t) as arguments, U,, := a2U/at2 and AU := a2U/an’axi. In 
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fact, the more general nonlinear Klein-Gordon equation (NLKGE), 

U,,-AU+G’(U)=O, (1.2) 

where G( - ) is a nonlinear differentiable function and G’(U) : = dG( U) /dU, is the most 
natural generalization of the linear wave equation [l]. Liouville [2] was the first to study this 
type of equation in his work on surfaces with constant curvature, in which G'(U) = exp(U), 
and provided an exact solution. The NLKGE includes the governing equations of many 
important physical phenomena. Using the cubic function G'(U) = +(U - U'), Dashen et al. 
[3] constructed a model field theory; this equation is customarily referred to as the +“, 
(‘phi-four’) equation (see [4]).’ As mentioned above, an NLKGE with G'(U) = sin(U), called 
the sine-Gordon equation, has received a lot of attention since its exact solution can be 
obtained.2 The sine-Gordon equation can be found in the motion of a rigid pendulum attached 
to an extendible string [5], in rapidly rotating fluids [6], in the physics of Josephson junctions 
and other applications [7,8]. 

There is a very small class of nonlinear partial differential equations (PDE) that can be 
solved for exact solutions by analytical methods. One such method is the inverse scattering 
method (ISM),3 which is often regarded as an important development of analytical methods 
for nonlinear PDEs in the last 20 years. However, ISM can solve the initial value problems for 
a very small class of nonlinear PDEs (e.g. [9]).” For this reason, it is sometimes said that the 
set of solvable nonlinear PDEs has a ‘measure zero’, and that one could conceivably consider 
linear PDEs and solvable nonlinear PDEs as belonging to a class in which solutions can be 
added in some function spaces [l]. Apart from the sine-Gordon equation which is solvable by 
the ISM, most other NLKGEs must be treated by numerical methods. 

Conservation laws play an important role in soliton theory (e.g. [8, lo]) as they form the 
foundation of the structural stability of solitons. After colliding into each other, the two 
solitons emerge unchanged, i.e., they can pass through one another without changing their 
initial shape and with only a phase shift.5 The structural stability of solitons, first observed 
numerically by Zabusky and Kruskal [ll] when they solved for the case of two colliding 
solitons of the Korteweg-de Vries (KdV) equation, is associated with the fact that there is an 
infinity of conservation laws in the KdV equationP a classic case in which numerical 
simulations gave insights and inspired subsequent theoretical development (see also [12]). It is 
believed, without formal justification, that having an infinite number of conservation laws is 

’ The name ‘phi-four’ comes from the use of 4 as variable instead of (I, and because of the power 4 of #J in the 
potential function G(4) = k 4 (4’ - $4”). 

* The linear approximation to the sine-Gordon equation, i.e., U,, - U,, + U = 0 is called the (normalized) linear 
Klein-Gordon equation in quantum theory. 

3 Also called the inverse spectral transform, or simply spectral transform, which is for nonlinear PDEs a direct 
generalization of the Fourier transform for linear PDEs. 

4 With the requirement that U and various of its derivatives tend to zero as I(.xl(+m. We assume this type of 
boundary conditions in the present paper. 

5 The phase shift is the difference in the position of a soliton after it emerges from a collision as compared with 
the position of a soliton without collision at the same instant of time. 

6 These solitons belong to a shape-preserving class, and are sometimes called ‘aristocratic solitons’ to distinguish 
them from ‘solitons’ which are not shape preserving. 
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one of the two properties necessary for a nonlinear PDE to be solvable by the ISM [I, p. 
304].7 Indeed, the KdV equation was the first to be solved analytically by the ISM [13]. The 
sine-Gordon equation also possesses an infinite number of conservation laws [14,15]’ and can 
be solved exactly by the ISM [l&17]. 

However, not all of the NLKGEs possess an infinite number of conservation laws, and are 
solvable analytically. An example is the double sine-Gordon equation with G’(u) = &(sin u + 
$ h sin 4 u); this equation possesses only three conservation laws, and is not solvable by any 
currently known analytical methods for nonlinear PDEs [lS]. Collisions of solitary waves in 
these cases are termed inelastic because of an indelible mark that results from the collision and 
is carried by the solitary waves after the latter have interacted with each other. The system 
energy, on the other hand, is always conserved for the general NLKGE. More frequently than 
not, numerical methods or singular perturbation methods must be employed when dealing 
with analytically unsolvable PDEs. A survey of existing numerical methods for the solution of 
the NLKGE is given in [4,19]. Even though both finite element methods (FEMs) and finite 
difference methods (FDMs) are surveyed in [19], it seems that FDM is a popular choice to 
tackle the NLKGE. concerning the application of FEM to nonlinear wave equations, we 
mention the work of Argyris and Haase [21], Gardner et al. [22], Carey and Shen [23]. In the 
present paper, we address an important aspect of finite difference (FD) algorithms for the 
NLKGE, namely the conservation of the system invariants (e.g., energy) in the numerical 
solution. 

Many numerical algorithms do not preserve the system energy, even though the error 
decreases as the mesh size tends to zero. For example, Ablowitz et al. [24] devise one of the 
most useful numerical algorithms for the NLKGE [19, p. 5881; calculations show that the error 
in energy can fluctuate between 2% to 6% for a mesh size of h = 0.05. FD algorithms in 
general do not necessarily share the same conservation properties as found in the continuous 
PDE counterpart; this observation also holds true for the system energy.’ Our goal here is to 
design algo~thms that not only accurately approximate the solution and the system energy, 
but also duplicate the energy conservation. property of the NLKGE in the discrete sense, and 
this with arbitrary mesh size. We will explain the properties of the algorithm by Ablowitz et al. 
[24] as a variant of an energy-conserving algorithm. An example of the preservation of certain 
properties of the PDE by FD algorithms at the discrete level can be found in the FD five-point 
Laplacian, which preserves the maximum principle of elliptic PDEs at the discrete level (e.g., 

L=l)- 
Attempts to design energy-conserving algorithms have been made in several areas of 

mechanics. Some examples are Hughes et al. [26] for nonlinear elastodynamics, Greenspan 
[27] for general second order ordinary differential equations, Chin and Qin f28] for solving the 
three-body problem, Simo and Honein [29] for discrete conservation laws in elastoviscoplas- 
ticity. Specifically concerning the NLKGE, Strauss and Vazquez [30] propose an algorithm 
that conserves a discrete energy. We show that the Strauss and Vazquez algorithm can be 

7The connection between an infinity of conservation laws and the existence of solitons for the KdV equation 
was pointed out by Lax [20]. 

* These authors work with the sine-Gordon equation under the form ufr = sin u obtained from (1.2), known as 
the Lorentz covariant form, via a transformation to the ‘light cone’ coordinates 6 = 4(x + t) and r = f (x - t). 

9 The conservation of the local linear momentum is in general satisfied in numerical algorithms as it is imposed 
at all time steps. 
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thought of as a variant of the Algorithm II in the present paper, which is an explicit, 
conditionally stable, method for the (un-normalized) linear Klein-Gordon equation 
(ULKGE).lO On the other hand, the proposed Algorithm I is implicit, unconditionally stable 
for the ULKGE, and preserves the system energy for the NLKGE. The connection between 
the discrete energy and the local conservation law is clearly explained. Both Algorithms I and 
If are second order accurate. Algorithm III, which is also second order accurate, is designed 
to conserve the system’s linear momentum. 

We begin by describing these algorithms for the real-valued NLKGE with one space 
dimension. Generalization of the proposed algorithms to 2-D and 3-D cases is direct; 
however, noteworthy is the application of the formalism presented here to derive reliable, 
robust algorithms for models that do not conserve energy such as that found in Josephson 
junctions with incorporated effects of dissipation, damping and driving bias current (see also 
[31]). The proposed algorithms can be generalized to the case of complex-valued NLKGE (see 

WI)* 

2. Invariance and conservation laws for NLKGE 

2.1. Energy conservation law for NLKGE 

The Cauchy problem for the NLKGE (1.2) in the 1-D case, with U : R! X Iw+ R, is given by 

U,, - U,, + G’(U) = 0, (2.la) 

where 

Ut(&t):= at , 
cwx, t) 

qc? 0 := 3x , 

(2.lb) 

with the requirements 

(2. lc) 

Since the conservation of invariants is the main focus of the present work, (2. la) can be recast 
into the form of an evolution equation (see, e.g., [9]) 

in which F and % involve only the unknown functions and their x-derivatives, and in which 
there is only the first derivatives of the unknown functions with respect to time, as follows: 

au-v av 
dt- ’ z = r/,, + G’(U) , (2.3) 

” See (2.40). 



L. Vu-Quoc, S. Li, Invariant-conserving finite difference algorithms 345 

where V is the unknown velocity. The most basic fact about NLKGE is the conservation of 
energy. By multiplying the NLKGE (2.la) by U,, one has a local conservation energy law 

$ [i(q)” + I(U,)’ + G(U)] - x& (U,Ut) = 0 

or 
au 
at- -v, ; [i(V)‘+ $(U,)" + G(U)] = $ 

The local forms of conservation laws are important, 

(2.4a) 

WY) * (2.4b) 

since with appropriate boundary 
conditions, (2.1~) in the present case, they lead to conserved quantities or constants of 
motion. Indeed, an integration of (2.4a) with respect to the spatial variable x yields 

; I__; MW’ + $(U,)'+ G(U)] dx- [U,U,]::=O. (2.5) 

Let the energy density 8 (a conserved density) and the total energy E(t) be defined as 

%(x~):=[i(U,)~ + t(U,)'+ G(U)], 

E(t) := j-_Lm 8(.x, t) dx , 

(2.6a) 

(2.6b) 

respectively. By virtue of the boundary conditions (2.lc), one arrives at the conservation of 
the total energy from (2.5) 

-$(t)=O =, E(t)=E(O) VtER, 

with E(0) obtained from using the initial values 

r+m 

(2.7a) 

in (2.lb), 

w := J_m M&>>’ + wx~>>” + G(fWl dx * 

The requirements then on the functions f and g are such that E(0) be finite. 

(2.7b) 

2.2. Conservation of linear momentum 

Multiplying NLKGE (2.la) by U,, one obtains another conservation law, 

$ (UJJ,) - $ [W,)” + 4(Q)’ - WN = 0, 

or equivalently 

(2.8a) 

au 
-z- -v, -$ (u,V) = & [i(V)’ + #J,)” - G(U)], (2.8b) 

which is known as the conservation of linear momentum. Define the linear momentum density 
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and the total linear momentum as 

&X(x, t) := U,U, ) M(t) := /_lrn .M(x, t) dx , (2.&d) 

respectively, and introduce the quantity 

9(x, t) := $(U,)’ + +(U,)” - G(U). (2.9) 

Then the boundary conditions (2.1~) imply that 

(2.10a) 

Thus if the boundary conditions on U at x = *a together with the function G( - ) are such that 

[G(U)];:': = 0, (2.10b) 

then the total linear momentum is conserved, i.e., 

a M(t) -=o 3 M(t)=M(O) IftELL!, at 

M(0) : = I_; f,(x). g(x) dx . 

(2.11) 

(2.12) 

REMARK 2.1. There are two other local conservation laws which belong to the same 
category of energy conservation and momentum conservation: 

$ [i(U, + U,)’ + G(U)] - & [j(U, + U,)’ - G(U)] = 0, (2.13a) 

-$ [$(U, - U,)’ + G(U)] + $ [I(& - U,)’ + G(U)] = 0. (2.13b) 

It can be verified easily that among these four local conservation laws, only two are 
independent, such that each of the remaining two conservation laws is simply a linear 
combination of the independent ones. That is, considering the two related, independent 
conservation laws (2.4a) and (2.8a), we have that (2.13a) = (2.4a) - (2.8a) and (2.13b) = 
(2.4a) + (2.8a). 

2.3. Conservation of angular momentum 

It can be verified that the NLKGE is equivalent to 

$ {x8(x, t) + t.M(x, t)} - -& {XJqX, t) + 0(x, t)} = 0, (2.14) 

known as the conservation law for angular momentum in the 1-D case. From (2.14), the 
angular momentum density is defined as 
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(2.15a) d(x, t) := x8(x, t) + fA(X, t) , 

and the total angular momentum as 

A(t) := 1-1 cc+, t) dx . (2.15b) 

Provided that 

the total 

[XJfqX, t) + t4(x, t)]‘: = 0 ) 

angular momentum is preserved at all time, i.e., 

;A@)=0 + A(t)=A(O) VtEIW. 

(2.16) 

(2.17) 

REMARK 2.2. For higher spatial dimensional problems, there are other conservation laws 
that belong to the above category, such as (see [30]) 

I 
+CC 

_-m (xkUj - xjUk)Ut dx = const. 

The above three local conservation laws for the NLKGE, (2.4a), (2.8a), (2.14), are of the 
Noether type. Other invariant identities of the divergence type also exist (see [33,34]). 

3. Formalism for designing algorithms 

3.1. Notations and definitions 

Following Richtmeyer and Morton [35], we use different notations to distinguish the exact 
solution (U) from the finite difference solution (u). Let h : = Ax and k := At be the increments 
in space and time, respectively, in a rectangular mesh. Also let Up,q denote that value of U at 
the point (x, t) = (ph, qk), 

u 
P.9 

:= U(ph, qk). (3.1) 

The shorthand notation (p, q) designates the point (ph, qk), whereas (i, j) with i, j E Z (set 
of integers) designates a mesh point in a finite difference mesh. In what follows, we let p = i or 
i + $a, and q = j or j 2 1. The finite difference counterpart of Up,9 is u~,~. The following 
convenient notation for partial differentiation is employed: 

up.“’ := 
131 

DEFINITION 3.1. 
defined as follows: 

2 Y$ U(ih, jk) . (3.2) 

At the point (p, q), the averaging operator in space YIX and in time ‘?I, are 
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,Q& := 1(up+l12,q + 5-l/24 ) = i[U((P + i)h, qk) + m - WY @)I 9 (3.3a) 

Q&j := H3J,q+l12 + 5-112 ) = $[u(ph,(q + b)k) + u(pk (4 - m)l* (3.3b) 

The notation 5% without subscripts is used to designate that either ‘?Ix or ‘8, is valid. Also the 
notation u (3.3a,b) indicates the finite difference solution as already noted before. 

DEFINITION 3.2. The central difference operators ax and CZ5, at point (p, q) are defined to 
be 

fp+uu := l 
I P.4 2 VVup+l,2,q - Vu,-,,,,,I Vn E N , 

@n+l)U I := l 
Pp4 k [~jn)~p.q+l12 - Ql”‘u,,,-,,,I Vn E N , 

with @‘I”’ and Et (‘) being the identity, i.e., 

q%, q = (pu 
f P.9 

= u 
P.Q * 

(3.4b) 

(3.4c) 

REMARK 3.1. The customary definition of the central difference operator with the notation 
6 is without the factor l/h, i.e., 

up,q := Up+llZ,q - up-112.q 7 (3.5) 

and similarly for 6, (e.g., [36, p. 20; 37]), whereas we include h and k in (3.4). Yet, other 
authors define 8, similar to (3.4a), but using values at the mesh points (i + 1, j) and (i - 1, j) 

as in [25]. 

Both VI and (5”” are linear algebraic operators. The velocity V and its finite difference 
counterpart u are denoted by 

v:=g, v:=cip. (3.6) 

3.2. Preliminary assumptions 

The proposed formalism is founded upon approximations of a certain order of accuracy, 
second order in the present case, which are taken as equalities in the derivation of the 
algorithms. The validity of these assumptions is justified once the second order accuracy of the 
derived algorithms had been established. Keeping this remark in mind, we postulate the 
following rules. 

ASSUMPTION 3.1 (Averaging rule). The identity operator 1 is equivalent to the averaging 
operator %?I for the finite difference solution u~,~, i.e., 

Cl- wup,q = 0 7 Cl- ~,)u,,, = 0, 
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p-loriIT4, q=jorj*t, (3.7) 

at all mesh points (i, j). In other words, the finite difference solution obeys the averaging rule 
for both x and t; we write (1- %!I)u~,~ = 0. 

REMARK 3.3. Note that by taking the Taylor series expansion of the exact solution U, we 
have the relation 

or 

i.e., 
(‘x - ')'i+l/2,j = $li+,,2,j(;)2 +w4)? 

On the other hand, we cannot say similar things about the finite difference solution u~,~ yet 
until the second order accuracy of the derived algorithms is established, i.e., [Iu~,~ - UP,,11 - 
O(h2, k2). This is why at present, we refer to the averaging rule as an assumption, which will 
be justified after the derivation of the algorithms. 

ASSUMPTION 3.2 (Central difference rule). 

REMARK 3.4. The second order accuracy of the central difference rule, i.e., 

(ex~~)ui+l~2,j=$li+l,2.i(~)2+o~h4~~ 

or 

II@ - a>u,,,ll - 0(h2, k2) , 

makes it consistent with the averaging rule, which is also second order accurate. 

3.3. Basic lemmas 

LEMMA 3.1 (Commutativity of GLm’ and (KY’). At the point (p, q), we have 

for all m,nEN. 

PROOF. The case with m = n = 0 is obvious by (3.4~). For m = n = 1, we have 
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cql)(qlfu)p,q = oy ; bp+l/2,q - up-112,ql 

1 1 
= ; 

[ 
7f (up+1,2,g+112 - Up+112,qt112 ) + $ (Up-liZ,q+lf2 - up-I,,,,-*,*~] 

= C’ [; ((Up,9+l12 - up,q-l/2)] = Q11)w11+4p*, - (3.10) 

By using (3.10) and (3.4), and by induction, one can prove (3.9). El 

REMARK 3.3. Since CT:m’ and @IF’ also commute, we can write unambiguously that (with 
(3.9) in mind) 

QWQWU p,4 = Q(n)~(m)U,,, , (3.11) 

at any point (p, q), in which any combination of the subscripts x and t for Q is permissible. 

LEMMA 3.2 (Commutativity of 5% and (SC”)). The following relations 

CUL CPU 
x x P.9 

= (ip’~ 
1 x 

&y 

P,q ’ 
%?l GP% 

r f p*9 
= @““U u 

I t P.4 ’ 
(3.12a) 

8 G’“‘z.4 x f P,q 
= (5’“‘B a 

f x P-q ’ 
%,cg%ip,, = &yQ4p,q , (3.12b) 

hold at any point ( p, q), or unambiguously 

%@%,,, = CS%4p,q I (3.12~) 

PROOF. For n = 1, using the definitions (3.3a) and (3.4a) together with the linearity of ‘8 and 
Q’“‘, we have 

,KJV$?,q = %[ ; (Up+tlZ,q - up-1,2,q)] = 5 GL~p+l12,q - Ku,-In,,) 

= & [(up+14 + up,,) - fup,, + up_l.9)] 

= & [(up+l.q - up.9) + (up,9 - up-l,Jl 
= f [q”)u p+l/2,9 + @Z1)up-1/2,ql = 1a11)[up+l/2.q + up-1/2,ql 

= &y)(‘llxu)p,q . (3.13a) 

For n = 2, the definition (3.4a), the linearity of N,, and the above result (3.13a) lead to a 
confirmation of (3.12a): 

- ~!'w,$4,2,,1= Q$Y~,u)p,9 , (3.13b) 
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By induction, assume that (3.12a), holds for n = (k - 1). Then by the same procedure as in 
(3.13b), one can show that (3.12a), holds for 12 = k. The proof for (3.12a), is identical. For 
(3.12b),, consider for n = 1 

ax((-sI’)u)P.P =% ; bp,q+llZ - up,,-,,*1 = ;[flxUp,q+l,2 - %?lxup,q_l,*] 

= ; [t(Up+1,*,q+1,2 + up-1/2,q+112) - ~(~p+ll*,q-li* + ~p+112,q-112)1 

(3.14a) 

Next, for n = 2, using the result (3.14a), one has 

= ; w’w,4,,,+,,2 - (wu4w7-l,21 = QI*wx~),,q * (3.14b) 

By induction, (3.12b), can be proved; the proof of (3.12b), is similar. Equation (3.12~) follows 
from the convention on the subscripts of ‘8 and GS as stated earlier. 0 

COROLLARY 3.1. If u satisfies the averaging rule (3.7), then at point (p, q) 

i?l@“)u p,q = @n)Up,q , (3.15) 

with p = i or i * $, and q = j or j -+ 1, for all mesh points (i, j). 

PROOF. By using (3.7) in (3.12~) of Lemma 3.2. Note that the operators % and 6 in (3.15) 
are without subscripts x or t, i.e., any combination of subscripts x and t is permissible. 0 

COROLLARY 3.2. If 
CPU 

u satisfies the averaging rule (3.7), then so do the central difference 
p,4, i.e., 

CPU 
P.4 = 2 

I [@“‘u p+1/2,q + @n)U,_,,2,ql 3 (3.16) 

with p = i or i *$,andq=jorj+$, for all mesh points (i, j). 

PROOF. From Corollary 3.1 and (3.12~) of Lemma 3.2, we have that 

CPU p,q = w.Pu,,, = cP~u,,, 

= @n)[i(Up+l,2,q + up-1,2,q)l = f[@n)Up+li2,q + @n)U,-l,2,,l * 

Note that (3.16) is valid for any subscript x or t. Cl 

(3.17) 

LEMMA 3.3 (Generalized Leibniz rule). Consider two functions u, u : R X IF4 + R. The central 
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difference operator when applied to the product function (uu) at point (p, q) yields 

with p = i or i + $ and q = j or j rfr i, for all mesh points (i, j). 

PROOF. 

(3.19) 

The proof for the case with &I” is similar. Cl 

COROLLARY 3.3 ~Leibni~ rule). Zf u sashes the averaging rule (3.7), then 

@“( fg),,, = (~%,k,q + fp,,W’gp,,) , 
(3.20) 

with p = i or i +_ $ and q = j or j +‘ 1, for all mesh points (i, j). 

REPARK 3.5. Relation (3.18) is basically the discrete counterpart of the derivation property 
in the continuous case. Together with the averaging rule (3.7), the preservation of certain 
properties of continuous operators by their discrete counterparts as exemplified by (3.20) will 
play a crucial role in the development of invariant-conserving algorithms that follows. 

~~~~A 3.4 (Chain rule). For a compo~d function G(u), where u : II4 X !R + 88, the following 
relations hold for the operator 65: 

PROOF, 

%Gwp,q = 
Gt~~,~+,,d - Gtup,q+m) 

(q+ W--(9- l)k 

-_ 
w$,q+l/2 I- w&-m) up,*+112 - u,,q-l/2 

up,q+l12 . - up q-112 k 

(3.21) 

= {‘,G(U)lp=fixed~rU}p,q * •I 
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4. Invariant-conserving algorithms for NLKGE 

4.1. Energy-conserving algorithm I 

4.4.1 Derivation and interpretation 
The starting point is the evolution equation (2.4b) expressing local energy conservation. We 

construct a finite difference discretization of (2.4b) at the point (i, j + $) using only the 
averaging operator (3.3) and central difference operator (3.4). An interpretation of the 
algorithm is given after a derivation of its recurrence formula. 

THEOREM 4.1 (Algorithm I). By applying the averaging rule (3.7) to u and u, and the 
central difference rule (3.8) to approximate a /at and alax at the point (i, j + $), the following 
algorithm is obtained from the evolution equation (2.4b): 

k (‘i,j+l - ‘i,j) = i CUi,j+l + ‘i,j) 9 

k (‘i,j+l - ‘i.j) + 

G(ui,j+,) - G(ui,j) 

‘i,j+l - ui j 

= $ [("i+l,j+l -2ui,j+l + ui-l,j+l) + (‘i+l,j -“i,j + ‘i-l,j)l * (4.1) 

which involves only the values of the unknowns u and u at the mesh points (i, j). 

PROOF. Applying (3.7) and (3.8) to (2.4b), at point (i, j + f), one obtains 

&Cl) 
t ‘i,j+llZ = ui j+1/2 = atui,j+l12 9 (4.2a) , 

which leads to (4.1) l, and is generally referred to as the trapezoidal rule applying to (2.4b), . 

The central difference operators a:” and C$” when applied to (2.4b), at point (i, j + $) yield 

~~“[ ~ (U)2 + 1 (~~‘U)2 ’ G(u)]i,j+l,z = Qy)[(@y)u)u]i,j+l/2 . (4.2b) 

We now examine each term of (4.2b). Using the generalized Leibniz rule (3.18) and the 
trapezoidal rule (4.2a), the first term in (4.2b) becomes 

~l”[l(“>21i,j+l12 = (~~1’ui,j+li2)(~rUi,j+l/2) = (~11’ui.j+l12)(~11’ui,j+li2) * (4.2~) 

Next, for the second term in (4.2b), we apply the generalized Leibniz rule (3.18), the 
commutativity (3.9), the commutativity (3.12c), the trapezoidal rule (4.2a), and the averaging 
rule (3.7) to obtain 

&:“‘[$(&+)‘]. f r,1+112 = ~~l”~~l”“~i,j+l~21~~~~~~~u~i,j+l/21 

= ~~I”~~~““~i,j+l~21~el’~~~~u~i,j+l/zl 

= [~~‘(s~u>i,j+li21(Ql”ui,j+l/z) = (gF)Ui,j+l12)(QSI)Ui,j+l/Z) * 

(4.2d) 
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A direct application of the chain rule (3.21), leads to 

For the fourth term on the right-hand side of (4.2b), using the generalized Leibniz rule (3.18), 
the commutativity (3.12c), the averaging rule (3.7), and the trapezoidal rule (4.2a), we arrive 
at 

Q~1’[(~j1’U)Vli,j+l/2 = [c’s~“(Q~“u)i,j+l,~](~~ui,j+~,*) + ~~~~Ol”u~i.j+~lzl~~~l~ui,j+~~*~ 

= [GY)ui,j+li* I(“i,j+ll*) + [~~“(~~“)i,jil,*1(~~1’ui.j+l/2) 

= [~~‘Ui,j+l/21(~tUi,j+1/2) + [Q1l’Ui,j+*l*l(O~‘Ui,j+l,*) 

=(CS12’Ui,j+l,l)(~11’Ui,j+~,~) + (CS~1’ui,j+l12)(CS11’Ui.i+r/2) ’ 
(4.2f) 

Thus, (4.2c-f) together transform (4.2b) into 

("II)vi,j+l/*~(~11)ui.i+l/2 > + (Q/l’G(Ui,j+l/*)li,fi~~~~~l’~;,j+~,*) 

= (~~‘“i,j+li*)(~I1’ui,j+l/z) 7 

which, by assuming that ZL~,~+~ - ui,j = 0, can be rewritten as 

ip)u. + G(ui,j+l) - G(ui,j) 
I r,1+1/2 

‘i,j+l/Z - ‘i,j 
= Q~)Ui,j+l,* . 

ww 

(4.2h) 

Next, by the averaging rule (3.7) together with (3.4a), we have that 

(g(2) 
x ui,j+l12 

= lp2’fl u. 
* , r,]+112 = ap’~[Ui,j+l + ldi,j] 

= $ [(Ui+l,j+l -2ui,j+l + ui-l,j+l) + (“i+l,j -2ui,j + ui-l,j)l * (4*2i) 

Thus, substitution of (4.2i) into (4.2h) completes the proof. Cl 

COROLLARY 4.1 (Recurrence formula). The algorithm (4.1) can be rewritten in the 
following form that involves only u: 

$f (“i,j+l --'i,j + ui,j-*) = t(L,j +A,j-1) 9 (4.3a) 

where 

fi,j := $ [(“i+l,j+l - 2ui,j+l + ui-l,j+l) + (“i+l,j -“i,j + ui-l,j)l 

G(ut,j+l) - G(ui,j) - 
ui,j+l -uij 

(4.3b) 
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PROOF. From (4.1) and using the definition (4.3b), it follows that 

‘i,j+l = i t”i,j+l - ‘i.j) + 5 fi.j 7 
(4.4a) 

which implies that at the previous time step j, or more precisely at point (i, j), we have 

ui,j = ; (ui,j - ui,j_J + 5 .t,j-1 * 

Then substitution of (4.4a,b) in (4.1), leads to (4.3a). Cl 

REMARK 4.2. Geometry of Algorithm I. Recall that the second order finite difference 
operator in time at the mesh point (i, j) is 

cs~2)Ui,j = $ (Ui,j+l - 2ui,j + Ui,j-1) 7 (4Sa) 

which is the left-hand-side of (4.3a). Similarly, we can write 

(4Sb) 

which can be interpreted as the average of two second order central differences in space at 
mesh points (i, j + 1) and (i, j), minus a forward difference quotient in time that approxi- 
mates G’(u) at mesh point (i, j), i.e., 

(4Sc) 

The interpretation of fi,j_l is similar: The average of two second order central differences in 
space at mesh points (i, j) and (i, j - l), minus a backward difference quotient in time that 
approximates G’(u) at mesh point (i, j). The right-hand side of (4.3a) is the average Of f;,j and 
&,j_l. Thus using (4Sa,b), we can rewrite (4.3a) into the form 

QW 
t ‘i,j - + 2&9$, j + &~4.$, j_ J 

1 

+z 
G(ui,j+l) - G(ui,j) + G(u,,j) - G(‘i,j-1) 

‘i,j+l - ui j Ui j - 14i j-1 
(4.5d) 

A comparison of the three terms in (4.5d) to the three terms in the NLKGE (2.la) reveals an 
obvious interpretation for the finite difference approximation. Figure 1 summarizes the 
geometric interpretation of Algorithm I. A final note before we close the remark: The form 
(4.5d) of Algorithm I can also be derived by applying directly the averaging operators and 
central difference operators to the second order form of the local conservation law (2.4a) 
instead of the first order form (2.4b),. 
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(i-l,j+l) (ij+l) (i+l,j+l) 

.“... 
***_***............... .....‘.” . . . . . . . . . . . . . . . . . . >A..*: . . . . . . 

t IFS 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

.**..** . . . . . . . . . . . . . . . . . . . . . . . . . . ..I..... . . . . . . . . . . . . . . . . . . . . . . . . . . * 

f 
ij 

f.. 
1J-1 

(i-lj-1) (&i-l> (i+l,j-1) 

Fig. 1. Geometry of Algorithm I. The algorithm is constructed from point (i, j + l/2) indicated by the arrowed 
cross. Taylor series are expanded about the black mesh point (i, j). The 3 unknowns are the 3 gray mesh points at 
time t = ( j + 1) k. The 4 second order central differences linking 3 mesh points each are indicated by the 4 
dotted-line ellipses: the vertical one in time, and the 3 horizontal ones in space. The forward and the backward 
difference quotients approximating G’(u,, j) are represented by vertical arrows. 

4.1.2. Accuracy 
We prove that Algorithm I is second order accurate in both space and time. 

THEOREM 4.2 (0 d r er o accuracy). The algorithm (4.1) is consistent with the NLKGE f 
(Z.la), and is accurate of order (2,2), i.e., the truncation error is O(h2) + O(k2). 

PROOF. Recall the convenient notation for partial differentiation Ui:‘“’ introduced in (3.2). 
The Taylor series expansion of Ui,jrl about the mesh point (i, j) 

leads to the following expression for (4Sa): 

&;2’ui,j = U!$T~) + O(k2) . 

Similarly, we have for the first three terms on the right-hand side of (4Sd) 

tg2) iy. * ‘,* = Ui(;;‘) + O(h’) , forq=j+l,j, j-l. 

Writing G(U(ihj jk)) = (G 0 U)i,i, we have that 

(Go u)i,jkl = (Go U)i,j + k(GoU)$” + $ (Gw)$‘*’ +O(k3) 9 

(4.6a) 

(4.6b) 

(4.6c) 
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= (Go U)i,j 2 kG'(Ui,j)U:p;" + i [G’(U,,j)U~~2’ + G’f(U~,j)(U~~~“)21 

+ 0(k3) . (4.6d) 

Then using (4.6a), we obtain the truncation error of the last two terms in (4Sd), 

(Go u)i,j+l - (Go u),.j 
‘i,j+l - ‘i,j 

= G’(U,,,) + 5 G”(Ui,j)Uj;jl’ + O(k*) , 

(Go U)i,j - (Go U)i,j-1 

ui,j - ‘i,j-1 

= G’(U,,,) - ; G”(U,,j)Uj;:” + O(k*) . 

Denote” 

L::;(u) := &~*)Ui,j - ~[cs~)ui,j+l + 2~~‘Ui, j + QF’“i, j-11 

1 

+z 
G(Ui,j+l) - G(ui,j) + G(ui,j) - G(‘i,j-1) ’ ‘i j+l - ui j , . Ui j-“i j-1 1 

(4.6e) 

(4.6f) 

(449 

Substituting (4.6b,c) and (4.6e,f) in (4.6g) and considering the fact that 

u;p;*) - U;?i’) + G’(U,,,) = 0 , (4.6h) 

we obtain 

Ip$fj(U>ll - O(h2, k2) . 0 (4.6i) 

REMARK 4.3. It makes sense now to consider the meaning of the averaging rule (3.7), i.e., 
how does (3.7) fit with the second order accuracy of the algorithm since we have assumed that 
the variables u and u satisfy (3.7). It is easy to see that both the averaging operator ‘?I and the 
central difference operator (5 are second order accurate with respect to h and k; hence any 
composition of these two linear operators is also of second order accuracy. Also, as already 
noted about (4.2a), the central difference operator and the averaging operator when applied 
to a first order differential equation such as (2.4b), give rise to the trapezoidal rule. 

4.1.3. Energy conservation, boundary conditions, stability 
We show that the conservation of the total system energy is, with appropriate boundary 

conditions, a by-product of the derivation of the algorithm starting from the local conservation 
law. A discrete energy can be defined as follows: 

Egl, I= h 2 gi,j 7 
i=-N 

(4.7a) 

” The superscript (I) refers to Algorithm I. 
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for some large integer N, where %‘i,i = 8(ih, jk) with %5(x, t) defined in (2.6a). It can be seen 
that Et,; is a truncated series approximating the exact energy E(jk) in (2.6b) using the 
trapezoidal rule. Using (3.7) and (3.12a), we obtain 

gj,j = i(~j~“~,~i,j)’ + ~(&~‘~,ui,j)2 + “(~i,j) 

= & (Ui,j+l - U[,j-1)” + $ C"i+l,j - ui-l,j)2 + G(“iqj) * (4.7b) 

With the same formalism employed to derive Algorithm I, the following finite difference form 
of the local conservation law (2.4a) 

tp’g. t 14+112 -Q~'(Ql"u~j"U)i,j+l,2 = 0 (4.8a) 

leads to 

(4.8b) 

In fact, (4.8b) can be considered as a discrete local conservation law, a counterpart of (2.4a). 
Consider an FD mesh with spatial mesh points ranging from i = -TN - 1 to i =I N + 1, i.e., 
2(lV + 1) segments in the space dimension. Summing (4.8b) from i = --IV to i = N, and in view 
of the definition of the discrete energy in (4.7), we have 

A choice of symmetric ~undary conditions such that the last bracketed term in (4.9) 
vanishes, yields the conservation of the discrete energy EE),12 i.e., Theorem 4.3. 

THEOREM 4.3 (Energy conservation). Algorithm I described in (4.1) or (4Sd) conserves the 
dilrcrete energy E,,. (I) defined in (4.7) in the sense that 

E(I). 
N,J+l = E:;j ‘i 9 (4.1Oa) 

provided that the boundary conditions are chosen to be symmetric such that 

The symmetry condition (4.10b) is essential to ensure conservation of a discrete energy. We 
mention here four possible choices of bounda~ conditions. While the s~rnet~ ~ndition 
(4.10b) itself leads to a nonlinear constraint equation to be imposed on the unknowns, one can 
choose simpler linear constraint equations such that (4.1Ob) is still satisfied, and whose 
elimination is much easier. Second choice: noting that, with the help of the averaging rule 
(3.7), 

” The first subscript N in Eg) is fixed; the second subscript, not tied, is represented by a ‘dot’. The ‘dot’ is used 
when we do not want to give any particular attention to a subscript. The superscript (I) refers to Algorithm f. 
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(p 
x U*+1,2,j+112 = ~~'(~~")N+lJ2,j+l,2 = ~igjl)uN+lJ2,j+l + g11)“N+lJ2pil 

= & C("N+l,j+l - uN,j+l) + ('N+l,j - uN,j)l 7 (4.11) 

and similarly for cS~1)~_N_I,2,j+l,2, we can approximate the boundary conditions (2.3c),, i.e., 
u, -+ 0 as x ---, +m, by setting 

(p 
x uN+lJ2,j+lJ2 = a!i1)u-N-lJ2,j+lJ2 =O Yi 9 (4.12a) 

obtained by letting13 

u N+l,j+l - uN,j+l = 

u- N,j+i - ‘-N-l,j+l 

A third choice would be to make 

(J(l) 
I uN+1/2,j+1/2 = a!1)U-N-l/2,j+Ii2 So ‘j 7 

(4.12b) 

(4.13a) 

to approximate the boundary condition (2.lc),, i.e., u,--,O as x-+ -Cm, with 

(4.13b) 

by simply choosing to let 

U N+l,j+l + U~,j+l = 'N+~,J' + ‘N,i ’ U_N_l,j+l + u-N,j+l = u-N-l,j + ‘-N,i a 

(4.13c) 

Finally, instead of enforcing zero derivative as in (4.21a) or (4.13a) to approximate the exact 
boundary conditions (2.lc), and since N is a finite number, a fourth choice is to enforce the 
following less restrictive symmetric conditions: 

CPU 
I 

= o%_ _ N+112,j+1/2 x N 112,j+1,2#O vi 7 

@‘f 
f UN+lf2,j+1/2 = ~~1fU-N-l/2,jCl/2 #’ ‘j ? 

(4.14a) 

to ensure that (4.10b) is satisfied, and which then lead to the &near constraint equations 

(u N+l,j+l - ‘N.j+l ) _ (u_~,~+~ - u_,_,,~+~) = -(uN+l,j - uN,j) + ('-N,i - u-N-lJ) ’ 
(4.14b) 

(U N+l,j+l + uN,j+l) - CU-N,j+l + U-N-l,j+l) = (“N+l,j + uN,j) - (u-N,j + u-N-l,j) ’ 

l3 A set of boundary conditions that also yields (4.12a), easier to implement, but more restrictive, would be 
U NC 1.9 = %?.g and u_,_,,~ = u_..+, Vq. 
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Note that the approximated derivatives in (4.14a) are not forced to vanish due to the location 
of the boundaries at a finite range.14 It is easy to eliminate (4.14b) from the system of algebraic 
equations for the unknowns ~.,~+r ( j + 1 is fixed) resulting from Algorithm I. 

To study the stability of Algorithm I, we consider the following un-normalized linear 
Klein-Gordon equation (ULKGE): 

Uff-Ux*+EU=O, (4.15) 

where E 3 0.15 One can think of (4.15) as a linearized version of the sine-Gordon equation 
with a factor E. For stability analysis of numerical algorithms, we consider only equations 
whose solution does not blow up; it is known that the NLKGE (2.la) with G’(u) = -sin u is 
unstable16 (e.g., [38]). H ence we do not consider the case with E < 0. 

THEOREM 4.4 (Linear stability). Algorithm I as described in (4.1) or (4Sd) is uncondition- 
ally stable for the ULKGE (4.15). 

PROOF. We will work with the form (4.5d) of Algorithm I, instead of (4.1). With 
G(u) = E(u*/~), (4Sd) takes the form 

(fij2)ui,j - ;[&jz)ui,j+l + 2~~‘Ui j + ~~‘Ui j-11 + ~ [Ui,j+l + 2Ui.j + ui,j + lYi,j-l] = O ’ 

(4.16a) 

The method of proof is Von Neumann (Fourier series) analysis, according to which we set 

(e.g., 1251) 

ui j=e ifi 1 
g 9 (4.16b) 

where 8 E [-IT, ~1 is the continuous variable in the transformed space, and g the amplification 
factor. It follows that 

&W l 
, uij=Fe 

iflfl j 

k 
g k2+g-‘l7 

l i@VT &y)ui 4 = - T e 
h 

g94sin 2e 5 , q=j+l,j,j-1, 

‘i,j+l + 2~,,~ + u+~ = e iOV7 j 

g [g + 2 + PI. (4.16e) 

Define 

A:= k/h. (4.16f) 

I4 Compare (4.12b) and (4.13~) with (4.14b). 
I5 For an example of the ULKGE, we refer to [7, p. 2471. By the transformation of variables 7 = ti and 

5 = XV?, we recover the (normalized) linear Klein-Gordon equation u,, - uf5 + u = 0. 
I6 Note the negative sign. 
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Then substitution of (4.16c,d,e) into (4.16a) yields 

[g-2+g-l]+(A2 sin2 t + i 
) 

[g+2+g-‘]=O, 

4 
9 E 

j ( g”2 _ g-“2)2 = - ( A2 sin2 2 + 2 
> 

1 A2 sin2 
9 E=Z-(Y, 

+ 2 + 2 

(4.16h) 

3 gTfig”2-l=O, (4.16i) 

(4.16j) 

Since 0 s (Y s 4, Ve 2 0 and VA, the norm of the complex number g”2 is unitary, i.e., 
]I g”2)) = 1, which is the condition for stability. Cl 

REMARK 4.4. A variant of Algorithm I. Instead of evaluating the approximate to G’(u~,~) as 
in the last bracketed term of (45d), we consider using G’(u~,~) directly as follows: 

CC12)Ui,j - i[6y)“i,j+l + ZE~)U,,~ + CCy)ui,j_l] + G’(Ui,j> = 0 * (4.17a) 

The advantage of doing this is to avoid having to solve a system of nonlinear algebraic 
equations as arising from (4.1) or (4.5d), because the term g(u,,,+r) is no longer present while 
G’(u~,~) is a known quantity at time t = (i + 1)k. It can be easily seen from the proof of 
Theorem 4.2 that this variant of Algorithm I is also second order accurate. The algorithm 
(4.17a) is, on the other hand, only conditionally stable for the ULKGE (4.15), although with 
a particularity that the stability condition does not depend on the spatial grid size h. Indeed, 
with G’(u~,~) = EU,,~, an analysis as in Theorem 4.4 above leads to 

( g”2 _ g-“2)2 = _ 
4A2 sin2 i + ck2 

1 + A2 sin2 g 

=:--(y. 

Then the condition for 0 < LY < 4 is 

2 
ksz, 

(4.17b) 

(4.17c) 

which is a very mild stability condition due to the absence of h. As E&O, the stability limit on k 
becomes infinite. In addition, the variant (4.17a) of Algorithm I does not satisfy the 
conservation of energy in the sense of Theorem 4.3, i.e., simplicity can be further achieved at 
the expense of energy conservation. 
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4.2. Energy-conserving Algorithm II 

We proceed to derive a second algorithm by applying the difference operators to the 
evolution equation (2.4b) at the mesh point (i, j) instead of at the point (i, j + 1) as in 
Algorithm I. It will be seen that Algorithm II is somewhat simpler than Algorithm I, but along 
the same lines as Remark 4.4, simplification is achieved at the detriment of other properties. 

4.2.1. Derivation and interpretation 
In line with the final note in Remark 4.2, we derive Algorithm II directly from the local 

conservation law (2.4a), which at point (i, j) gives the following discrete version: 

(4.18) 

By applying the general Leibniz rule (3.18), the commutativity (3.12c), and the averaging rule 
(3.7), the first term in (4.18) becomes 

(4.19a) 

Similarly, for the other terms, we obtain 

(4.19b) cq”[ $(q1)u)2]i,j = (QZ1)~I1)Ui,j)(~I’)Ui.i> ) 

= [G( 4 {Ui,j+l + Ui,j>) - G( d {Ui,j + Ui.j-lI)I y (4.19c) 

&(‘)(&~‘)U~jl)U)i j = (&F)Ui,j)(cS:Ui,j) + (&~l)~~l)ui,j)(c,s~‘)ui,j) ’ 
x (4.19d) 

Also note that 

~~l)Ui j = ~ [Ui j+l/* - ui,j-l,*] = ’ [%rUi j+l,* - 

k 7 
(4.19e) 

A substitution of (4.19a-d) into (4.18), together with the use of (4.19e), leads to Algorithm 
II. 

THEOREM 4.5 (Algorithm II). By applying the averaging rule (3.7), and the central 
difference rule (3.8) to approximate a/at and a /ax at the mesh point (i, j), Algorithm II LV 
obtained from the local conservation law (2.4a), 

Q@)U. - Q@)U. + 
G( ~{Ui,j+l + ui,j>) - G( i {ui,j + ui,j-1)) = 0 

I r., x 131 
$(“i,j+l - ui,j-l) 

(4.20) 
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A comparison between (2.la), (4.5d) and (4.20) reveals the differences between Algorithm 
I and Algorithm II in the finite difference approximation of the last two terms. In particular, 
G’(u~,~) is approximated by 

G'(ui, j) = 
G(~{ui,j+l+‘i,j})-G(~{ui,j+‘~,j-l>> 

+t"i,j+* - 'i,j-1) * 

(4.21) 

Also note that by the nonlinearity of G( 6) we have that G(~r~i,j+l,2)Z~tG(~i,j~llZ). A 
geometric interpretation of Algorithm II is given in Fig. 2. 

4.2.2. Accuracy 
In view of the second order truncation error in (4.6b) and (4.6~) for the first two terms in 

(4.20), we only need to consider the truncation in the last term. Since 

$ { ui, j-’ 1 + ui, j} = ui, j of: ; uIP;~) + r u:;;~’ + hot , 

it follows that 

G( ${ ui,jel + u~,~}) = G(u~,~) + G’(u,,,){ f 5 u;;;” + ; u;p;” + hot} 

+ gyui,i) 
~ 

k2 
2 5 uy + -;i- uy +hot +hot, 

> 

2 

and thus 

G( f { Ui,j+l + ~i,j}) - G( d { ~i,i + ~,,j_l}) = kG’(ui,j)~~~~” ~ 0(k3) . 

(ij+l) 

hi-1) 

(4.22a) 

(4.22b) 

(4.22~) 

Fig. 2. Geometry of Algorithm II. The algorithm is constructed from point (i, j) indicated by the arrowed cross. 
Tayfor series are expanded about the black mesh point (i, j). Only one unknown represented by the gray mesh 
point at time t = ( j + 1)k. The two second order central differences linking three mesh points each are indicated by 
the two dotted-line ellipses: the vertical one in time, and the horizontal one in space. The difference quotient in 
(4.21) approximating G’(u,,~) is represented by the vertical arrow. 
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On the other hand, it follows from (4.6a) that 

+(ui,j+* - ui,j_l) = kuy + O(k3). (4.22d) 

Then the truncation error in the last term of (4.20) is also of second order, 

G(${ui,j+l + Ui,j})- G(?{ui,j + ui,j-I>) 
$<Ui,j+l - ui,j-l) 

= G’(Ui,j) + O(k2) ’ (4.22e) 

THEOREM 4.6 (Order of accuracy). Algorithm II is second order accurate in both space and 
time. 

4.2.3. Energy conservation, boundary conditions, stability 
As in Algorithm I, a discrete energy is conserved. Reconsider (4.18) under a different 

angle: 

q” %i,j - Q;l)(ql)UQ;l)U)i,j = 0 ) (4.23a) 

* i [%i,j+l/2 - %i,j_l/2] - h[(~l”u~l”u)i+l,z,j - ((,s~‘)uG~‘)u)i_l,2,j] = 0 7 

(4.23b) 
with 

‘i,jkl/Z = 4(‘11)ui,j*l/2)z + 4(ai1)ui,j*l/2)2 + G(Ui,j*l12) * (4.23~) 

The results of applying (3.3) and (3.4) to each term of (4.23c), for the case (i + $), are 
recorded below: 

(4.24a) 

~~)Ui j+1,2 = - 4: [(‘i+l,j + ui+l,j+l) - C”i-1,j + ui-l,j+l)l ’ (4.24b) 

G(Ui,j+l,2) = G(i{ui,j+l + Ui,jl) 9 
(4.24~) 

which together yield the following expression for %i,j+ 1,2: 

‘i,j+1/2 = $ [‘i,j+l - ui,j12 + & [(‘i+l,j + ui+l,j+l) - (‘i-1,j + ‘i-l.j+l)12 

+ G( 4 {ui,j+l + Ui,j>) * (4.25a) 

The expression for Z$, j_1,2 can be obtained from (4.25a). Next, upon defining the discrete 
energy for Algorithm II by 

E(“! 
N,]-clt2 := h i gi,jrl/2 7 

i=-N 
(4.25b) 

summing (4.23b) from i = -N to i = N, we arrive at 
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- Eg!j_,,,] - [(%fl)u@I’)u),+,/2,j - ((sl”Uol”U)-,-,,~,jI = 0 Y (4.26) 

which leads to the following. 

THEOREM 4.7 (Energy conservation). Algorithm ZZ described in (4.20) conserves the discrete 
energy EC!.) defined in (4.25) in the sense that 

E(“j 
N,J+l/z 

= E(“! 
N,]-l/2 Q.i , (4.27a) 

provided that the boundary conditions are chosen to be symmetric such that 

(Q’)u~yu) N+l/2,j = (&~1)u(s~1)u)_N_,,2,j * (4.27b) 

As with the symmetry condition (4.10b), one can count on three ways, with different 
degrees of restriction, to satisfy the symmetry condition (4.27b)17, which consist of eliminating 
appropriate linear constraint equations from the resulting system of algebraic equations. The 
first way is to set 

E;“U = Pu_ _ N+l/2,j x N 112,j =O Qj, 

by enforcing the boundary conditions 

(4.28a) 

U N+l,j = ‘N,j 7 ‘-N,j = ‘-N-1,j Qj . (4.28b) 

The second way is to set 

@‘) 
I UN+l,z,j = Ei1)U_N-1/2,j G 0 Qj 7 (4.29a) 

by enforcing the boundary conditions 

U N+l,j+l + UN,j+l = ‘N+l,j-1 + uN,j-l ’ 

(4.29b) 
U_N,j+l + U-N-~ j+l = U-N j-1 + u-N-l,j-1 ’ 

Finally, a third and least restrictive way is to set 

&Cl) 
x uN+l/2,j 

= &;‘)u 
-N-l/2,jfo Qj 3 

@‘)u 
I N+l/2,j 

= &:(‘)u 
I -N-li2,j #’ ‘j Y 

(4.3Oa) 
by enforcing the boundary conditions 

N+l,j - ‘N,j ) = (u_N,j - u_N-l,j) Q.i Y 

(u N+l,j+l + uN,j+l) - (‘-N,j+l + u-N-l,j+l) 

= 
(U N+l,j_l + uN,j-l) - (‘-N,j-1 + u-N-l,j-l) Qj * (4.30b) 

” Equation (4.27b) is by itself a nonlinear constraint equation. 



366 L. Vu-Quoc, S. Li, Invariant-conserving finite difference algorithms 

Suppose that all values of u., j at the time level j had been computed; thus we must have had 
(4.30b), satisfied already. Since (4.30b), has to be satisfied for all j, at the (current) time level 
(j + 1) when all unknowns u.,~+~ are to be computed, we need to enforce (4.30b), at time 
level ( j + 1) (and not at time level j, which it is already satisfied) together with (4.30b),. Next, 
we examine the stability of Algorithm II and its variants for the ULKGE (4.15). 

THEOREM 4.8 (Linear stability). Algorithm II as described in (4.20) is conditionally stable 
for the ULKGE (4.15), with a stability limit for h : = k/h independent of E : 

ASl. (4.31) 

PROOF. Substitution of (4.16c,d,e) into (4.20) yields 

4h2 sin* 
(g”2 _ g-‘/2)2 = _ 

; + ek2 
(4.32a) 

As already mentioned in the proof of Theorem (4.4), the stability condition requires that 

(4.32b) 

The first inequality is satisfied since E 3 0, whereas the satisfaction of the second inequality 
leads to (4.31). Cl 

REMARK 4.5. Variant 1 of Algorithm II. A first variant of (4.20) is to replace the 
approximation (4.21) to G’(u,,~) by G’(Q) itself: 

gi2)ui,j - cSy)~i,j + G'(Ui,j) = 0 w (4.33a) 

Algorithm (4.33a), also known as the leap-frog algorithm, is second order accurate by using 
(4.6b,c) and (4.6g). For the ULKGE (4.15) with G’(u~,~) = EZ.+~, a Von Neumann analysis 
leads to 

(g1’2-g-1’22- 4A2sjn2$+ek2)=:-a, 1 --( 
which for 0 d cy d 4 requires that 

(4.33c) 

The stability limit depends on E and h. In particular, it can be seen that A is strictly less than 1, 
which corroborates well with the numerical experiments reported in [19, p. 5881: When 
applying algorithm (4.33a) to the sine-Gordon equation, it was found that the algorithm was 
unstable for k = h, but stable for k = 0.95h.“~Algorithm (4.33a) does not conserve energy in 

I8 We did not find the theoretical justification for this result as given in (4.33~) in any of the references that we 
looked into. 
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the sense of Theorem 4.7. We refer to Remark 4.4 for a similar variant of Algorithm I, which 
has a much less restrictive stability limit; compare (4.17~) and (4.33~). 

REMARK 4.6. Variant 2 of Algorithm ZZ. The algorithm proposed by Strauss and Vazquez 
[30] (see also [19, p. ‘5891) can be thought of as a variant of Algorithm II with an 
approximation for G’(u~,~) different than that of (4.21), 

(g(2) 
f ‘i,j - csy)ui,j + G(ui,j+,) - G(ui,j-1) o = . 

‘i,j+l - ui j-1 

(4.34a) 

In view of (4.6d) and (4.22d), the above approximation to G’(u,,~) is also of second order, 
similar to (4.22e). We obtain the following stability limit of this algorithm for the ULKGE 

4h2 sin 2e 

( g”2 _ g-‘/2)2 = _ 
2 + Ek2 

1+ &k2 
=: - a. 

There are two cases to be considered: 

(1) h s 2 /x/X The stability condition is given as follows: 

(2) h > 2 /I/T. Clearly, 0 s (Y. The inequality a! s 4 leads to 

k2 
--j: 
h 

(4.34b) 

(4.34c) 

(4.34d) 

which is always true since sin’ $0 - f eh2 s 0. Hence the stability condition 0 s cy s 4 is 
satisfied in this case without additional requirement on A; in other words, the algorithm is 
always stable for h > 2 /v% and for any k. 

The above stability condition is somewhat less restrictive than in the standard wave 
equation (E = 0). The essential difference between Algorithm II and its variant (4.34a) is that 
the finite difference discretization in (4.34a) is not entirely consistent in the sense that if we 
replace G’(u~,~) by &:‘G(u~,~), we have that 

G(Ui,j+*) - G(Ui,j-1) 
‘i,j+l - ui j-1 

# B~'G(u~,~) . 

On the other hand, if we define the central difference operator differently: 

(4.35) 

A(‘)& .= f;:+l -h-l 
I * 

xi+l -Xi-l ’ 

then it is obvious that Ac2) # a(“). 
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Although one can still manage to obtain some discrete energy as in f30], the relationship 
between the total system energy and boundary conditions remain obscure. Moreover, the 
positiveness of the discrete energy proposed in [30] is also unclear. In contrast, the consistency 
in our formalism leads to discrete algebraic operators that possess algebraic inva~ants with 
clear interpretation. 

REMARK 4.7. Non-conservative models. To the NLKGE (2.la), one can add dissipation, 
damping, and a driving term to form a model that describes the physical behavior of 
Josephson junctions [31,39] 

Ott - U,, + G'(U) + alI, - bU_ + c = 0 - (4.36a) 

A reliable algo~thm in this case should not introduce numerical dissipation, damping, and 
amplification such that the numerical results deviate to any significant amount from these 
effects in the physical model. Clearly, such algorithm must possess the properties just cited in 
the case where a = b = c = 0. This observation then suggests that Algorithms I and II can be 
employed as starting points to construct algorithms for (4.36a). Thus to the right-hand side of 
(4Sd), or equivalently to the right-hand side of (4.1),, for Algorithm I, and to the right-hand 
side of (4.20) for Algorithm II, we add the three terms 

with 
acp’u. - bptp)U. + c 

I '31 x t 131 7 
(4.36b) 

(5@)&_(l) 
X t ui,j = J$$ ((“i+l.j+l - 2ui,j+l + “i-l.j+1~~ (‘i+l,j-l -2ui,j-l + ‘i-l,j-I>> f 

(4.36C) 

which corresponds to the last three terms in (4.36a) to form two algorithms for (4.36a). 

4.3. Momentum-conserving algorithm 

4.3.1. Derivation 
Instead of starting from the energy conservation law (2.4), one can begin with the 

conservation of linear momentum (2.8) to derive a desired algorithm possessing a momentum 
invariant. Applying the same formalism for algorithm derivation as presented above in Section 
4.2.1 to the conse~ation of linear momentum (2.8a) at the mesh point (i, j), we obtain 

cpui j - tpuj i f G(h{u,+l,j + ui,i>)- G(?{Ui,j + Ui-l,jI) =o 

tCUi+l,j - ui-l,j) 

, (4.37) 

which is similar to (4.20) except for the approximation of G’(u,,~).‘~ We refer to (4.37) as 
Algorithm III, with a geometric interpretation given in Fig. 3. 

THEOREM 4.9 (Algorithm HI). (i) Algorithm III is conshtent with the NLKGE (2.1 a), and 
is also second order accurate, i.e., its truncation error is 0(h2, k2). (ii) Algorithm III has an 

” A justification of the derivation of (4.37) will be given shortly in the proof of Theorem 4.9. 
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(i j+l) 

-*-.-...” . . . . . . . ...” ...... 

]W 
: : j 

(U-1) 

Fig. 3. Geometry of Algorithm III. Similar to Algorithm II (Fig. 2), except for the difference quotient (the last 
term) in (4.37) approximating G’(u~,~), which is now represented by the horizontal arrow. 

algebraic momentum invariant. (iii) For the ULKGE (4.15), Algorithm ZZZ is conditionally 
stable, with the criterion 

PROOF. (i) By (4.6b) and (4.6c), one has that 

(5’2’U~ = u!W) 
f ‘.I s,j + W2) > &~‘ui,j = Uf;;“’ + O(h2) . 

Similar to (4.22e), it is easy to verify that 

G( $, { Ui+l,j + ui,jY) - G(i {U,,j + ui-l,j>) 
ft"i+I,j - ‘i-1,j) 

= G’(U,,,) + 0(h2) . 

Applying the averaging rule, one obtains 

Then the use of (4.39a-c) in the definition 

Lack” := 61”Ui.j - B~‘Ui,j + ~II1’G(Ui,j)lj=fixed ) 

leads to the second order accuracy of Algorithm III, i.e., 

(4.39a) 

(4.39b) 

(4.39c) 

(4.40) 11 L;r,“‘(U)jl - O(h2, k2) . 
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(ii) It is only necessary to show that (4.37) is a finite difference description of the 
momentum conservation law (2.8a) using the permissible algebraic operators developed in 
Section 3. Multiply (4.37) by kXui,): - - 

Q,u,,j{Csj”,i,j - Q~‘~i,j + QIl’G(Ui,j)lj=fixed = 0) . 

By the Leibniz rule (3.20), the second term in (4.41a) turns out to be 

Q;l)Ui,j(yS~)Ui,j = a:“[ $(&;“Ui,j)2] . 

Also by combining (3.20) and (3.11), the first term of (4.41a) can be written as 

Q~l)Ui,jQ~lbi,j = G~l)(vi,jql)ui,j) - ~q1’(ui,j)2 . 

Finally, by the chain rule (3.21), the third term of (4.41a) is written as 

~;‘)u~,~E;)G(u,,~)] j=fixed = Q;)G(z+~) . 

A substitution of (4.41b,c,d) in (4.41a) leads to 

~r(‘)(~i,j~1~‘~i,j) - ~~I’[ f(~i,j)~ + 4 (&~“~i,j)~ - G(Ui,j)] = 0 , 

(4.41a) 

(4.41b) 

(4.41c) 

(4.41d) 

(4.42) 

which is exactly the finite difference discrete version of the continuous local momentum 
conservation law (2.8a). 

(iii) Let G(u) = $eu2; then (4.37) becomes 

(“i,j+l - 2ui,j + ui,j_l) - h(“i+l,j - 2ui,j + ui,j) + a~k*(Ui+l,j + 2Ui.j + Ui_l,j) = 0 . 

(4.43) 

Substituting ui,j = e Isflgl into (4.43), one obtains 

($y _ p)2 = _ 4A sin2 : + ek2 cos2 i 
1 

=: -a(O) . (4.44a) 

By Theorem 4.4, the stability condition reads 

0%@)~4. (444b) 

The first inequality is automatically satisfied. For the second inequality, since 

a(e) = 4A2 sin2 40 + ek2 cos2 $0 = s(4A2 + ek2) + (ek2 - 4A2) cos 8, (4.45a) 

it follows that 

max{ a(e)} = $ (4A2 + ek2) + 4 (4A2 - l k2( . (4.45b) 
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Two cases need to be examined: 
(iii.a) EIC’ a4A2, i.e., h f 2/G. Then max{a($)} = 4h2, which leads to the stability 

criterion 

ASl. (4.4%) 

(iii.b) 4A2 s l k’, i.e., 2/G s h. Then max{cr(@)} = ei?, which also leads to 

4A2crk2s4 =$ ASl. (4.45d) 

Thus the stability criterion A s 1 is valid without any rest~ction on h. Cl 

REMARK 4.8. A variant of Algorithm 111. The following modified leap-frog algorithm, a 
generalization of the algorithm by Ablowitz et al. [24], can be thought of as a variant of 
Algorithm III: 

(-pu 
t 

t - (p 
id x Ui,j + G’( $(ui-l,j + Ui+l,j}) = 0 * (4.46a) 

The only difference between (4.46a) and (4.37) is in the last term, which still retains some 
similarity. Note that the algorithm by Ablowitz et al. [24] is recovered from (4.46a) by setting 
k = h. Algorithm (4&a) is second order accurate by a proof similar to that of Theorem 4.6. 
We now compare the stability properties between algorithm (4.46a) and Algorithm III for the 
ULKGE (4.15). 

The counterpart of (4.44a) for algorithm (4.46a) is 

( g”2 - g-1/2)2 = -(4A2 sin2 $6 + gk* cos 0) = 2A2 + (ek2 - 2A2) cos B =: -a(B) . 
(4.46b) 

Recall that by Theorem 4.4, the stability condition is 0 s a(e) s 4. From (4.46b), we have 

max{ a(@)} = 2A2 + It-k2 - 2A21 , mined} = 2A2 - Irk2 - 2A21 . (4.4663 

In the present situation, the first inequality 0 s a! is no longer always valid. There are three 
different cases: 

(1) rk2 < 2A2, i.e., h 6 $& In this case, 

max{~(e)~ = 4A2 - Ek2 , min{~(e~} = -Ek2, (4.46d) 

leading to the stability criterion 

(2) 2A2 d Ek2 s4A2, i.e., m 6 h %2/ti. In this case, 
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max(a(0)) = Ek2 , min{ a(0)) = 4h2 - Ek2 < 0, 

thereby 

(3) 4A2 < Ek2, i.e., 2/G < h. In this case, 

max{a(e)} = ek2 , min{ a(@)} = 4A2 - Ek2 < 0 . 

Hence 
if e=O (i.e., h-+0) * h=O, 

if E # 0 (i.e., h finite) + Q < 0 is possible, 

(4.46e) 

(4.46f) 

which mean that the algorithm is unstable in the present case. 
The main observation from the above three cases is that for algorithm (4.46a) the stability 

criterion on A depends on the value of h: The finer the spatial discretization (h small) the 
larger the stability limit on k2’ As far as stability is concerned, Algorithm III is more robust in 
the sense that the stability criterion does not depend on the amplitude of h as shown in 
(4.45c,d). Note also that algorithm (4.46a) does not conserve momentum in the sense defined 
in Theorem 4.9. Christiansen and Lomdahl [40] employed a generalization of (4.46a) to the 
2-D case; from the above analysis, a superior algorithm could be obtained by generalizing 
Algorithm III to the 2-D case. 

4.3.2. Momentum conservation, boundary conditions 
As pointed out earlier in Section 2.2, with the appropriate boundary conditions (LlOb), the 

momentum integral (2.11) exists. We now demonstrate that Algorithm III can preserve the 
momentum integral numerically, with a finite difference version of the boundary conditions 
(2.10b). First, we define 

and 

(4.47a) 

,ai,j := [t (~i,j)~ + t (~!1’Ui+l,2,j)2 - G(ui,j)] . (4.47b) 

Then (4.42) can be recast as 

or 
(4.48a) 

i [&i,j+lJ2 - di,j-1121 - i [‘i+ll*,j - 9i-112,jl = O ’ 

Summing the index i in (4.48b) from -N to N, we obtain 

h iz$, (di,j+l/2 - Ai,j-1/2) = k(-4-,-,/2,j + ‘N+l/z,j) . 

(4.48b) 

(4.49a) 

” But we only need to have h s m to achieve the maximum upper bound on A for algorithm (4.46a). Thus 
the maximum time step size k would be k = 21x4, with h = m. 
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Denote 

Then (4.49a) is read as 

MUif) 
N,~+112 

- @If) 
NJ 112 = k{‘ai+,,2,j>lj:NN-1 , (4.49b) 

which leads to the following. 

THEOREM 4.10 (Momentum conservation). Algorithm ZZZ described in (4.37) conserves t&e 
discrete momentum MN, j W) defined in (4.49a) in the sense that 

M(IIf) 
hf,j+112 

= M(‘“fl 
N,] l/2 Yi , (45Oa) 

provided that the following boundary condition holds: 

9j-,-,,, = 4;N+l12,i W - 

Let us have a close look at the expression for ~~~N+i,2),jr 

(4SOb) 

[( 1 U-c(N+1/2),j+l - ‘%(N+l/Z),j-1 

‘%c_(N+l12),j = 2 2k 
‘tt(N+l),j - ‘?(N-l),j 2 

h 

(4.51) 

Therefore, a general way to enforce the boundary condition (4.5Ob) is to set 

(U- (~+r),j+l + U-N,j+l) - (@-(N+l),j-1 + ‘-N,j-l) 

= 
(U (N+l),j+l ’ uN,j+l) - (“(N+l),j-l “N,j-l) 

u-(N+l),j - u-N,j = ‘(N+l),j - ‘N,j Vi , 

G(ii(U-<N+l),j + U-,,j>) I=: G( !!{UN+l,j + uN,j)) 

(4.52a) 

(4.52b) 

Vj . (4.52~) 

REMARK 4.11. Both Algorithm III and its variant (4.46a) are explicit algorithms in the sense 
that u~,~+~ is obtained directly in terms of known solution at time stations j and j - 1. Besides, 
(4.46a) has some other computational advantages (parallel computation) (see [24]). 

5. Computer implementation 

Based on the formalism introduced in the previous sections, several algorithms have been 
designed which can preserve certain invariants in the NLKGE. In the present section, we 
demonstrate how to implement these algorithms using the energy-conse~ing Algorithm I as a 
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prototype. Let the spatial coordinate line be discretized into 2N segments as follows: 

{-N/z, (-N + l)h,. . . , -h, 0, h,. . . , (N - l)h, Nh} , 

with the integer N chosen such that 

where i is a given integer, c,,, the maximum time up to which the computation will be 
performed, and E a given tolerance. For convenience, we let 

and21 
X:={-N,-N+l,..., -l,O,l,..., N-l,N} 

_Uj := ]U_,,j, U_,+,,j, *. * ) ui,j, * * * 7 14N-I,jY uN,jJ G l”i,jJ E R1x(2N+1) 7 

gj := [v_~,j, U_N+l,/> * * * 7 ui,j,’ ’ ’ 9 ‘N-l,jY uN,jl s L’i,jl E R1x(2N+1) * 

Our focus here is Algorithm I as described in (4.1). At time t = (j + l)k, it has 2(2N + 1) 
unknowns, ij+r = ]ui j+lJ ER 1x(2n+1) and gj+l = ]ui j+l] E !R1x(2n+1! One can rewrite (4.la) 
as 

(5.1) 

which when substituted into the second equation of (4.lb) leads to an alternative form of 
Algorithm I: 

ui,j+l = f (“i,j+l - ui,j) - ui,j > (5.2a) 

-4hmi.j - {[ui+l,i+l - (2 + 4’2)ui,j+l + Ui_l,j+r] + [Ui+l,j - (2 -4r2)Ui,j + ‘i-l,jl> 

+ 2h2 
G(ui,j+l) - G(ui,j) = 0 

, 
‘i,j+l - ui j 

(5.2b) 

where r := 1 /h = h/k. The advantage of (5.2) is that we decoupled !j+l from gj+r such that 
(5.2b) can be used to solve for the (2N + 1) unknowns in 4fi+l. Then (5.2a) is used to obtain 

‘j+l; this update procedure is discussed in Section 5.2. 

5.1. Consistent linearization 

Basically, (5.2b) with i E X form a system of nonlinear algebraic equations for the 
unknowns in ,u~+~ E R1x(2N+1! These equations will be solved by the Newton-Raphson 
procedure; in what follows, we describe the necessary discrete tangent operators obtained via 
linearization. 

‘l We employ the following notation _uj = [u,,~] E W1x(ZN+l), which means that the free index i is to be expanded 
to cover its range, i.e., i E JY, to form a 1 X (2N + 1) row matrix. 
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We denote the solution for _u,+~ and tj+r at iteration (I) of the Newton-Raphson solution 
procedure by #i1 and ~7:~. Now, assume that #I1 and gyjI are known. Let ::‘il,, and #iI,, 

be the perturbation of #~I and ?::I in the direction A_uyiI and AzI~:~ defined as follows: 

Also for i E N, we define the residuals pif:,l and qifi+I corresponding 

respectively, as** 

(5.3) 

to (5.2a) and (5.2b), 

(5.4a) 

q;f;+l := -4rhUi,j - {(Uj:)l,j+l - (2 + 4r’)Uifj+l + ui!!,,j+l) 

+ (ui+l,j - (2 - 4r*)Ui,j + ui_l,j)} + 2h2 G<uifj+l> - G(ui,j) 
u!‘! - u. * 

(5.4b) 
1,1+1 1.1 

From the definition of pl’:,l and qifj+l in (5.4a,b), one can readily introduce the definition of 
the perturbation pi!;+ 1 ,~ and qi:j+ 1 ,E based on (5.3). Thus the linearization of the system 
(5.4a,b) about the known solution z_$ 1 and #JI is obtained as follows. For i E N, 

(5.5a) 

(5.5b) 

The increments Au? i,, + l, for i E N, are obtained by solving the linear system 

&I$+, =0, for iEX. (5.5c) 

The increments Au!‘! r,,+l, for i E N, are obtained from Az#)+~ by solving 

zPlf;+l =0 foriEX. (5.5d) 

*‘Note the presence of uI:)~,~+~ and uy!,,j+l in qi:i+ 1, making the system of equations q::i+, , for i E N, coupled 
(and nonlinear). 
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An issue that receives less attention in the literature is the consistent linearization of the 
boundary conditions. It is important to have the linearization and the update of the boundary 
conditions done correctly, since these procedures affect the formation of the tangent matrix, 
while the correctness of the whole solution procedure affects the invariant-conserving prop- 
erties of the algorithm. We present the linearization of the symmetry condition (4. lob), which 
as mentioned before has three different inte~retations regarding the generality of its 
applications. 

The first choice of boundary conditions is (4.12a), or equivalently (4.12b). The linearization 
(or incremental form) of (4.12b) is 

("$!l,j+l -"Zfj+ll+ ("N+l,j-uN,j)+(Au~!l,j+l -AuEfjil)=o~ 

(U(I)N,j+l- u!!h-I,j+l) + (u-N,j - u_,_,,j) f (Au!!‘,,j+, -.hU!!k_,,j+l) = 0 * 
(5.6a) 

The second choice of boundary conditions is (4.13a), or equivalently (4.13~)~ which has the 
linearized (incremental) form 

(u$I+,,j+l + u$fj+l) - (UN+l,j + G,,j) + (AUi!+-r,j+r + A”;:~+I) =‘T 

(UC!),-*,j+* + uH,,j+l )-(~__,_..,,j+ u_,,j)+(Au(I)N-l,i+l +'~"~,j+l>=O* 

(5.6b) 

More general boundary conditions yielding (4.10) are given in (4.14a), or equivalently 
(4.14b). Adding and subtracting the two equations in (4.14b), we obtain two simpler 
equations for enforcing the boundary conditions (4.10): 

(u N+l,j+l - 'N.j >-("-N,j+l -"-N-l,j)=o 7 

N-t-l,j - uN,/+I )-(u_N,j-“-,-,,j+~)=o? 

whose linearized form is 

(5.81 

’ ’ t u N+l, j - 'N,i+l (f) ) - cU_~,~ - u(-ik_l,j+l) + (AU(lL-,,j+, -Au$!,+,) =O * 

Either one of the equations (5.6a), (5.6b) or (5.8) will be the starting point for the boundary 
update procedure. in our computer implementation, we adopt (5.7) as boundary conditions 
and (5.8) as the corresponding update procedure. 

5.2. Initial guess and update procedure for Newton iteration 

The first step in the Newton-Raphson method is to choose the initial guess (or starting 
value for iteration (I) = (0)). A n initial guess which is consistent should satisfy (5.2a), i.e., 

u!O! - u. 
I>/+1 1.J 

v!O.’ - u. 
t,1+1 

k - 2 
‘*’ =O IfiEX. (5.9) 
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At the boundary points, the consistency of the initial guess requires that either one of the 
constraints equations (5.6a), (5.6b) or (5.8) be satisfied for (I) = (0), i.e.t3 

(U (0) 
N+l,j+l 

(U~~,j+l - u!.f~._l,j+l) + ("-N,j - '-N-1,j) = O * 

C"(Noll,j+l + Uc,\+l) - tUN+l,j + 'N,j) = O 7 

(U~~_l,j+l + U~~,i+l) - ("-N-l,j + u-N,j) =O ’ 

C"C!l,j+l - UN,]) - ("fA,j+l - u-N-l,j) = O 7 

CQ N+l,j 

(S.lOa) 

(51Oc) 

Equation (5.9) together with (5.1Oa) or (S.lOb) or (5.10~) guarantee a consistent initial guess. 
Also, one can notice that the value for the velocity at the bounda~ is not needed in the 
present algorithm. Since we use (5.7) and (5.8) in our computer implementation, the 
consistent initial guess for us is therefore (5.10~). 

Next, the update formula are defined as 

(5.11) 

The inurements Au~‘~ t,J+l and A~ifj+~ are not, however, independent; they are in fact related 
through the algorithm and the consistent choice of initial guess. These properties are 
established in the following propositions, 

PR~P~S~T~U~ 5.1. The ~ncrernent~~ velocity Au $ii + 1 

ment Au!‘? 
is related to the incremental displace- 

r,Ifl, Vi E N, according to the following relation: 

Av$+r = f Au;fi)+l , for E=O, 1,2,. . . . 

PROOF’. A substitution of (5.11) into (5Sd), using (5.4a) and (5.5a), yields 

U!? 
&l-+1 , - ui j vy;+l + vi i 

k -‘2’ 
=0, forl=l,2,3 ,... , 

(5.12) 

(5.13) 

Moreover, (5.13) is also valid for 1 = 0 by a consistent initial guess satisfying (5.9). On the 
other hand, again by (5.4a) and (5.11), 

U!k.+‘f - u_ 
&If1 ‘.I 

v!k.+l) - u. 
Z,lfl ‘21 = 

a!‘! 
r,1+1 , - ui i V!? 

~,I+1 -'ij 1 
k - 2 k - 2 

’ + ‘i; A$;,, - ; Av;~;+~ , 

(5.14) 
23 The choice of the constraint equations on the initial guess, i.e., (S.lOa) or (5.10b) or (LlOc), should be the 

same as the choice of the bounda~ update equations, i.e., (5.6a) or (5.6b) or (5.8). 
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for I = 0, 1,2,3,. . . ; thus by (5.13), it is clear that 

; Au!;;+~ - ; A$;+, =0 Vk. El (5.15) 

PROPOSITION 5.2. Depending on the choice of the boundary condition constraints, i.e., 
(4.12b), (4.13~) or (5.7), at the Ith Newton iteration, we have the following corresponding 
relationships on the incremental displacements : 

Au;!,,~,, = Au!&+l , Au!’ _ N 1,1+1 
=Au”’ 

N,]fl ; 
(5.16a) 

Au;)+~,~+, = -Au&+~ , Au!’ _ N l,/fl 
= -Au’f’ 

N,]+l ; 
(5.16b) 

Au;;,,~+~ = Au!!)N,~+~ , Au!‘_ N l,]+l 
= Au(‘). 

N,/+l * 
(5.16~) 

PROOF. The above is a direct result of the initial guess (5.10a), (5.10b), (5.10~) and the 
update formulas (5.6a), (5.6b), (5.8), respectively. Cl 

The consistent initial guess (5.9), together with (5.1Oa) or (5.10b) or (5.1Oc), form one part 
of the integral update procedure. Consider (5.9); there are two possible choices of setting the 
initial guess for the interior points: For i E JV, 

u?? = u. 
t,J+l 1.1 ’ 

v!? = -_u. 
l,J+l l,J 

(5.17a) 
or 

u!‘.) 
1,1+1 

= ui,j + vi,jk , v?? = v. 
l,J+l ‘.I ’ 

(5.17b) 

The choice of (5.17a) or (5.17b) for the interior points will, however, dictate the initial guess 
for the boundary points by virtue of (5.lOa,b,c). In our computer implementation, we use 
(5.17b) as the initial guess for the interior points. 

5.3. Solution strategy 

Ultimately, to obtain the incremental displacement at iteration I, we are to solve the 
following linear system, which has a particular structure: 

1 

a-N b, 0 
b k,,, b 
0 b k,, 

0 .:. . . . 
C 0 . . . 

. . . . . . 0 c’ 

. . . . . . . . . 0 

-2 b . . . . . . . 

. . . b Li,_, b 

. . . . . . ‘1 ‘N 

Au!) 
N,J+~ 

Au! _ N I,]+1 

AU!? 

‘,I 

Au+ 
N I,]+1 

Au('). 
N,J+~ 

= 

ci- N+l 

ii 

ci;_, 

3 

(5.18) 

where b = - 1 and 
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+ (~i+l,j - (2 - 4r2)ui,j + ui-l,j) - 2h2 G(u~~+l) - Wqj) 
u!‘? - u. + 

(5.20) 
1,1+-l I.1 

For the coefficients b, and c, there are three different cases, each corresponding to a choice of 
boundary condition constraints by virtue of (5.16a), (5.16b), (5.16c), respectively: 

(1) b, =2 and c=O; 
(2) b, =0 and c=O; 
(3) b,=c=b=-1. 

In the first two cases, (5.18) is a typical TV-diagonal system, for which there are several 
established efficient methods of solution, e.g., the Thomas algorithm (see [36]). 

Here, we pay particular attention to the third case, which is slightly different from the 
standard tri-diagonal system. There are non-zero coefficients (c) in the upper right corner and 
lower left corner of the matrix in (5.18). The system is, however, symmetric in this case. 
Using the Gauss elimination procedure, one can easily tridiagonalize the system. The 
following efficient recursion formulas, which are even simpler than the Thomas algorithm, are 
found for solving the problem (5.18) with b, = c = b = -1: 

a_N=ii-N, C-N = c, d_, = iI+, 
b2 

a, = &, - - 
ai-l ’ 

for if-N,N; 

ci = 
bci-l 
a,_l ’ 

for i#-N, N-l; 

d;_,b 
di=di-r, forif-N,N; 

i 1 

For completeness, the backsubstitution formulas are abo included: 

Au(‘). dN 
N,]+l = - ’ Ad’! 

UN 
N 1,/+1 = & (dN_1 - CN-lAuEfj+l) 9 

(5.21) 

(5.22) 

for i=N-2,N-3 ,..., -N+l, -N. 
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6. Numerical results and discussions 

We begin by describing the numerical examples solved by using the proposed algorithms in 
Section 6.1, followed by the discussions on the behaviour of the numerical results in Section 
6.2. Some of the examples in Section 6.1 are classical and possess analytical solutions; 
appropriate references are given whenever possible. 

6.1. Numerical examples 

EXAMPLE 6.1. Collision of the sine-Gordon solitary waves. In this example, the potential 
function G takes the form 

G(U)=l-co&J. (6.1) 

The usual soliton solution for the sine-Gordon equation is 

U(x, t) = 4 tan -l[exp( +- ;s)]. (6.2) 

Theoretically, the boundary conditions in this case are 

u(m, t) = 0 ) ux( +QJ, t) = 0 ) (6.3a) 

which can also be translated into the following equivalent form: 

u,( +m, t) = 0 ) ux( +@J, t) = 0. (6.3b) 

We consider the collision of two solitons whose equations are given in (6.1), one with the + 
sign (kink) and the other with the - sign (antikink). The two solitons have equal but opposite 
velocities. The exact solution of this collision problem is also known as the kink-antikink 
solution of the sine-Gordon equation. To set up the initial conditions at t = 0, we consider the 
two kink and antikink solitons to be at a distance X, on each side of the origin 0 of the x axis. 
Thus the initial conditions employed for the collision of two solitons are 

U(X, 0) = 4 tan -‘[exp( ;s)] + 4tan+np( $+$)I ) 

u(x, 0) = -4. 

P x + x0 ( i P --x+x, 
IJiq exp l/i-q + J/m exp jim i ) 

1 + exp 
x+x, * 

( 1 C-z 
1 + exp 

-x+x, * 

( 1 Vi7 

(6.4a) 

(6.4b) 

For the numerical results for u(x, t) presented in Fig. 4, we use x0 = 5.0, j3 = 0.3, together 
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Fig. 4. So&cm collision fir the sine-Gordon equation. With projected level contours, without hidden-line removal. 

with the step sizes h = 0.1 and k = 0.2. The corresponding velocity U(X, t) is shown in Fig. 5.24 
The above results can be compared with previous numerical results for this problem in [14,19, 
241. 

EXAMPLE 6.2. Breather solution of the sine-Gordon equation. Since this is another case for 
the sine-Gordon equation, the potential function remains unchanged, and so are the boundary 
conditions. The breather solution is of the form (see [8]) 

U(x, t) = -4 tan-’ 
sin(tP5-Z + c2) 

cosh(mx + c,) 1 . 
(6.5) 

The initial velocity U(X, 0) = u,(x, 0) can be easily obtained from (6.5). In the present 

example, we use m = OS, cI = 0 and cZ = -lo-, The step sizes used in this example are 
h = 0.1 and k = 0.1. The results can be compared with those presented in [19]. 

EXAMPLE 6.3. Collision of the 4”_ solitary waves. The potential function for this example is 

G(u) = - im”u” + $yu4 . (6.6) 

The boundary conditions also have different form, 

u(-cy t)= - 
m2 d- - , 
2 

UX( rtrm, t) = 0 . (6.7) 

24 In fact, the negative of the velocity is plotted in Fig. 5 to show clearly the decrease in velocity at collision. 
Further, a refined mesh with h = 0.05 and k = 0.05 was used here to obtain more details. 
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Fig. 5. Negative velocity profile, i.e., -u(x, t), for the sine-Gordon kink-antikink pair. With projected level 
contours, without hidden-line removal. 

Under the above conditions, a soliton-like solution is (see [41]) 

68) 

Similar to the construction of the collision of two kink and antikink solitons in Example 6.1, 
the initial conditions employed in the present example are 

(6.9a) 

m(-x + x(J* 
tanh ,,,m - (6-W 

1 

The computed dispiacement u(x, t) shown in Fig. 7 was produced with y = 1 /rr2, m = 1, 
X, = 3, /3 = 0.2, together with the step sizes h = 0.1 and k = 0.1. The above results can be 
compared to those obtained in [42]. 

EXAMPLE 6.4. Solitary waves of the double sine-Gordon eq~tion with positive velocity 
(+ve) and their collision. The potential function for the double sine-Gordon equation with 
positive velocity is 

G(U)=2-cosU-cos($), (6.10) 

whereas the boundary conditions are the same as in the sine-Gordon equation. The soliton 
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Fig. 6. A stati onary sine-Gordon breather solution. With projected level contours, without hidden-line removal. 

u(x,t) 

2 
1.5 

1 
0.5 

0 
-0.5 

-1 
-1.5 

.2 

0 

solution is of the following form (see [19]): 

A6 
U(x ,t) = -4 tan-’ sinh , 

( > 
(6. lla) 

8 = 4v3(x - /Ir)(l- pq-“” . (6.11b) 

The solutions in the previous examples are all symmetric. Figure 8 presents a non- 
symmetric solution called the single ‘wobbling’ 47~ kink solution related to (6.11a,b) using as 
initial conditions 

and 
u(x, 0) = 4 tan-‘(exp(B + 8)) + 4 tan-‘(exp(8 - 8)) (6.11~) 

V(X, 0) = 2w sech(8 + S) + 2w sech(8 - 8) , (6.11d) 

_ _ 
- --~ 

Fig. 7. Kink-antikink collision for the 4’_ model. With hidden-line removal. 
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o 400 

Fig. 8. The single ‘wobbling’ 4n kink of the double sine-Gordon equation with +ve sign. 

where S = ln(S + 2) + x0, the parameter 19 is as defined in (6.11b), and o = ifip(l- 

PY2. Figure 8 is obtained with the following choice of parameters: p = 0.3, x,, = 2.5, 
together with the step sizes h = 0.1 and k = 0.1. 

Ablowitz et al. [24] also studied the same problem but with a transformed version, in which 
the potential function takes the form 

G(U)=2-cosu-cos(yU), y=2. (6.12) 

The corresponding soliton solution, which is very similar to (6.11a), is as follows: 

I 

U(x, t) =2 tan-’ 

i 

m 

sinh I&7x - Pt) * 

6-F 1 

(6.13) 

Now to obtain the solution for the collision of two kinkiantikink solitons of the form (6.13), 
the initial conditions at t = 0 can be derived following the same procedure explained in 
Example 6.1. To produce Fig. 9, we use y = 2, p = 0.3, with x0 = 5.0 for the initial conditions 
(cf. expression (6.4a)), and the step sizes A = 0.1 and k = 0.2. The velocity profile V(X, t) is 
presented in Fig. 10, using a refined mesh with h = 0.05 and k = 0.05. A comparison of Fig. 5 
and Fig. 10 reveals the distinct velocity profiles for the two collisions in Example 6.1 and 
Example 6.4, whereas the displacement profiles are similar (Figs. 4 and 9). The results 
presented in Fig. 8-10 can be compared with previous results obtained in [43,44]. 

EXAMPLE 6.5. Double sine-Gordon equation with negative velocity (-ve). The governing 
equation for this type of problem takes the form 
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Fig. 9. Soliton collision for the double sine-Gordon equation with +ve sign. 

(6.14a) 

with the corresponding potential function 

G(U) = Z(cos ; + a)’ . (6.14b) 

There are two types of soliton (kink) solution for this equation. One is called the (47~ - 6) 
kink, and the other the 26 kink. 

(a) The (47r - S) kink. The boundary conditions for the (47~ - 8) kink are 

U(+m, t) = 6 and U(-m, t) = 47~ - S , 
(6.15) 

u@Q, t) = 0 ) 

with the exact soliton (kink) solution 

U(x, t) = HIT + 4 tan-’ (pi tanh $ 0) , (6.16a) 

Fig. 10. Negative of velocity profile, i.e., -u(x, t), for the double sine-Gordon kink/antikink collision. 
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v-- - 
Fig. 11. The long-lived breather-like state of the double sine-Gordon equation with -ve sign. 

6 = x(x - Pt) (6. Mb) 

x = j/q (I- py’” . (6. MC) 

The initial conditions for the collision of two kink/antikink solitons in Figs. 11-13, obtained 
following the same procedure explained in Example 6.1, are 

u(x, 0) = 4[tan-’ (f! tanh {$x(.x + x0)}) tan-’ (fi tanh (+x(-x + x0)}>] 
(6.W) 

and 
r 

4% 0) = N2 XP I 1 

(1 + $ tanh( 1 x(x + x@))~) cosh( x(x + xJ)~ 

1 

’ (1 f 3 tanh( 4 x(x - xJ)~) cosh( x(x - x0))” I ’ 
(6.16e) 

Fig. 12. Behaviour of the (47r - 26) kink/antikink collision for the double sine-Gordon with -ve sign: /3 = 0.1. 
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Fig. 13. The collision of two (47~ - 26) kinklantikink solitons of the double sine-Gordon equation with -ve sign: 
p = 0.36. 

In Fig. 11, a long-lived breather-like solution of (6.24a) is given, using x0 = 3 and /3 = 0, with 
step sizes h = 0.05, k = 0.05. Figure 12 is obtained using the parameters x0 = 3, /3 =O.l, 
h = 0.1 and k = 0.1. Figure 13 is obtained with a larger parameter /3 = 0.36; the other 
parameters are the same as those for Fig. 12. The values for /3 in the figure captions of Figs. 12 
and 13 are p = 0.1 and j3 = 0.36, respectively. 

(b) The 28 kink. For the 28 kink case, the governing equation and potential function are 
the same as for the (47~ - S) kink, with the only difference in the boundary conditions 

U(+a~,t)=s and U(-~,$)=-a, 

U,( +“, t) = 0, 
(6.17) 

The corresponding kink solution is 

U(x, t) = 4 tan-’ (fs tanh $0) , 

8 = X(X - /3t) 

(6. Ma) 

(6. Mb) 

x = jfg (1 - py2 . 

The expressions for the initial conditions are very similar to (6.16d,e), but with the factor 2 
instead of factor $. Figure 14 is obtained with 6 = 0.36, x0 = 6 and the step sizes h = 0.1, 
k = 0.1. 

6.2. Discussions on the invariant properties 

The above results are obtained using Algorithm I. Along with the computation for the 
displacement Z.&X, t) and velocity U(X, t), we monitor the change in the total energy, linear 
momentum and angular momentum. For Example 6.1, the simulation of elastic collision of 
sine-Gordon solitary waves, we compute the numerical solution by using the spatial step size 
h = 0.1 and with three different time step sizes A = k/h = 0.5, 1.0 and 2.0. The computed 
results are virtually the same for the three cases regarding the displacement profile, the 
velocity profile and the system’s total energy at each time step. We record below the numerical 
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Fig. 14. Collision of two 26 kinklantikink solitons of the double sine-Gordon equation with -ve sign: /3 = 0.36. 

results obtained for the total discrete energy (Table l), the momentum (Table 2) and the 
angular momentum (Table 3). From Table 1, it can be seen that the proposed Algorithm I can 
preserve the total energy accurately up to more than 10 digits with a rather coarse mesh. From 
Tables 2 and 3, one can also notice that the fluctuation of linear momentum and the angular 
momentum are also very small when using Algorithm I. The numerical values in Tables 1, 2 

Table 1 
Collision of sine-Gordon solitons: total discrete energy 
versus time 

Time Energy 

o.oooooooooooo 16.7691395594 
0.800000000000 16.7691395594 
1.6ooooooooOOo 16.7691395594 
2.4OOOOOOOOOOO 16.7691395594 
3.2000OOOOOO00 16.7691395594 
4.oOOOOOOOOOOo 16.7691395594 
4.8OOOOOOOOOOO 16.7691395594 
5.600000000000 16.7691395594 
6.400000000000 16.7691395594 
7.200000000000 16.7691395594 

71.2OOooooooooO 16.7691395595 
72.OOOooooooooO 16.7691395595 
72.8OOOOOOOOOOO 16.7691395595 
73.6OOOOOOOOOOO 16.7691395595 
74.400000000000 16.7691395595 
75.2oooooooooOO 16.7691395595 
76.OOOOOOOOOOOO 16.7691395595 
76.8ooooooooooO 16.7691395595 
77.6ooooooooooo 16.7691395595 
78.4ooooooooooO 16.7691395595 
78.6ooooooooooo 16.7691395595 
78.8OoooooooOOO 16.7691395595 
8O.ooooooooooOO 16.7691395595 
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Table 2 Table 3 
Collision of sine-Gordon solitons: linear momentum Collision of sine-Gordon solitons: angular momentum 
versus time versus time 

Time 

o.ooooooooOOOo 
0.800000000000 
1.6oooooooooOO 
2.4~ 
3.2 
4.~~~ 
4.800000000000 
5.6OOOOOOOOOOO 
6.400000000000 
7.2~0~~~0 
8.~ 
8.8~ 
9.6OOOOOOOOOOO 

10.400000OOoO00 
11.200000000000 

70.~ 
7~.2~ 
72.OOOOOOOOOOOO 
72.8OOOoooooooO 
73.600000000000 
74.OOOOOOooOOOO 
75.2~ 
76.~ 
76.8OoooooOOOOO 
77.600000000000 
78.400000000000 
79.2oOOOOOOOOOO 
80.~~ 

Momentum 

0.0000000000 
o.OOOoOOoOOO 
o.OOOOoOoOOO 
0.~ 
0.~ 
0.0~~0 
0.0000000000 
0.0000000000 
0.0000000000 
0.~~~ 
0.~ 
0.~~ 
0.0000000000 
0.0000000000 
0.0000000000 

0.~5 
-0.~7 
-0.oooooooo11 

0.0000000000 
0.0000000006 
o.oOoooOoOO2 
0.~3 
0.~3 

-O.OOOOoooOOO 
-0.00OOOOOO10 
-0.00ooooooo7 
-o.ooOooOwOO 

0.~7 

Time 

O.OOOOOOOOOooO 
0.80000OOOOOO0 
1.6OOOOOOOOOOO 
2.4~ 
3.2~ 
4.0~~0 
4.8OOOOOO00000 
5.6OOOOOOOOOOO 
6.4OOOOOOOOOOO 
7.2~~ 
8.~ 
8.8~ 
9.6OOOOooooooO 

10.40OOOOOOOOOo 

68.8ooO& 
69.~ 
70.~ 
71.2OOOOCKWOOO 
72.oooooooooooO 
72.8OOOOOOOOOOO 
73.6OOooooooooo 
74.~ 
75.2~ 
76.oooooooooooO 
76.8OoooooooooO 
77.6ooooooooooo 
78.4ooooooooooo 
79.2~ 
80.~ 

Angular momentum 

O.oooooooooO 
-O.oOOOOOOOOO 

O.oooooooooO 
0,~ 

-0.~ 
-0.~~0 
-0.OOOOOOW36 
-0.000OOOOO36 
-0.oooooooO36 
-0.~36 
-0.~36 
-0.~36 
-0.ooooooo036 
-0.00OOOOOO36 

-0.oooooooo73 
0.~507 
0.~362 

-0.OOOOOO0561 
-0.OOOOOOO823 

O.oooooooO58 
o.ooooooo45o 
0.~156 
0.~14 
o.OOOOOOO174 

-0.oooooooo78 
-0.OOOOOO0873 
-0.OOOOO00598 
-0.~9 

0.~583 

and 3 are from the first 80 computation time units of the computed solution in Example 6.1. 
Recall that the step sizes employed in this example are h = 0.1 and k = 0.2, which correspond 
to A = k/h = 2 > 1, testifying to the robustness of the proposed algorithm. Similar remarks can 
be made for the remaining examples. 

7. Closure 

We have presented a formalism to derive second-order inva~ant-conse~ing algorithms for 
the nonlinear Klein-Gordon equation. Three algorithms are derived based on the proposed 
formalism; they conserve in discrete form either the total energy or the momentum. A 
geometric interpretation of these algorithms is given. Their stability and accuracy are 
investigated in some detail. We address the different choices of boundary conditions for the 
discretized problem. An efficient solution procedure has been discussed in detail for the 
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computer implementation of the proposed algorithms. An extension of the proposed algo- 
rithms to non-conservative problems that have as basis the nonlinear Klein-Gordon equation 
is also given. Finally, we have presented several numerical examples, which include collisions 
of solitary waves, to demonstrate the conservation and robustness properties of the proposed 
algorithms. In a follow-up work 1451, we will present a proof of the exact algebraic 
conservation of the discrete invariants in the algorithms presented here, the nonlinear stability 
aspects of these algorithms, together with detailed discussions on some previousiy published 
algorithms for the NLKGE. Some improvements on the results reported here will also be 
presented. 
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